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Chapter 8. Mining Stream, Time-
Series, and Sequence Data

Mining data streams

Mining time-series data

Mining sequence patterns in transactional 

databases

Mining sequence patterns 

in biological data
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Mining Sequence Patterns in Biological Data

A brief introduction to biology and bioinformatics

Alignment of biological sequences

Hidden Markov model for biological sequence 

analysis

Summary
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Biology Fundamentals (1): DNA Structure

DNA: helix-shaped molecule 
whose constituents are two 
parallel strands of nucleotides

DNA is usually represented by 
sequences of these four 
nucleotides: A, C, G, T
This assumes only one strand 
is considered; the second 
strand is always derivable 
from the first by: 

A <-> T

C <-> G

Nucleotides (bases)
Adenine (A)
Cytosine (C)
Guanine (G)
Thymine (T)
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The Structure of DNA
Rosalind Franklin, James D. Watson, Francis Crick (1953)

Nucleotides (bases)
• Adenine (A)
• Cytosine (C)
• Guanine (G)
• Thymine (T)

Complementary 
Binding:

• T – A 
• A – T
• C – G
• G - C
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Biology Fundamentals (2): Genes

Gene: Contiguous subparts of single 
strand DNA that are templates for 
producing proteins.  Genes can 
appear in either of the DNA strand.

Chromosomes: compact chains of 
coiled DNA

Genome: The set of all genes in a 
given organism.
Noncoding part: The function of DNA 
material between genes is largely 
unknown.  Certain intergenic regions
of DNA are known to play a major 
role in cell regulation (controls the 
production of proteins and their 
possible interactions with DNA).

Source: www.mtsinai.on.ca/pdmg/Genetics/basic.htm
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Biology Fundamentals (3): Transcription

Proteins: Produced from DNA using 3 operations or transformations: 
transcription, splicing and translation

In eukaryotes (cells with nucleus): genes are only a minute part of 
the total DNA 
In prokaryotes (cells without nucleus): the phase of splicing does 
not occur (no pre-RNA generated)

DNA is capable of replicating itself (DNA-polymerase)
Center dogma:  The capability of DNA for replication and undergoing 
the three (or two) transformations

Genes are transcribed into pre-RNA by a complex ensemble of 
molecules (RNA-polymerase).  During transcription T is substituted 
by the letter U (for uracil).  
Pre-RNA can be represented by alternations off sequence segments 
called exons and introns.  The exons represents the parts of pre-
RNA that will be expressed, i.e., translated into proteins.
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Biological Information:  From 
Genes to Proteins

Gene
DNA

RNA

Transcription

Translation

Protein Protein folding

genomics

molecular 
biology

structural 
biology

biophysics
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Biology Fundamentals (4): Proteins

Splicing (by spliceosome—an ensemble of proteins): concatenates 
the exons and excises introns to form mRNA (or simply RNA)

Translation (by ribosomes—an ensemble of RNA and proteins)

Repeatedly considers a triplet of consecutive nucleotides (called 
codon) in RNA and produces one corresponding amino acid

In RNA, there is one special codon called start codon and a few 
others called stop codons

An Open Reading Frame (ORF): a sequence of codons starting with a 
start codon and ending with an end codon.  The ORF is thus a 
sequence of nucleotides that is used by the ribosome to produce the 
sequence of amino acid that makes up a protein.

There are basically 20 amino acids (A, L, V, S, ...) but in certain rare 
situations, others can be added to that list. 
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Biology Fundamentals (5): 3D Structure

Since there are 64 different codons and 20 amino acids, the “table 

look-up” for translating each codon into an amino acid is redundant: 

multiple codons can produce the same amino acid

The table used by nature to perform translation is called the genetic 
code

Due to the redundancy of the genetic code, certain nucleotide 

changes in DNA may not alter the resulting protein

Once a protein is produced, it folds into a unique structure in 3D 

space, with 3 types of components:α-helices, β-sheets and coils.

The secondary structure of a protein is its sequence of amino acids, 

annotated to distinguish the boundary of each component

The tertiary structure is its 3D representation
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DNA
sequence 3D structure                       protein functions 

DNA (gene) →→→ pre-RNA →→→ RNA →→→ Protein
RNA-polymerase Spliceosome Ribosome

ACCGACCAAGCGGCGTTCACC
ATGAGGCTGCTGACCCTCCTG
GGCCTTCTG…

TDQAAFDTNIVTLTRFVMEQG
RKARGTGEMTQLLNSLCTAVK
AISTAVRKAGIAHLYGIAGST
NVTGDQVKKLDVLSNDLVINV
LKSSFATCVLVTEEDKNAIIV
EPEKRGKYVVCFDPLDGSSNI
DCLVSIGTIFGIYRKNSTDEP
SEKDALQPGRNLVAAGYALYG
SATML

From Amino Acids to Proteins Functions

11/24/2009 Data Mining: Principles and Algorithms 12

Biology Fundamentals (6): 
Functional Genomics

The function of a protein is 
the way it participates with 
other proteins and molecules 
in keeping the cell alive and 
interacting with its 
environment

Function is closely related to 
tertiary structure

Functional genomics: studies 
the function of all the 
proteins of a genome

Source: fajerpc.magnet.fsu.edu/Education/2010/Lectures/26_DNA_Transcription.htm
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Molecule of the Month 
www.pdb.org

Animated gifs from: proteinexplorer.org

March 2008:

Cadherin
• Adhesive Proteins
• Selective Stickiness: 

The red tyrosine 
amino acid will 
bind to Cadherins
on neighbouring
cells
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Molecule of the Month 
www.pdb.org

Animated gifs from: proteinexplorer.org

April 2009:

Oct and Sox 
Transcription 
Factors
• Determine which genes 
will be turned on or off.
• Human contains about 
30,000 genes
• There are only about 
3000 transcription factors, 
1 for every 10 genes
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Protein is Function

Produced
mRNA

Reading the 
Corresponding

DNA code

Protein at work:
T7 RNA Polymerase
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Protein Stucture Design

Computer Aided Design of a Ligand
Specific to 14-3-3 Gamma Isomorf,
Danio Rerio (Zebra Fish)
by H.S. Faddiev
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The Cell as Computing DeviceThe Cell as Computing Device
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Biology Fundamentals (7): Cell Biology

A cell is made up of molecular 
components that can be 
viewed as 3D-structures of 
various shapes
In a living cell, the molecules 
interact with each other (w. 
shape and location).  An 
important type of interaction 
involves catalysis (enzyme) 
that facilitate interaction.
A metabolic pathway is a 
chain of molecular interactions 
involving enzymes
Signaling pathways are 
molecular interactions that 
enable communication 
through the cell’s membrane

Source: www.mtsinai.on.ca/pdmg/images/pairscolour.jpg

Human Genome—23 pairs of chromosomes
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Lab Tools for Determining Bio. Data (I)

Sequencer: machines capable of reading off a sequence of 
nucleotides in a strand of DNA in biological samples

It can produce 300k base pairs per day at relatively low cost

A user can order from biotech companies vials containing short 
sequences of nucleotides specified by the user

Since sequences gathered in a wet lab consist of short random 
segments, one has to use the shotgun method (a program) to 
reassemble them

Difficulty: redundancy of seq. and ambiguity of assembly.

Mass spectroscopy: identifies proteins by cutting them into short 
sequences of amino acids (peptides) whose molecular weights can be 
determined by a mass spectrograph, and then computationally infer 
the constituents of peptides
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Lab Tools for Determining Bio. Data (II)

The 3D-structure of proteins is mainly determined (costly) by 
X-ray crystallography: X-ray passing through a crystallized sample 
of that protein, and 
nuclear magnetic resonance (NMR): obtain a number of matrices 
that express that fact that two atoms are within a certain distance 
and then deduce a 3D shape

Expressed sequence tags (ESTs): RNA chunks that can be gathered 
from a cell in minute quantities (not containing the materials that 
would be present in introns), can be used to infer positions of introns
Libraries of variants of a given organism: 

Each variant may correspond to cells having a single one of its 
genes knocked out
Enable biologists to perform experiments and deduce information 
about cell behavior and fault tolerance
RNA-i: (the i denoteing interference): chunks of the RNA of a 
given gene are inserted in the nucleus of a cell, that may prevent 
the production of that gene
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Lab Tools for Determining Bio. Data (III)

Microarrays: determine simultaneously the amount of mRNA production 
(gene expression) of thousands of genes. It has 3 phases:

Place thousands of different one-strand chunks of RNA in minuscule 
wells on the surface of a small glass chip
Spread genetic material obtained by a cell experiment one wishes to 
perform
Use a laser scanner and computer to measure the amount of 
combined material and determine the degree (a real number) of 
gene expression for each gene on the chip

Protein-arrays: chips whose wells contain molecules that can be bound 
to particular proteins (for study of protein expression)
Determining protein interaction by two-hybrid experiments:

Construct huge Boolean matrices, whose rows and columns 
represent the proteins of a genome
If a protein interacts with another, the corresp. position is set to true
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Gene Expression and Microarray
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Biological Data Available

Vast majority of data are sequence of symbols (nucleotides―genomic
data, but also good amount on amino acids).

Next in volume: microarray experiments and also protein-array data

Comparably small: 3D structure of proteins (PDB)

NCBI (National Center for Biotechnology Information) server:

Total 26B bp: 3B bp human genome, then several bacteria (e.g., 
E. Coli), higher organisms: yeast, worm, fruitful, mouse, and 
plants

The largest known genes has ~20million bp and the largest 
protein consists of ~34k amino acids

PDB has a catalogue of only 45k proteins, specified by their 3D 
structure (i.e, need to infer protein shape from sequence data)
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Bioinformatics

Computational management and 

analysis of biological information

Interdisciplinary Field (Molecular 

Biology, Statistics, Computer 

Science, Genomics, Genetics, 

Databases, Chemistry, Radiology

…)

Bioinformatics vs. computational 
biology (more on algorithm 

correctness, complexity and other 

themes central to theoretical CS)

Bioinformatics

Genomics

Proteomics

Functional
Genomics

Structural
Bioinformatics
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Grand Challenges in Genomics Research
(I) Genomics to Biology

Comprehensively identify the structural and functional components 

encoded in human and other genomes

Catalogue, characterize and comprehend the entire set of functional 

elements encoded in the human and other genomes

Compare genome sequences from evolutionary diverse species

Identify and analyze functional genomic elements

Elucidate the organization of genetic networks and protein pathways
and establish how they contribute to cellular and organismal phenotypes

Develop a detailed understanding of the heritable variation in the 

human genome

Understand evolutionary variation across species and the mechanisms 

underlying it
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Grand Challenges in Genomics Research
(II) Genomics to Health

Develop robust strategies for identifying the genetic contributions to 
disease and drug response

Develop strategies to identify gene variants that contribute to good 
health and resistance to disease

Develop genome-based approach to prediction of disease 
susceptibility and drug response, early detection of illness, and 

molecular taxonomy of disease states

Use new understanding of genes and pathways to develop powerful 

new therapeutic approaches to disease

Develop genome-based tools that improve the health of all

Understand the relationships between genomics, race, and ethnicity, 

and the consequences of uncovering these relationships
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Data Mining & Bioinformatics : Why?

Many biological processes are not well-understood 

Biological knowledge is highly complex, imprecise, descriptive, and 
experimental

Biological data is abundant and information-rich

Genomics & proteomics data (sequences), microarray and protein-
arrays, protein database (PDB), bio-testing data

Huge data banks, rich literature, openly accessible

Largest and richest scientific data sets in the world

Mining: gain biological insight (data/information knowledge)

Mining for correlations, linkages between disease and gene 
sequences, protein networks, classification, clustering, outliers, ...

Find correlations among linkages in literature and heterogeneous
databases
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Data Mining & Bioinformatics: How (1)

Data Integration: Handling heterogeneous, distributed bio-data

Build Web-based, interchangeable, integrated, multi-dimensional 

genome databases

Data cleaning and data integration methods becomes crucial

Mining correlated information across multiple databases itself 

becomes a data mining task

Typical studies: mining database structures, information extraction 

from data, reference reconciliation, document classification, 

clustering and correlation discovery algorithms, ...
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Data Mining & Bioinformatics: How (2)

Master and exploration of existing data mining tools 

Genomics, proteomics, and functional genomics (functional 

networks of genes and proteins)

What are the current bioinformatics tools aiming for?

Inferring a protein’s shape and function from a given sequence of 
amino acids

Finding all the genes and proteins in a given genome

Determining sites in the protein structure where drug molecules 
can be attached
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Data Mining & Bioinformatics – How (3)

Research and development of new tools for bioinformatics

Similarity search and comparison between classes of genes (e.g., diseased 
and healthy) by finding and comparing frequent patterns

Identify sequential patterns that play roles in various diseases 

New clustering and classification methods for micro-array data and 
protein-array data analysis

Mining, indexing and similarity search in sequential and structured (e.g., 
graph and network) data sets

Path analysis: linking genes/proteins to different disease development 
stages

Develop pharmaceutical interventions that target the different stages separately

High-dimensional analysis and OLAP mining

Visualization tools and genetic/proteomic data analysis
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Algorithms Used in Bioinformatics

Comparing sequences: Comparing large numbers of long sequences, allow 
insertion/deletion/mutations of symbols 

Constructing evolutionary (phylogenetic) trees: Comparing seq. of diff. 
organisms, & build trees based on their degree of similarity (evolution) 

Detecting patterns in sequences

Search for genes in DNA or subcomponents of a seq. of amino acids

Determining 3D structures from sequences

E.g., infer RNA shape from seq. & protein shape from amino acid seq.

Inferring cell regulation:

Cell modeling from experimental (say, microarray) data

Determining protein function and metabolic pathways: Interpret human 
annotations for protein function and develop graph db that can be queried 

Assembling DNA fragments (provided by sequencing machines)

Using script languages: script on the Web to analyze data and applications

11/24/2009 Data Mining: Principles and Algorithms 32

Mining Sequence Patterns in Biological Data

A brief introduction to biology and bioinformatics

Alignment of biological sequences

Hidden Markov model for biological sequence 

analysis

Summary
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Comparing Sequences

All living organisms are related to evolution

Alignment: Lining up sequences to achieve the maximal level of identity

Two sequences are homologous if they share a common ancestor

Sequences to be compared: either nucleotides (DNA/RNA) or amino acids 
(proteins)

Nucleotides: identical

Amino acids: identical, or if one can be derived from the other by 
substitutions that are likely to occur in nature

Local vs. global alignments: Local—only portions of the sequences are 
aligned.  Global—align over the entire length of the sequences

Use gap “–” to indicate preferable not to align two symbols

Percent identity: ratio between the number of columns containing identical 
symbols vs. the number of symbols in the longest sequence

Score of alignment: summing up the matches and counting gaps as negative
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Sequence Alignment: Problem Definition

Goal:

Given two or more input sequences

Identify similar sequences with long conserved 
subsequences

Method:

Use substitution matrices (probabilities of substitutions 
of nucleotides or amino-acids and probabilities of 
insertions and deletions)

Optimal alignment problem: NP-hard

Heuristic method to find good alignments
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Pair-Wise Sequence Alignment

Example

Which one is better? Scoring alignments

To compare two sequence alignments, calculate a score

PAM (Percent Accepted Mutation) or BLOSUM (Blocks Substitution 
Matrix) (substitution) matrices: Calculate matches and 
mismatches, considering amino acid substitution

Gap penalty: Initiating a gap

Gap extension penalty: Extending a gap

HEAGAWGHEE
PAWHEAE

HEAGAWGHE-E

P-A--W-HEAE

HEAGAWGHE-E

--P-AW-HEAE
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Pair-wise Sequence Alignment: 
Scoring Matrix

W

P

H

E

A

WHGEA

15-3-3-3-3

-4-2-2-1-1

-310-20-2

-30-36-1

-3-20-15

Gap penalty: -8

Gap extension: -8

HEAGAWGHE-E

P-A--W-HEAE

HEAGAWGHE-E

--P-AW-HEAE
(-8) + (-8) + (-1) + 5 + 15 + (-8)

+ 10 + 6 + (-8) + 6 = 9

Exercise: Calculate for 
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Formal Description

Problem: PairSeqAlign
Input: Two sequences             x, y

Scoring matrix               s
Gap penalty                  d
Gap extension penalty    e

Output: The optimal sequence alignment 
Difficulty:

If x, y are of size n then
the number of possible     
global alignments is

( )nn
n

n
n n

π

2

2

2
)!(
)!2(2
≈=








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Global Alignment: Needleman-Wunsch

Needleman-Wunsch Algorithm (1970)

Uses weights for the outmost edges that encourage the best 
overall (global) alignment

An alternative algorithm: Smith-Waterman (favors the contiguity 
of segments being aligned)

Idea: Build up optimal alignment from optimal alignments of 
subsequences HEAG

--P-

-25

HEAGA

--P-A

-20

HEAGA

--P--

-33

HEAG-

--P-A

-33

Add score from table

Gap with bottom Gap with top Top and bottom

HEAGAWGHE-E

--P-AW-HEAE
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Global Alignment

Uses recursion to fill in 

intermediate results table

Uses O(nm) space and time

O(n2) algorithm

Feasible for moderate 

sized sequences, but not 

for aligning whole 

genomes.

F(i,j)F(i-1,j)

F(i,j-1)F(i-1,j-1)
s(xi,yj) d

d

xi aligned to gap

yj aligned to gap

While building the table, 
keep track of where optimal 
score came from, reverse 
arrows
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Pair-Wise Sequence Alignment

( , ),

(0,0) 0
( 1, 1) ( , )

( , ) max ( 1, )
( , 1)

i j

i j

Given s x y d
F

F i j s x y
F i j F i j d

F i j d

=

− − +


= − −
 − −

( , ),

(0,0) 0
0

( 1, 1) ( , )
( , ) max

( 1, )
( , 1)

i j

i j

Given s x y d
F

F i j s x y
F i j

F i j d
F i j d

=


 − − += 

− −
 − −

Alignment:  F(0,0) – F(n,m) Alignment:  0 – F(i,j) 

We can vary both the model and the alignment strategies 
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Mining Sequence Patterns in Biological Data

A brief introduction to biology and bioinformatics

Alignment of biological sequences

Hidden Markov model for biological sequence 

analysis

Summary
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Biological Information:  From 
Genes to Proteins

Gene
DNA

RNA

Transcription

Translation

Protein Protein folding

genomics

molecular 
biology

structural 
biology

biophysics
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DNA / amino acid
sequence 3D structure                       protein functions 

DNA (gene) →→→ pre-RNA →→→ RNA →→→ Protein
RNA-polymerase Spliceosome Ribosome

CGCCAGCTGGACGGGCACACC
ATGAGGCTGCTGACCCTCCTG
GGCCTTCTG…

TDQAAFDTNIVTLTRFVMEQG
RKARGTGEMTQLLNSLCTAVK
AISTAVRKAGIAHLYGIAGST
NVTGDQVKKLDVLSNDLVINV
LKSSFATCVLVTEEDKNAIIV
EPEKRGKYVVCFDPLDGSSNI
DCLVSIGTIFGIYRKNSTDEP
SEKDALQPGRNLVAAGYALYG
SATML

From Amino Acids to Proteins Functions
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Biology Fundamentals (6): 
Functional Genomics

The function of a protein is 
the way it participates with 
other proteins and molecules 
in keeping the cell alive and 
interacting with its 
environment

Function is closely related to 
tertiary structure

Functional genomics: studies 
the function of all the 
proteins of a genome

Source: fajerpc.magnet.fsu.edu/Education/2010/Lectures/26_DNA_Transcription.htm
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Dot Matrix Alignment Method

Dot Matrix Plot: Boolean matrices representing possible 
alignments that can be detected visually

Extremely simple but
O(n2) in time and space
Visual inspection
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TGCA Matrix Plot

- GGA…
CGGA…

..GCCTAA..

..G- - -AT..
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Heuristic Alignment Algorithms

Motivation: Complexity of alignment algorithms: O(nm) 

Current protein DB: 100 million base pairs

Matching each sequence with a 1,000 base pair query takes 
about 3 hours!

Heuristic algorithms aim at speeding up at the price of possibly
missing the best scoring alignment

Two well known programs

BLAST: Basic Local Alignment Search Tool

FASTA: Fast Alignment Tool

Both find high scoring local alignments between a query 
sequence and a target database

Basic idea: first locate high-scoring short stretches and then 
extend them
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FASTA (Fast Alignment)

Approach [Pearson & Lipman 1988]

Derived from the logic of the dot matrix method
View sequences as sequences of short words (k-tuple)

DNA: 6 bases,  protein: 1 or 2 amino acids

Start from nearby sequences of exact matching words
Motivation

Good alignments should contain many exact matches

Hashing can find exact matches in O(n) time

Diagonals can be formed from exact matches quickly
Sort matches by position (i – j)

Look only at matches near the longest diagonals

Apply more precise alignment to a small search space at the end
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FASTA (Fast Alignment)
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BLAST (Basic Local Alignment Search Tool)

Approach (BLAST) (Altschul et al. 1990, developed by NCBI)
View sequences as sequences of short words (k-tuple)

DNA: 11 bases, protein: 3 amino acids

Create hash table of neighborhood (closely-matching) words
Use statistics to set threshold for “closeness”

Start from exact matches to neighborhood words

Motivation
Good alignments should contain many close matches

Statistics can determine which matches are significant

Much more sensitive than % identity

Hashing can find matches in O(n) time
Extending matches in both directions finds alignment

Yields high-scoring/maximum segment pairs (HSP/MSP)
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BLAST (Basic Local Alignment Search Tool)
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BLAST

ACT GAC TGA CT   GACTGACTGAC   TGACTGACTGA
CTG ACT GAC TG   ACTGACTGACT   GACTGACTGAC

TGA CTG AC TGA   CTGACTGACTG   ACTGACTGACT

• Both the DNA sequence and its complement are directed.
• The reading takes place in the designated direction.
• Per sequence there are 3 reading frames for reading codons. 

Fixed word size w (=11)

• Fixed alignment score T
• Calculate for each word α of the first 
string all the length-w words ν that are 
similar to α with scoring at least T
• Using a keyword tree this can be done 
in linear time (in length of the initial list of 
length-w words)
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BLAST

• The length-w words of the first 
string and its high scoring similar 
counterparts are stored in a dictionary
• The dictionary is used for finding 
exact matches with the length-w
words from the 2nd sequence
• If we find an exact match, we know 
that the scoring with the original 
length-w word from the 1st sequence 
is always above threshold T

• Fixed threshold S for scoring 
extensions
• For each ‘exact’ match that we found 
we extend the alignment in both 
directions while the score is above 
threshold S
• Close segments are merged
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BLAST

• We now have long high scoring 
(above threshold S) segments
• The number of different segments is 
like in the case of FASTA restricted to 
a diagonal band
• Again dynamic programming can be 
used to align the best segments and 
find the global alignment
• The scoring function can be used to 
derive the significance of the matches
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Multiple Sequence Alignment

Alignment containing multiple DNA / protein sequences
Look for conserved regions → similar function
Example:
#Rat  ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGT

#Mouse   ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGT

#Rabbit  ATGGTGCATCTGTCCAGT---GAGGAGAAGTCTGC

#Human   ATGGTGCACCTGACTCCT---GAGGAGAAGTCTGC

#Oppossum ATGGTGCACTTGACTTTT---GAGGAGAAGAACTG

#Chicken   ATGGTGCACTGGACTGCT---GAGGAGAAGCAGCT

#Frog      ---ATGGGTTTGACAGCACATGATCGT---CAGCT
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Multiple Sequence Alignment: Why?

Identify highly conserved residues

Likely to be essential sites for structure/function
More precision from multiple sequences

Better structure/function prediction, pairwise alignments

Building gene/protein families
Use conserved regions to guide search

Basis for phylogenetic analysis

Infer evolutionary relationships between genes

Develop primers & probes
Use conserved region to develop

Primers for PCR

Probes for DNA micro-arrays
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Multiple Alignment Model

X1=x11,…,x1m1
Model: scoring function  s: A→ℜ

Possible alignments ai of all Xi’s: A ={a1,…,ak}

Find the best alignment(s)

1 2* arg max ( ( , ,..., ))a Na s a X X X=

Q3: How can we find a* quickly?

Q1: How should we define s?

S(a*)= 21

Q4: Is the alignment biologically 
Meaningful?

Q2: How should we define A?

X2=x21,…,x2m2

XN=xN1,…,xNmN

…

X1=x11,…,x1m1

X2=x21,…,x2m2

XN=xN1,…,xNmN

…
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Minimum Entropy Scoring

Intuition:

A perfectly aligned column 

has one single symbol 

(least uncertainty) 

A poorly aligned column 

has many distinct symbols 

(high uncertainty)

Count of symbol a in 
column i

Example:
12345678
G-T—A—
G-T—C—
G-T—C—
G-A—A--

p1G= 1 => S(m1) = 0
p3T= 3/4, p3A=1/4 => S(m3) = 0.81
p6A= 2/4, p6C=2/4 => S(m6) = 1

mi column i of the alignment
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Multidimensional Dynamic Programming
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Assumptions: (1) columns are independent (2) linear gap cost G 

Alignments: 0,0,0…,0 - - - |x1| , …, |xN|

We can vary both the model and the alignment strategies 

( ) ( )

( )

i
i

S m G s m

G g dgγ

= +

= =

∑

=Maximum score of an alignment up to the subsequences ending with 
1 2
1 2, , . . . , N

i i i Nx x x
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Complexity of Dynamic Programming

Complexity: Space: O(LN); Time: O(2NLN)
One idea for improving the efficiency

Define the score as the sum of pair wise alignment scores

Derive a lower bound for S(akl), only consider a pair wise 
alignment scoring better than the bound

( ) ( )kl

k l
S a S a

<

=∑
Pair wise alignment between sequence k and l

' '

' '

' '

' '

ˆ ˆ( ) ( ) ( ) ( )
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Approximate Algorithms for Multiple 
Alignment

Two major methods (but it remains a worthy research topic)

Reduce a multiple alignment to a series of pair wise alignments and 
then combine the result (e.g., Feng-Doolittle alignment)

Using HMMs (Hidden Markov Models)

Feng-Doolittle alignment (4 steps)

Compute all possible pair wise alignments

Convert alignment scores to distances

Construct a “guide tree” by clustering

Progressive alignment based on the guide tree (bottom up)

Practical aspects of alignments

Visual inspection is crucial

Variety of input/output formats: need translation
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More on Feng-Doolittle Alignment

Problems of Feng-Doolittle alignment

All alignments are completely determined by pair wise alignment 
(restricted search space)
No backtracking (sub alignment is “frozen”)

No way to correct an early mistake

Non-optimality: Mismatches and gaps at highly conserved 
region should be penalized more, but we can’t tell where is a 
highly conserved region early in the process

Iterative Refinement 

Re-assigning a sequence to a different cluster/profile

Repeatedly do this for a fixed number of times or until the score 
converges
Essentially to enlarge the search space 

11/24/2009 Data Mining: Principles and Algorithms 63

Clustal W: A Multiple Alignment Tool

CLUSTAL and its variants are software packages often used to 

produce multiple alignments

Essentially following Feng-Doolittle

Do pair wise alignment (dynamic programming)

Do score conversion/normalization (Kimura’s model)

Construct a guide tree (neighbour-journing clustering)

Progressively align all sequences using profile alignment

Offer capabilities of using substitution matrices like BLOSUM or PAM

Many Heuristics 
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Mining Sequence Patterns in Biological Data

A brief introduction to biology and bioinformatics

Alignment of biological sequences

Hidden Markov model for biological sequence 

analysis

Summary
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Biological Information:  From 
Genes to Proteins

Gene
DNA

RNA

Transcription

Translation

Protein Protein folding

genomics

molecular 
biology

structural 
biology

biophysics
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Motivation for Markov Models in Computational 
Biology

There are many cases in which we would like to 
represent the statistical regularities of some class of 
sequences

genes
various regulatory sites in DNA (e.g., where RNA
polymerase and transcription factors bind)
proteins in a given family

Markov models are well suited to this type of task
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A Markov Chain Model

Transition probabilities
Pr(xi=a|xi-1=g)=0.16
Pr(xi=c|xi-1=g)=0.34
Pr(xi=g|xi-1=g)=0.38
Pr(xi=t|xi-1=g)=0.12

∑ ==− 1)|Pr( 1 gxx ii
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Definition of Markov Chain Model

A Markov chain[1] model is defined by

a set of states

some states emit symbols

other states (e.g., the begin state) are silent

a set of transitions with associated probabilities

the transitions emanating from a given state define a

distribution over the possible next states

[1] Марков А. А., Распространение закона больших чисел на величины, зависящие друг

от друга. — Известия физико-математического общества при Казанском

университете. — 2-я серия. — Том 15. (1906) — С. 135—156



18

11/24/2009 Data Mining: Principles and Algorithms 69

Markov Chain Models: Properties

Given some sequence x of length L, we can ask how
probable the sequence is given our model
For any probabilistic model of sequences, we can write 
this probability as

key property of a (1st order) Markov chain: the 
probability of each xi depends only on the value of xi-1
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The Probability of a Sequence for a Markov Chain 
Model

Pr(CGGT)=Pr(C)Pr(G|C)Pr(G|G)Pr(T|G)
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Example Application

CpG islands

CG di-nucleotides are rarer in eukaryotic genomes than

expected given the marginal probabilities of C and G

but the regions upstream of genes are richer in CG di-
nucleotides than elsewhere – so called CpG islands

useful evidence for finding genes

Application: Predict CpG islands with Markov chains

a Markov chain to represent CpG islands

a Markov chain to represent the rest of the genome
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Markov Chains for Discrimination

Suppose we want to distinguish CpG islands from other
sequence regions
Given sequences from CpG islands, and sequences from
other regions, we can construct

a model to represent CpG islands
a null model to represent the other regions

We can then score a test sequence X by:

)|Pr(
)|Pr(log)(

nullModelX
CpGModelXXscore =
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Markov Chains for Discrimination

Why can we use 

According to Bayes’ rule:

If we are not taking into account prior probabilities (Pr(CpG) and 
Pr(null)) of the two classes, then from Bayes’ rule it is clear that we 
just need to compare Pr(X|CpG) and Pr(X|null) as is done in our 
scoring function score().

)Pr(
)Pr()|Pr()|Pr(

X
CpGCpGXXCpG =

)Pr(
)Pr()|Pr()|Pr(

X
nullnullXXnull =

)|Pr(
)|Pr(log)(

nullModelX
CpGModelXXscore =
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Higher Order Markov Chains

The Markov property specifies that the probability of a state
depends only on the probability of the previous state

But we can build more “memory” into our states by using a higher 
order Markov model

In an n-th order Markov model

The probability of the current state depends on the previous n states.

),...,|Pr(),...,,|Pr( 1121 niiiiii xxxxxxx −−−− =
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Selecting the Order of a Markov Chain Model

But the number of parameters we need to estimate for an n-th
order Markov model grows exponentially with the order

for modeling DNA we need parameters (# of state 
transitions) for an n-th order model

The higher the order, the less reliable we can expect our
parameter estimates to be

estimating the parameters of a 2nd order Markov chain from 
the complete genome of E. Coli (5.44 x 106 bases) , we’d see 
each word ~ 85.000 times on average (divide by 43)
estimating the parameters of a 9th order chain, we’d see each 
word ~ 5 times on average (divide by 410 ~ 106)

)4( 1+nO
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Higher Order Markov Chains

An n-th order Markov chain over some alphabet A is
equivalent to a first order Markov chain over the 
alphabet of n-tuples:  An

Example: a 2nd order Markov model for DNA can be
treated as a 1st order Markov model over alphabet

AA, AC, AG, AT

CA, CC, CG, CT

GA, GC, GG, GT

TA, TC, TG, TT
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A Fifth Order Markov Chain Equivalent

Pr(GCTACA)=Pr(GCTAC)Pr(A|GCTAC)
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Hidden Markov Model: A Simple HMM

Given observed sequence AGGCT, which state emits 
every item?

Model 1 Model 2
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Important Papers on HMM

L.R. Rabiner, A Tutorial on Hidden Markov Models and 
Selected Applications in Speech Recognition,

Proceeding of the IEEE, Vol. 77, No. 22, February 1989.

Krogh, I. Saira Mian, D. Haussler, A Hidden Markov Model 
that finds genes in E. coli DNA, Nucleid Acids Research, 
Vol. 22 (1994), pp 4768-4778

Furthermore:
R. Hassan, A combination of hidden Markov model and fuzzy 

model for stock market    forecasting, Neurocomputing
archive, Vol. 72 ,  Issue 16-18, pp 3439-3446, October 
2009.
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HMM for Hidden Coin Tossing

H
T

T

T T

T
H

T
……… H H T T H T H H T T H
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Hidden State

We’ll distinguish between the observed parts of a 

problem and the hidden parts

In the Markov models we’ve considered previously, it is

clear which state accounts for each part of the observed

sequence

In the model above, there are multiple states that could

account for each part of the observed sequence

this is the hidden part of the problem
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Learning and Prediction Tasks
(in general, i.e., applies on both MM as HMM)

Learning
Given: a model, a set of training sequences
Do: find model parameters that explain the training sequences 
with relatively high probability (goal is to find a model that 
generalizes well to sequences we haven’t seen before)

Classification
Given: a set of models representing different sequence classes,
and given a test sequence
Do: determine which model/class best explains the sequence

Segmentation
Given: a model representing different sequence classes, and given 
a test sequence
Do: segment the sequence into subsequences, predicting the 
class of each subsequence
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Algorithms for Learning & Prediction

Learning
correct path known for each training sequence (Markov Model) -> simple 
maximum likelihood or Bayesian estimation 

correct path not known (HMM) -> Forward-Backward algorithm + ML or
Bayesian estimation

Classification
simple Markov model -> calculate probability of sequence along single
path for each model

hidden Markov model -> Forward algorithm to calculate probability of
sequence along all paths for each model

Segmentation
hidden Markov model -> Viterbi algorithm to find most probable path for 
sequence
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The Parameters of an HMM

Transition Probabilities

Probability of transition from state k to state l

Emission Probabilities

Probability of emitting character b in state k

)|Pr( 1 kla iikl === −ππ

)|Pr()( kbxbe iik === π
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An HMM Example

Emission probabilities
∑ pi = 1 

Transition probabilities
∑ pi = 1
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Three Important Questions
(See also L.R. Rabiner (1989))

How likely is a given sequence?

The Forward algorithm

What is the most probable “path” for generating 
a given sequence?

The Viterbi algorithm

How can we learn the HMM parameters given a 
set of sequences?

The Forward-Backward (Baum-Welch) 
algorithm
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How Likely is a Given Sequence?

The probability that a given path is taken and 
the sequence is generated:

∏
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How Likely is a Given Sequence?

The probability over all paths is

but the number of paths can be exponential in 
the length of the sequence...
the Forward algorithm enables us to compute 
this efficiently
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The Forward Algorithm

Define to be the probability of being in 
state k having observed the first i characters of 
sequence x
To compute , the probability of being in
the end state having observed all of sequence x
Can be defined recursively
Compute using dynamic programming

)(ifk

)(LfN
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The Forward Algorithm

fk(i) equal to the probability of being in state k having 
observed the first i characters of sequence x
Initialization

f0(0) = 1 for start state;  fi(0) = 0 for other state

Recursion

For emitting state (i = 1, … L)

For silent state

Termination
∑=

k
klkl aifif )()(

∑ −=
k

klkll aifieif )1()()(

∑===
k

kNkNL aLfLfxxx )()()...Pr()Pr( 1
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Forward Algorithm Example

Given the sequence x=TAGA
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Forward Algorithm Example

Initialization
f0(0)=1, f1(0)=0…f5(0)=0

Computing other values
f1(1)=e1(T)*(f0(0)a01+f1(0)a11)

=0.3*(1*0.5+0*0.2)=0.15
f2(1)=0.4*(1*0.5+0*0.8)
f1(2)=e1(A)*(f0(1)a01+f1(1)a11)

=0.4*(0*0.5+0.15*0.2)
…

Pr(TAGA)= f5(4)=f3(4)a35+f4(4)a45
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Three Important Questions

How likely is a given sequence?

What is the most probable “path” for generating 
a given sequence?

How can we learn the HMM parameters given a 
set of sequences?

11/24/2009 Data Mining: Principles and Algorithms 94

Finding the Most Probable Path: The Viterbi Algorithm

Define vk(i) to be the probability of the most probable
path accounting for the first i characters of x and 
ending in state k

We want to compute vN(L), the probability of the most
probable path accounting for all of the sequence and
ending in the end state

Can be defined recursively

Again we can use use Dynamic Programming to 
compute vN(L) and find the most probable path 
efficiently

11/24/2009 Data Mining: Principles and Algorithms 95

Finding the Most Probable Path: The Viterbi Algorithm

Define vk(i) to be the probability of the most probable path π
accounting for the first i characters of x and ending in state k

The Viterbi Algorithm:

1. Initialization (i = 0)
v0(0) = 1, vk(0) = 0 for k>0

2. Recursion (i = 1,…,L)   
vl(i)  = el(xi) .maxk(vk(i-1).akl)

ptri(l)  = argmaxk(vk(i-1).akl)

3. Termination: 
P(x,π*) = maxk(vk(L).ak0)

π*
L = argmaxk(vk(L).ak0)
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Three Important Questions

How likely is a given sequence?

What is the most probable “path” for generating 

a given sequence?

How can we learn the HMM parameters given a 

set of sequences?
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Learning Without Hidden State

Learning is simple if we know the correct path for each 
sequence in our training set

estimate parameters by counting the number of times 
each parameter is used across the training set
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Learning With Hidden State

If we don’t know the correct path for each sequence 
in our training set, consider all possible paths for the 
sequence

Estimate parameters through a procedure that counts 
the expected number of times each parameter is used 
across the training set
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Learning Parameters: The Baum-Welch 
Algorithm

Also known as the Forward-Backward algorithm

An Expectation Maximization (EM) algorithm

EM is a family of algorithms for learning 
probabilistic models in problems that involve 
hidden states

In this context, the hidden state is the path that 
best explains each training sequence

11/24/2009 Data Mining: Principles and Algorithms 100

Learning Parameters: The Baum-Welch 
Algorithm

Algorithm sketch:

initialize parameters of model

iterate until convergence

calculate the expected number of times 
each transition or emission is used

adjust the parameters to maximize the 
likelihood of these expected values
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Computational Complexity of HMM Algorithms

Given an HMM with S states and a sequence of length L,
the complexity of the Forward, Backward and Viterbi
algorithms is

This assumes that the states are densely 
interconnected

Given M sequences of length L, the complexity of Baum
Welch on each iteration is

)( 2LSO

)( 2LMSO
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A Hidden Markov Model that finds genes in E. coli DNA.
Krogh, I. Saira Mian, D. Haussler

Nucleid Acids Research, Vol. 22 (1994), pp 4768-4778

Search for 
Protein coding genes 

codons and frequencies
Intergenic regions (basically the rest)

Repetitive extragenic palindromic sequences
Shine-Delgarno motif (1974) (AGGAGG(U) ribosomal binding 
site in prokaryotes, 16 nucleotides Upstream start codon AUG)

‘Noise’ (identified with high probability)
Potential sequence errors
Frame shifts
Insertion and deletions of nucleotides within a codon (very 
unlikely, but possible)

Results
80% of the known genes found
10% approximate locations and potentially new genes
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Hidden Markov Models

HMM’s applied to (already in 1994)
DNA analysis (Churchill, 1989)
Protein binding site modeling (Lawrence et al., 1990; 
Cardon et al., 1992)
Protein analysis (1993)

Applied on
Directed strand
Complementary strand
Protein sequences
…

Finding Genes =>
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Finding Genes

Two techniques:
1. Locate promotor sequences and splice junctions (NN, 

statistical methods)
2. Window scoring functions

a coding window vs a non-coding window
Deviation from the ‘average codon’
Codon usage scoring (NN, Markov Model)

For example: Based on training data sets one Markov 
Model is determined for coding windows. A second 
Markov Model is determined for non coding windows.
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Finding Genes

Both techniques produce probabilistic results
The results from both techniques have to be 
analyzed and assembled to produce a coherent 
‘parse’ into genes separated by intergenic
regions. 
For this ad hoc/specialized Dynamic Programming 
techniques are used
The HMM framework gives a uniform and 
transparent approach
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HMM Organization

A general looping structure
Submodels for

Each of the 64 codons (with the possibility for very low 
likelihood single nucleotide insertions/deletions)
Gene overlap
Frame shift and other programmed recording events 
(i.e., alternative readings of the genetic code)
Intergenic features

Repetitive extragenic palindromic sequences (REP’s)
Shine Delgarno motif
Note: these models emerged automatically as a result of the
training of more generic HMM’s
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Codon Frequencies
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Open Reading Frame Probability
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Gene Index and ORF’s
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HMM Model

61 Codon Models

Start Codon Model
• ATG
• GTA
• TTT (rare)

Stop Codon Models
• TAA and TGA
• TAG
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Intergenic Models

11/24/2009 Data Mining: Principles and Algorithms 112



29

11/24/2009 Data Mining: Principles and Algorithms 113

Statistics on Data Set EcoSeq6
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HMM Results

Data Set: 
EcoSeq6 contained about 1/3th of the complete E. coli genome (total 
5.44x106 nucleotides, 5416 genes), and was not fully annotated at 
that time

HMM Training:
on ~106 nucleotides from the EcoSeq6 database of labeled genes (K. 
Rudd, 1991)

HMM Testing
On the remainder of ~325.000 nucleotides

Method:
For each contig in the test the Viterbi algorithm was used to find the 
most likely path through the hidden states of the HMM
This path was then used to define a parse of the contig into genes 
separated by intergenic regions
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HMM Results
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HMM Results

80% of the labeled protein coding genes were 
exactly found (i.e. with precisely the same start 
and end codon)
5% found within 10 codons from start codon
5% overlap by at least 60 bases or 50%
5% missed completely
Several new genes indicated
Several insertion and deletion errors were labeled 
in the contig parse
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Markov Models Summary

We considered models that vary in terms of 
order, hidden state

Three DP-based algorithms for HMMs: Forward, 
Backward and Viterbi

We discussed three key tasks: learning, 
classification and segmentation

The algorithms used for each task depend on 
whether there is hidden state (correct path 
known) in the problem or not
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Mining Sequence Patterns in Biological Data

A brief introduction to biology and bioinformatics

Alignment of biological sequences

Hidden Markov model for biological sequence 

analysis

Summary
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Summary: Mining Biological Data

Biological sequence analysis compares, aligns, indexes, and analyzes 
biological sequences (sequence of nucleotides or  amino acids)

Biosequence analysis can be partitioned into two essential tasks: 

pair-wise sequence alignment and multiple sequence alignment

Dynamic programming approach (notably, BLAST ) has been popularly used 
for sequence alignments

Markov chains and hidden Markov models are probabilistic models in which 
the probability of a state depends only on that of the previous state

Given a sequence of symbols, x, the forward algorithm finds the 
probability of obtaining x in the model 

The Viterbi algorithm finds the most probable path (corresponding to x) 
through the model

The Baum-Welch learns or adjusts the model parameters (transition 
and emission probabilities) to best explain a set of training sequences.
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