
1

Lecture 7
Vector Processors &

Multiprocessor Introduction

Slides were used during lectures by
Krste Asanovic & David Patterson,

Berkeley, spring 2006

Outline

• Vector Processors
• Vector Metrics, Terms

• Multiprocessing Motivation
• SISD v. SIMD v. MIMD
• Centralized vs. Distributed Memory
• Challenges to Parallel Programming

• Conclusion

Supercomputers

Definition of a supercomputer:
• Fastest machine in world at given task
• A device to turn a compute-bound problem into an

I/O bound problem
• Any machine costing $30M+
• Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

Supercomputer Applications

Typical application areas
• Military research (nuclear weapons, cryptography)
• Scientific research
• Weather forecasting
• Oil exploration
• Industrial design (car crash simulation)

All involve huge computations on large data sets

In 70s-80s, Supercomputer ≡ Vector Machine

Vector Supercomputers

Epitomized by Cray-1, 1976:

Scalar Unit + Vector Extensions
• Load/Store Architecture
• Vector Registers
• Vector Instructions
• Hardwired Control
• Highly Pipelined Functional Units
• Interleaved Memory System
• No Data Caches
• No Virtual Memory

Cray-1 (1976)

2

Cray-1 (1976)

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element
Vector Registers

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

v1
Vector Load and

Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

Vector Code Example

Scalar Code

LI R4, 64

loop:

L.D F0, 0(R1)

L.D F2, 0(R2)

ADD.D F4, F2, F0

S.D F4, 0(R3)

DADDIU R1, 8

DADDIU R2, 8

DADDIU R3, 8

DSUBIU R4, 1

BNEZ R4, loop

Vector Code

LI VLR, 64

LV V1, R1

LV V2, R2

ADDV.D V3, V1, V2

SV V3, R3

C code

for (i=0; i<64; i++)

C[i] = A[i] + B[i];

Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same pattern as previous instructions
– access a contiguous block of memory (unit-stride load/store)
– access memory in a known pattern (strided load/store)

• Scalable
– can run same object code on more parallel pipelines or lanes

Vector Arithmetic Execution

• Use deep pipeline (⇒ fast clock) to
execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (⇒ no hazards!)

V3 <- V1 x V2

V
1

V
2

V
3

Six stage multiply pipeline

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base StrideVector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Cycles between accesses to same bank

3

Vector Instruction Execution

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined

functional units

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

T0 Vector Microprocessor (1995)

LaneVector register
elements striped

over lanes

[0]
[8]

[16]
[24]

[1]
[9]

[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Vector Memory-Memory versus
Vector Register Machines
• Vector memory-memory instructions hold all vector operands

in main memory
• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71),

were memory-memory machines
• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)

{

C[i] = A[i] + B[i];

D[i] = A[i] - B[i];

}

Example Source Code ADDV C, A, B

SUBV D, A, B

Vector Memory-Memory Code

LV V1, A

LV V2, B

ADDV V3, V1, V2

SV V3, C

SUBV V4, V1, V2

SV V4, D

Vector Register Code

Vector Memory-Memory vs.
Vector Register Machines

• Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?

– All operands must be read in and out of memory
• VMMAs make if difficult to overlap execution of

multiple vector operations, why?
– Must check dependencies on memory addresses

• VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 100 elements
– For Cray-1, vector/scalar breakeven point was around 2 elements

⇒Apart from CDC follow-ons (Cyber-205, ETA-10) all
major vector machines since Cray-1 have had vector
register architectures

(we ignore vector memory-memory from now on)

Automatic Code
Vectorization

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing

⇒ requires extensive loop dependence
analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

4

Vector Stripmining

ANDI R1, N, 63 # N mod 64

MTC1 VLR, R1 # Do remainder

loop:

LV V1, RA

DSLL R2, R1, 3 # Multiply by 8

DADDU RA, RA, R2 # Bump pointer

LV V2, RB

DADDU RB, RB, R2

ADDV.D V3, V1, V2

SV V3, RC

DADDU RC, RC, R2

DSUBU N, N, R1 # Subtract elements

LI R1, 64

MTC1 VLR, R1 # Reset full length

BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

Problem: Vector registers have finite length
Solution: Break loops into pieces that fit into

vector registers, “Stripmining”

load

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Vector Chaining Advantage

• With chaining, can start dependent instruction as soon
as first result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to
be written before starting dependent instruction

5

Vector Startup
Two components of vector startup penalty

– functional unit latency (time through pipeline)
– dead time or recovery time (time before another vector

instruction can start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

Dead Time and Short Vectors

T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time

64 cycles active

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA, vB, vC # Do add

SV vA, rA # Store result

Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)

A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector

LVI vA, rA, vB # Gather initial A values

ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Scatter incremented values

Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)

if (A[i]>0) then
A[i] = B[i];

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, F0 # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

Density-Time Implementation
scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
execute all N operations, turn off result

writeback according to mask

6

Compress/Expand Operations

• Compress packs non-masked elements from one
vector register contiguously at start of destination
vector register

– population count of mask vector gives packed vector length
• Expand performs inverse operation

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

A[3]
A[4]
A[5]
A[6]
A[7]

A[0]
A[1]
A[2]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

B[3]
A[4]
A[5]
B[6]
A[7]

B[0]
A[1]
B[2]

Expand

A[7]

A[1]
A[4]
A[5]

Compress

A[7]

A[1]
A[4]
A[5]

Used for density-time
conditionals and also
for general selection
operations

Vector Reductions
Problem: Loop-carried dependence on reduction variables

sum = 0;

for (i=0; i<N; i++)

sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary
tree to perform reduction
Rearrange as:

sum[0:VL-1] = 0 # Vector of VL partial sums

for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {

VL = VL/2; # Halve vector length

sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

A Modern Vector Super: NEC SX-6 (2003)

• CMOS Technology
– 500 MHz CPU, fits on single chip
– SDRAM main memory (up to 64GB)

• Scalar unit
– 4-way superscalar with out-of-order and speculative execution
– 64KB I-cache and 64KB data cache

• Vector unit
– 8 foreground VRegs + 64 background VRegs (256x64-bit

elements/VReg)
– 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit, 1 mask unit
– 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)
– 1 load & store unit (32x8 byte accesses/cycle)
– 32 GB/s memory bandwidth per processor

• SMP structure
– 8 CPUs connected to memory through crossbar
– 256 GB/s shared memory bandwidth (4096 interleaved banks)

Multimedia Extensions

• Very short vectors added to existing ISAs for micros
• Usually 64-bit registers split into 2x32b or 4x16b or 8x8b
• Newer designs have 128-bit registers (Altivec, SSE2)
• Limited instruction set:

– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

• Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in microprocessors

Properties of Vector Processors

• Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate

• Vector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over - 64 elements
=> no (data) caches required! (Do use instruction cache)

• Reduces branches and branch problems in pipelines
• Single vector instruction implies lots of work (- loop)

=> fewer instruction fetches

Spec92fp Operations (Millions) Instructions (M)
Program RISC Vector R / V RISC Vector R / V
swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71x
nasa7 69 41 1.7x 69 2.2 31x
su2cor 51 35 1.4x 51 1.8 29x
tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x
mdljdp2 32 52 0.6x 32 15.8 2x

Operation & Instruction Count:
RISC v. Vector Processor
(from F. Quintana, U. Barcelona.)

Vector reduces ops by 1.2X, instructions by 20X

7

Common Vector Metrics

• R∞: MFLOPS rate on an infinite-length vector
– vector “speed of light”
– Real problems do not have unlimited vector lengths, and the start-up

penalties encountered in real problems will be larger
– (Rn is the MFLOPS rate for a vector of length n)

• N1/2: The vector length needed to reach one-half of R∞
– a good measure of the impact of start-up

• NV: The vector length needed to make vector mode faster than scalar
mode

– measures both start-up and speed of scalars relative to vectors,
quality of connection of scalar unit to vector unit

Vector Execution Time

• Time = f(vector length, data dependicies, struct. hazards)
• Initiation rate: rate that FU consumes vector elements

(= number of lanes; usually 1 or 2 on Cray T-90)
• Convoy: set of vector instructions that can begin

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n,

then they take approx. m x n clock cycles (ignores
overhead; good approximization for long vectors)

4 convoys, 1 lane, VL=64
⇒ 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV V1,Rx ;load vector X
2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y
3: ADDV V4,V2,V3 ;add
4: SV Ry,V4 ;store the result

Memory operations

• Load/store operations move groups of data between
registers and memory

• Three types of addressing
– Unit stride

» Contiguous block of information in memory
» Fastest: always possible to optimize this

– Non-unit (constant) stride
» Harder to optimize memory system for all possible strides
» Prime number of data banks makes it easier to support different

strides at full bandwidth
– Indexed (gather-scatter)

» Vector equivalent of register indirect
» Good for sparse arrays of data
» Increases number of programs that vectorize

Interleaved Memory Layout

• Great for unit stride:
– Contiguous elements in different DRAMs
– Startup time for vector operation is latency of single read

• What about non-unit stride?
– Above good for strides that are relatively prime to 8
– Bad for: 2, 4
– Better: prime number of banks…!

Vector Processor

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

Addr
Mod 8
= 0

Addr
Mod 8
= 1

Addr
Mod 8
= 2

Addr
Mod 8
= 4

Addr
Mod 8
= 5

Addr
Mod 8
= 3

Addr
Mod 8
= 6

Addr
Mod 8
= 7

How to get full bandwidth for Unit Stride?

• Memory system must sustain (# lanes x word) /clock
• No. memory banks > memory latency to avoid stalls

– m banks ⇒ m words per memory latency l clocks
– if m < l, then gap in memory pipeline:
clock: 0 … l l+1 l+2 … l+m- 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m
– may have 1024 banks in SRAM

• If desired throughput greater than one word per cycle
– Either more banks (start multiple requests simultaneously)
– Or wider DRAMS. Only good for unit stride or large data types

• More banks/weird numbers of banks good to support
more strides at full bandwidth

– How to do prime number of banks efficiently?

Vectors Are Inexpensive

Scalar
• N ops per cycle

⇒ Ο(Ν2) circuitry
• HP PA-8000

• 4-way issue
• reorder buffer:

850K transistors
• incl. 6,720 5-bit

register number
comparators

Vector
• N ops per cycle

⇒ Ο(Ν + εΝ2) circuitry
• T0 vector micro

• 24 ops per cycle
• 730K transistors total

• only 23 5-bit register
number comparators

• No floating point

8

Vectors Lower Power
Vector
• One inst fetch, decode,

dispatch per vector
• Structured register

accesses
• Smaller code for high

performance, less power in
instruction cache misses

• Bypass cache

• One TLB lookup per
group of loads or stores

• Move only necessary data
across chip boundary

Single-issue Scalar
• One instruction fetch, decode,

dispatch per operation
• Arbitrary register accesses,

adds area and power
• Loop unrolling and software

pipelining for high performance
increases instruction cache
footprint

• All data passes through cache;
waste power if no temporal locality

• One TLB lookup per load or store

• Off-chip access in whole cache lines

Superscalar Energy Efficiency Even Worse

Vector
• Control logic grows

linearly with issue width
• Vector unit switches

off when not in use

• Vector instructions expose
parallelism without
speculation

• Software control of
speculation when desired:

– Whether to use vector mask or
compress/expand for
conditionals

Superscalar
• Control logic grows

quadratically with issue
width

• Control logic consumes
energy regardless of
available parallelism

• Speculation to increase
visible parallelism
wastes energy

Vector Applications

Limited to scientific computing?
• Multimedia Processing (compress., graphics, audio synth,

image proc.)

• Standard benchmark kernels (Matrix Multiply, FFT,
Convolution, Sort)

• Lossy Compression (JPEG, MPEG video and audio)
• Lossless Compression (Zero removal, RLE, Differencing, LZW)
• Cryptography (RSA, DES/IDEA, SHA/MD5)
• Speech and handwriting recognition
• Operating systems/Networking (memcpy, memset, parity,

checksum)
• Databases (hash/join, data mining, image/video serving)
• Language run-time support (stdlib, garbage collection)
• even SPECint95

Older Vector Machines

Machine Year Clock Regs Elements FUs LSUs
Cray 1 1976 80 MHz 8 64 6 1
Cray XMP 1983 120 MHz 8 64 8 2 L, 1 S
Cray YMP 1988 166 MHz 8 64 8 2 L, 1 S
Cray C-90 1991 240 MHz 8 128 8 4
Cray T-90 1996 455 MHz 8 128 8 4
Convex C-1 1984 10 MHz 8 128 4 1
Convex C-4 1994 133 MHz 16 128 3 1
Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
NEC SX/3 1995 400 MHz 8+8K 256+var 16 8

Newer Vector Computers

• Cray X1
– MIPS like ISA + Vector in CMOS

• NEC Earth Simulator
– Fastest computer in world for 3 years; 40 TFLOPS
– 640 CMOS vector nodes

Key Architectural Features of X1
New vector instruction set architecture (ISA)

– Much larger register set (32x64 vector, 64+64 scalar)
– 64- and 32-bit memory and IEEE arithmetic
– Based on 25 years of experience compiling with Cray1 ISA

Decoupled Execution
– Scalar unit runs ahead of vector unit, doing addressing and control
– Hardware dynamically unrolls loops, and issues multiple loops

concurrently
– Special sync operations keep pipeline full, even across barriers
⇒ Allows the processor to perform well on short nested loops

Scalable, distributed shared memory (DSM) architecture
– Memory hierarchy: caches, local memory, remote memory
– Low latency, load/store access to entire machine (tens of TBs)
– Processors support 1000’s of outstanding refs with flexible addressing
– Very high bandwidth network
– Coherence protocol, addressing and synchronization optimized for DM

9

• Technology refresh of the X1 (0.13µm)
– ~50% faster processors
– Scalar performance enhancements
– Doubling processor density
– Modest increase in memory system bandwidth
– Same interconnect and I/O

• Machine upgradeable
– Can replace Cray X1 nodes with X1E nodes

Cray X1E Mid-life Enhancement ESS – configuration of a general
purpose supercomputer
1. Processor Nodes (PN) Total number of processor nodes is 640. Each

processor node consists of eight vector processors of 8 GFLOPS and
16GB shared memories. Therefore, total numbers of processors is
5,120 and total peak performance and main memory of the system are
40 TFLOPS and 10 TB, respectively. Two nodes are installed into one
cabinet, which size is 40”x56”x80”. 16 nodes are in a cluster. Power
consumption per cabinet is approximately 20 KVA.

2. Interconnection Network (IN): Each node is coupled together with more
than 83,000 copper cables via single-stage crossbar switches of
16GB/s x2 (Load + Store). The total length of the cables is
approximately 1,800 miles.

3. Hard Disk. Raid disks are used for the system. The capacities are 450
TB for the systems operations and 250 TB for users.

4. Mass Storage system: 12 Automatic Cartridge Systems (STK
PowderHorn9310); total storage capacity is approximately 1.6 PB.

From Horst D. Simon, NERSC/LBNL, May
15, 2002, “ESS Rapid Response Meeting”

Earth Simulator Earth Simulator Building

ESS – complete system installed 4/1/2002 Vector Summary

• Vector is alternative model for exploiting ILP
• If code is vectorizable, then simpler hardware,

more energy efficient, and better real-time model
than Out-of-order machines

• Design issues include number of lanes, number of
functional units, number of vector registers, length
of vector registers, exception handling, conditional
operations

• Fundamental design issue is memory bandwidth
– With virtual address translation and caching

• Will multimedia popularity revive vector
architectures?

10

Outline

• Vector Processors
• Vector Metrics, Terms

• Multiprocessing Motivation
• SISD v. SIMD v. MIMD
• Centralized vs. Distributed Memory
• Challenges to Parallel Programming

• Conclusion
1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

3X

Déjà vu all over again?

“… today’s processors … are nearing an impasse as technologies approach
the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)
• Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore
designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005)
• All microprocessor companies switch to MP (2X CPUs / 2 yrs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

32442Threads/chip

4221Threads/Processor
8222Processors/chip

Sun/’05IBM/’04Intel/’06AMD/’05Manufacturer/Year

Other Factors ⇒ Multiprocessors

• Growth in data-intensive applications
– Data bases, file servers, …

• Growing interest in servers, server perf.
• Increasing desktop perf. less important

– Outside of graphics

• Improved understanding in how to use
multiprocessors effectively

– Especially server where significant natural TLP

• Advantage of leveraging design investment
by replication

– Rather than unique design

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD ⇒ Data Level Parallelism
• MIMD ⇒ Thread Level Parallelism
• MIMD popular because

– Flexible: N pgms and 1 multithreaded pgm
– Cost-effective: same MPU in desktop & MIMD

Multiple Instruction Multiple
Data MIMD
(Clusters, SMP servers)

Multiple Instruction Single
Data (MISD)
(????)

Single Instruction Multiple
Data SIMD
(single PC: Vector, CM-2)

Single Instruction Single
Data (SISD)
(Uniprocessor)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966. Back to Basics

• “A parallel computer is a collection of processing
elements that cooperate and communicate to
solve large problems fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• Two classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number chips and cores than 1
• BW demands ⇒ Memory distributed among

processors

11

Centralized vs. Distributed Memory

Centralized Memory

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

Distributed Memory

Scale

Centralized Memory Multiprocessor

• Also called symmetric multiprocessors (SMPs)
because single main memory has a symmetric
relationship to all processors

• Large caches ⇒ single memory can satisfy
memory demands of small number of
processors

• Can scale to a few dozen processors by using
a switch and by using many memory banks

• Although scaling beyond that is technically
conceivable, it becomes less attractive as the
number of processors sharing centralized
memory increases

Distributed Memory Multiprocessor

• Pro: Cost-effective way to scale memory
bandwidth
• If most accesses are to local memory

• Pro: Reduces latency of local memory
accesses

• Con: Communicating data between
processors more complex

• Con: Must change software to take
advantage of increased memory BW

Two Models for Communication and
Memory Architecture

1. Communication occurs by explicitly passing
messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared address
space (via loads and stores):
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared

address, centralized memory MP
• NUMA (Non Uniform Memory Access time

multiprocessor) for shared address, distributed
memory MP

• In past, confusion whether “sharing” means
sharing physical memory (Symmetric MP) or
sharing address space

Challenges of Parallel Processing

• First challenge is % of program
inherently sequential

• Suppose 80X speedup from 100
processors. What fraction of original
program can be sequential?
a.10%
b.5%
c.1%
d.<1%

Amdahl’s Law Answers

()

()

()

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
 Fraction 1(80

100
Fraction

 Fraction 1

1 08

Speedup
Fraction

 Fraction 1

1 Speedup

parallel

parallelparallel

parallel
parallel

parallel
parallel

parallel

parallel
enhanced

overall

==

×−×=

=+−×

+−
=

+−
=

12

Challenges of Parallel Processing

• Second challenge is long latency to
remote memory

• Suppose 32 CPU MP, 2GHz, 200 ns remote
memory, all local accesses hit memory
hierarchy and base CPI is 0.5. (Remote
access = 200/0.5 = 400 clock cycles.)

• What is performance impact if 0.2%
instructions involve remote access?
a. 1.5X
b. 2.0X
c. 2.5X

CPI Equation

CPI = Base CPI +
Remote request rate x Remote request cost

= 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

No communication is 1.3/0.5 or 2.6 faster than
0.2% instructions involve remote access

And in Conclusion [1/2] …

• One instruction operates on vectors of data
• Vector loads get data from memory into big

register files, operate, and then vector store
• E.g., Indexed load, store for sparse matrix
• Easy to add vector to commodity instruction set

– E.g., Morph SIMD into vector

• Vector is very efficient architecture for
vectorizable codes, including multimedia and
many scientific codes

And in Conclusion [2/2] …

• “End” of uniprocessors speedup => Multiprocessors
• Parallelism challenges: % parallalizable, long latency

to remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for Larger MP

• Message Passing vs. Shared Address
– Uniform access time vs. Non-uniform access time

Reading and Schedule

• This lecture:
– Appendix F: Vector Processors
– Chapter 4: 4.1 Introduction Multiprocessors

• Next week, Oct 31st: No class

• Next lecture, Nov 7th: remainder of chapter 4
(in the afternoon feedback on assignment 2a)

• On Wed Nov 14th both at 11.15-13.00h and at
13.45-15.30h lectures in room 402

