
SPIM S20: A MIPS R2000 Simulator�\ 125 th the performan
e at none of the
ost"James R. Laruslarus�
s.wis
.eduComputer S
ien
es DepartmentUniversity of Wis
onsin{Madison1210 West Dayton StreetMadison, WI 53706, USA608-262-9519Copyright

1990{1997 by James R. Larus(This do
ument may be
opied without royalties,so long as this
opyright noti
e remains on it.)
1 SPIMSPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC
omputers.1SPIM
an read and immediately exe
ute �les
ontaining assembly language. SPIM is a self-
ontained system for running these programs and
ontains a debugger and interfa
e to a fewoperating system servi
es.The ar
hite
ture of the MIPS
omputers is simple and regular, whi
h makes it easy to learnand understand. The pro
essor
ontains 32 general-purpose 32-bit registers and a well-designedinstru
tion set that make it a propitious target for generating
ode in a
ompiler.However, the obvious question is: why use a simulator when many people have workstationsthat
ontain a hardware, and hen
e signi�
antly faster, implementation of this
omputer? Onereason is that these workstations are not generally available. Another reason is that these ma-
hine will not persist for many years be
ause of the rapid progress leading to new and faster
omputers. Unfortunately, the trend is to make
omputers faster by exe
uting several instru
-tions
on
urrently, whi
h makes their ar
hite
ture more diÆ
ult to understand and program.The MIPS ar
hite
ture may be the epitome of a simple,
lean RISC ma
hine.In addition, simulators
an provide a better environment for low-level programming than ana
tual ma
hine be
ause they
an dete
t more errors and provide more features than an a
tual
omputer. For example, SPIM has a X-window interfa
e that is better than most debuggers forthe a
tual ma
hines.�I grateful to the many students at UW who used SPIM in their
ourses and happily found bugs in a professor's
ode. In parti
ular, the students in CS536, Spring 1990, painfully found the last few bugs in an \already-debugged"simulator. I am grateful for their patien
e and persisten
e. Alan Yuen-wui Siow wrote the X-window interfa
e.1For a des
ription of the real ma
hines, see Gerry Kane and Joe Heinri
h, MIPS RISC Ar
hite
ture, Prenti
eHall, 1992. 1

Finally, simulators are an useful tool for studying
omputers and the programs that run onthem. Be
ause they are implemented in software, not sili
on, they
an be easily modi�ed to addnew instru
tions, build new systems su
h as multipro
essors, or simply to
olle
t data.1.1 Simulation of a Virtual Ma
hineThe MIPS ar
hite
ture, like that of most RISC
omputers, is diÆ
ult to program dire
tly be
auseof its delayed bran
hes, delayed loads, and restri
ted address modes. This diÆ
ulty is tolerablesin
e these
omputers were designed to be programmed in high-level languages and so presentan interfa
e designed for
ompilers, not programmers. A good part of the
omplexity resultsfrom delayed instru
tions. A delayed bran
h takes two
y
les to exe
ute. In the se
ond
y
le,the instru
tion immediately following the bran
h exe
utes. This instru
tion
an perform usefulwork that normally would have been done before the bran
h or it
an be a nop (no operation).Similarly, delayed loads take two
y
les so the instru
tion immediately following a load
annotuse the value loaded from memory.MIPS wisely
hoose to hide this
omplexity by implementing a virtual ma
hine with theirassembler. This virtual
omputer appears to have non-delayed bran
hes and loads and a ri
herinstru
tion set than the a
tual hardware. The assembler reorganizes (rearranges) instru
tionsto �ll the delay slots. It also simulates the additional, pseudoinstru
tions by generating shortsequen
es of a
tual instru
tions.By default, SPIM simulates the ri
her, virtual ma
hine. It
an also simulate the a
tualhardware. We will des
ribe the virtual ma
hine and only mention in passing features thatdo not belong to the a
tual hardware. In doing so, we are following the
onvention of MIPSassembly language programmers (and
ompilers), who routinely take advantage of the extendedma
hine. Instru
tions marked with a dagger (y) are pseudoinstru
tions.1.2 SPIM Interfa
eSPIM provides a simple terminal and a X-window interfa
e. Both provide equivalent fun
tion-ality, but the X interfa
e is generally easier to use and more informative.spim, the terminal version, and xspim, the X version, have the following
ommand-lineoptions:-bareSimulate a bare MIPS ma
hine without pseudoinstru
tions or the additional addressingmodes provided by the assembler. Implies -quiet.-asmSimulate the virtual MIPS ma
hine provided by the assembler. This is the default.-pseudoA

ept pseudoinstru
tions in assembly
ode.-nopseudoDo not a

ept pseudoinstru
tions in assembly
ode.-notrapDo not load the standard trap handler. This trap handler has two fun
tions that mustbe assumed by the user's program. First, it handles traps. When a trap o

urs, SPIMjumps to lo
ation 0x80000080, whi
h should
ontain
ode to servi
e the ex
eption. Se
ond,2

this �le
ontains startup
ode that invokes the routine main. Without the trap handler,exe
ution begins at the instru
tion labeled start.-trapLoad the standard trap handler. This is the default.-trap fileLoad the trap handler in the �le.-noquietPrint a message when an ex
eption o

urs. This is the default.-quietDo not print a message at an ex
eption.-nomapped ioDisable the memory-mapped IO fa
ility (see Se
tion 5).-mapped ioEnable the memory-mapped IO fa
ility (see Se
tion 5). Programs that use SPIM sys
alls(see Se
tion 1.5) to read from the terminal should not also use memory-mapped IO.-fileLoad and exe
ute the assembly
ode in the �le.-s seg size Sets the initial size of memory segment seg to be size bytes. The memorysegments are named: text, data, sta
k, ktext, and kdata. For example, the pair ofarguments -sdata 2000000 starts the user data segment at 2,000,000 bytes.-lseg size Sets the limit on how large memory segment seg
an grow to be size bytes. Thememory segments that
an grow are: data, sta
k, and kdata.1.2.1 Terminal Interfa
eThe terminal interfa
e (spim) provides the following
ommands:exitExit the simulator.read "file"Read �le of assembly language
ommands into SPIM's memory. If the �le has alreadybeen read into SPIM, the system should be
leared (see reinitialize, below) or globalsymbols will be multiply de�ned.load "file"Synonym for read.run <addr>Start running a program. If the optional address addr is provided, the program startsat that address. Otherwise, the program starts at the global symbol start, whi
h isde�ned by the default trap handler to
all the routine at the global symbol main with theusual MIPS
alling
onvention. 3

step <N>Step the program for N (default: 1) instru
tions. Print instru
tions as they exe
ute.
ontinueContinue program exe
ution without stepping.print $NPrint register N .print $fNPrint
oating point register N .print addrPrint the
ontents of memory at address addr .print symPrint the
ontents of the symbol table, i.e., the addresses of the global (but not lo
al)symbols.reinitializeClear the memory and registers.breakpoint addrSet a breakpoint at address addr . addr
an be either a memory address or symboli
 label.delete addrDelete all breakpoints at address addr .listList all breakpoints.. Rest of line is an assembly instru
tion that is stored in memory.<nl>A newline reexe
utes previous
ommand.? Print a help message.Most
ommands
an be abbreviated to their unique pre�x e.g., ex, re, l, ru, s, p. Moredangerous
ommands, su
h as reinitialize, require a longer pre�x.1.2.2 X-Window Interfa
eThe X version of SPIM, xspim, looks di�erent, but should operate in the same manner as spim.The X window has �ve panes (see Figure 1). The top pane displays the
ontents of the registers.It is
ontinually updated, ex
ept while a program is running.The next pane
ontains the buttons that
ontrol the simulator:quitExit from the simulator. 4

PC = 00000000 EPC = 00000000 Cause = 0000000 BadVaddr = 00000000
Status= 00000000 HI = 00000000 LO = 0000000

R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 0000000 R24 (t8) = 00000000
R1 (at) = 00000000 R9 (t1) = 00000000 R17 (s1) = 0000000 R25 (s9) = 00000000
R2 (v0) = 00000000 R10 (t2) = 00000000 R18 (s2) = 0000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000000 R19 (s3) = 0000000 R27 (k1) = 00000000
R4 (a0) = 00000000 R12 (t4) = 00000000 R20 (s4) = 0000000 R28 (gp) = 00000000
R5 (a1) = 00000000 R13 (t5) = 00000000 R21 (s5) = 0000000 R29 (gp) = 00000000
R6 (a2) = 00000000 R14 (t6) = 00000000 R22 (s6) = 0000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 0000000 R31 (ra) = 00000000

FP0 = 0.000000 FP8 = 0.000000 FP16 = 0.00000 FP24 = 0.000000

FP6 = 0.000000 FP14 = 0.000000 FP22 = 0.00000 FP30 = 0.000000
FP4 = 0.000000 FP12 = 0.000000 FP20 = 0.00000 FP28 = 0.000000
FP2 = 0.000000 FP10 = 0.000000 FP18 = 0.00000 FP26 = 0.000000

quit load run step clear set value

print breakpt help terminal mode

SPIM Version 3.2 of January 14, 1990

Text Segments

xspim

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

SPIM
Messages

General Registers

Double Floating Point Registers

Single Floating Point Registers

Data Segments

Data and
Stack
Segments

[0x00400000] 0x8fa40000 lw R4, 0(R29) []
[0x00400004] 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 sll R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori R0, R0, 10 []
[0x0040001c] 0x0000000c syscall

[0x10000000]...[0x10010000] 0x00000000
[0x10010004] 0x74706563 0x206e6f69 0x636f2000
[0x10010010] 0x72727563 0x61206465 0x6920646e 0x726f6e67
[0x10010020] 0x000a6465 0x495b2020 0x7265746e 0x74707572
[0x10010030] 0x0000205d 0x20200000 0x616e555b 0x6e67696c
[0x10010040] 0x61206465 0x65726464 0x69207373 0x6e69206e
[0x10010050] 0x642f7473 0x20617461 0x63746566 0x00205d68
[0x10010060] 0x555b2020 0x696c616e 0x64656e67 0x64646120
[0x10010070] 0x73736572 0x206e6920 0x726f7473 0x00205d65

Figure 1: X-window interfa
e to SPIM.

5

loadRead a sour
e �le into memory.runStart the program running.stepSingle-step through a program.
learReinitialize registers or memory.set valueSet the value in a register or memory lo
ation.printPrint the value in a register or memory lo
ation.breakpointSet or delete a breakpoint or list all breakpoints.helpPrint a help message.terminalRaise or hide the
onsole window.modeSet SPIM operating modes.The next two panes display the memory
ontents. The top one shows instru
tions from theuser and kernel text segments.2 The �rst few instru
tions in the text segment are startup
ode(start) that loads arg
 and argv into registers and invokes the main routine.The lower of these two panes displays the data and sta
k segments. Both panes are updatedas a program exe
utes.The bottom pane is used to display messages from the simulator. It does not display outputfrom an exe
uting program. When a program reads or writes, its IO appears in a separatewindow,
alled the Console, whi
h pops up when needed.1.3 Surprising FeaturesAlthough SPIM faithfully simulates the MIPS
omputer, it is a simulator and
ertain things arenot identi
al to the a
tual
omputer. The most obvious di�eren
es are that instru
tion timingand the memory systems are not identi
al. SPIM does not simulate
a
hes or memory laten
y,nor does it a

urate re
e
t the delays for
oating point operations or multiplies and divides.Another surprise (whi
h o

urs on the real ma
hine as well) is that a pseudoinstru
tionexpands into several ma
hine instru
tions. When single-stepping or examining memory, theinstru
tions that you see are slightly di�erent from the sour
e program. The
orresponden
e be-tween the two sets of instru
tions is fairly simple sin
e SPIM does not reorganize the instru
tionsto �ll delay slots.2These instru
tions are real|not pseudo|MIPS instru
tions. SPIM translates assembler pseudoinstru
tionsto 1{3 MIPS instru
tions before storing the program in memory. Ea
h sour
e instru
tion appears as a
ommenton the �rst instru
tion to whi
h it is translated. 6

1.4 Assembler SyntaxComments in assembler �les begin with a sharp-sign (#). Everything from the sharp-sign to theend of the line is ignored.Identi�ers are a sequen
e of alphanumeri

hara
ters, underbars (), and dots (.) that do notbegin with a number. Op
odes for instru
tions are reserved words that are not valid identi�ers.Labels are de
lared by putting them at the beginning of a line followed by a
olon, for example:.dataitem: .word 1.text.globl main # Must be globalmain: lw $t0, itemStrings are en
losed in double-quotes ("). Spe
ial
hara
ters in strings follow the C
onven-tion:newline \ntab \tquote \"SPIM supports a subset of the assembler dire
tives provided by the MIPS assembler:.align nAlign the next datum on a 2n byte boundary. For example, .align 2 aligns the next valueon a word boundary. .align 0 turns o� automati
 alignment of .half, .word, .float,and .double dire
tives until the next .data or .kdata dire
tive..as
ii strStore the string in memory, but do not null-terminate it..as
iiz strStore the string in memory and null-terminate it..byte b1, ..., bnStore the n values in su

essive bytes of memory..data <addr>The following data items should be stored in the data segment. If the optional argumentaddr is present, the items are stored beginning at address addr ..double d1, ..., dnStore the n
oating point double pre
ision numbers in su

essive memory lo
ations..extern sym sizeDe
lare that the datum stored at sym is size bytes large and is a global symbol. Thisdire
tive enables the assembler to store the datum in a portion of the data segment thatis eÆ
iently a

essed via register $gp..float f1, ..., fnStore the n
oating point single pre
ision numbers in su

essive memory lo
ations..globl symDe
lare that symbol sym is global and
an be referen
ed from other �les.7

Servi
e System Call Code Arguments Resultprint int 1 $a0 = integerprint
oat 2 $f12 =
oatprint double 3 $f12 = doubleprint string 4 $a0 = stringread int 5 integer (in $v0)read
oat 6
oat (in $f0)read double 7 double (in $f0)read string 8 $a0 = bu�er, $a1 = lengthsbrk 9 $a0 = amount address (in $v0)exit 10print
hara
ter 11 $a0 = integerread
hara
ter 12
har (in $v0)Table 1: System servi
es..half h1, ..., hnStore the n 16-bit quantities in su

essive memory halfwords..kdata <addr>The following data items should be stored in the kernel data segment. If the optionalargument addr is present, the items are stored beginning at address addr ..ktext <addr>The next items are put in the kernel text segment. In SPIM, these items may only beinstru
tions or words (see the .word dire
tive below). If the optional argument addr ispresent, the items are stored beginning at address addr ..spa
e nAllo
ate n bytes of spa
e in the
urrent segment (whi
h must be the data segment inSPIM)..text <addr>The next items are put in the user text segment. In SPIM, these items may only beinstru
tions or words (see the .word dire
tive below). If the optional argument addr ispresent, the items are stored beginning at address addr ..word w1, ..., wnStore the n 32-bit quantities in su

essive memory words.SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).1.5 System CallsSPIM provides a small set of operating-system-like servi
es through the system
all (sys
all)instru
tion. To request a servi
e, a program loads the system
all
ode (see Table 1) into register$v0 and the arguments into registers $a0: : :$a3 (or $f12 for
oating point values). System
allsthat return values put their result in register $v0 (or $f0 for
oating point results). For example,to print \the answer = 5", use the
ommands:8

.datastr: .as
iiz "the answer = ".textli $v0, 4 # system
all
ode for print_strla $a0, str # address of string to printsys
all # print the stringli $v0, 1 # system
all
ode for print_intli $a0, 5 # integer to printsys
all # print itprint int is passed an integer and prints it on the
onsole. print float prints a single
oating point number. print double prints a double pre
ision number. print string is passeda pointer to a null-terminated string, whi
h it writes to the
onsole.read int, read float, and read double read an entire line of input up to and in
luding thenewline. Chara
ters following the number are ignored. read string has the same semanti
s asthe Unix library routine fgets. It reads up to n � 1
hara
ters into a bu�er and terminatesthe string with a null byte. If there are fewer
hara
ters on the
urrent line, it reads throughthe newline and again null-terminates the string. Warning: programs that use these sys
allsto read from the terminal should not use memory-mapped IO (see Se
tion 5).sbrk returns a pointer to a blo
k of memory
ontaining n additional bytes. exit stops aprogram from running.2 Des
ription of the MIPS R2000A MIPS pro
essor
onsists of an integer pro
essing unit (the CPU) and a
olle
tion of
opro
es-sors that perform an
illary tasks or operate on other types of data su
h as
oating point numbers(see Figure 2). SPIM simulates two
opro
essors. Copro
essor 0 handles traps, ex
eptions, andthe virtual memory system. SPIM simulates most of the �rst two and entirely omits details ofthe memory system. Copro
essor 1 is the
oating point unit. SPIM simulates most aspe
ts ofthis unit.2.1 CPU RegistersThe MIPS (and SPIM)
entral pro
essing unit
ontains 32 general purpose 32-bit registers thatare numbered 0{31. Register n is designated by $n. Register $0 always
ontains the hardwiredvalue 0. MIPS has established a set of
onventions as to how registers should be used. Thesesuggestions are guidelines, whi
h are not enfor
ed by the hardware. However a program thatviolates them will not work properly with other software. Table 2 lists the registers and des
ribestheir intended use.Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operatingsystem.Registers $a0{$a3 (4{7) are used to pass the �rst four arguments to routines (remainingarguments are passed on the sta
k). Registers $v0 and $v1 (2, 3) are used to return valuesfrom fun
tions. Registers $t0{$t9 (8{15, 24, 25) are
aller-saved registers used for temporaryquantities that do not need to be preserved a
ross
alls. Registers $s0{$s7 (16{23) are
allee-saved registers that hold long-lived values that should be preserved a
ross
alls.9

Register Name Number Usagezero 0 Constant 0at 1 Reserved for assemblerv0 2 Expression evaluation andv1 3 results of a fun
tiona0 4 Argument 1a1 5 Argument 2a2 6 Argument 3a3 7 Argument 4t0 8 Temporary (not preserved a
ross
all)t1 9 Temporary (not preserved a
ross
all)t2 10 Temporary (not preserved a
ross
all)t3 11 Temporary (not preserved a
ross
all)t4 12 Temporary (not preserved a
ross
all)t5 13 Temporary (not preserved a
ross
all)t6 14 Temporary (not preserved a
ross
all)t7 15 Temporary (not preserved a
ross
all)s0 16 Saved temporary (preserved a
ross
all)s1 17 Saved temporary (preserved a
ross
all)s2 18 Saved temporary (preserved a
ross
all)s3 19 Saved temporary (preserved a
ross
all)s4 20 Saved temporary (preserved a
ross
all)s5 21 Saved temporary (preserved a
ross
all)s6 22 Saved temporary (preserved a
ross
all)s7 23 Saved temporary (preserved a
ross
all)t8 24 Temporary (not preserved a
ross
all)t9 25 Temporary (not preserved a
ross
all)k0 26 Reserved for OS kernelk1 27 Reserved for OS kernelgp 28 Pointer to global areasp 29 Sta
k pointerfp 30 Frame pointerra 31 Return address (used by fun
tion
all)Table 2: MIPS registers and the
onvention governing their use.
10

Registers

$0

$31

.

.

.

Arithmetic
Unit

FPU (Coprocessor 1)

BadVAddr

Status

Cause

EPC

Coprocessor 0 (Traps and Memory)

Registers

$0

$31

.

.

.

Arithmetic
Unit

CPU

Multiply
Divide

Lo Hi

Memory

Figure 2: MIPS R2000 CPU and FPURegister $sp (29) is the sta
k pointer, whi
h points to the last lo
ation in use on the sta
k.3Register $fp (30) is the frame pointer.4 Register $ra (31) is written with the return address fora
all by the jal instru
tion.Register $gp (28) is a global pointer that points into the middle of a 64K blo
k of memoryin the heap that holds
onstants and global variables. The obje
ts in this heap
an be qui
klya

essed with a single load or store instru
tion.In addition,
opro
essor 0
ontains registers that are useful to handle ex
eptions. SPIM doesnot implement all of these registers, sin
e they are not of mu
h use in a simulator or are part ofthe memory system, whi
h is not implemented. However, it does provide the following:Register Name Number UsageBadVAddr 8 Memory address at whi
h address ex
eption o

urredStatus 12 Interrupt mask and enable bitsCause 13 Ex
eption type and pending interrupt bitsEPC 14 Address of instru
tion that
aused ex
eptionThese registers are part of
opro
essor 0's register set and are a

essed by the lw
0, mf
0, mt
0,and sw
0 instru
tions.Figure 3 des
ribes the bits in the Status register that are implemented by SPIM. Theinterrupt mask
ontains a bit for ea
h of the �ve interrupt levels. If a bit is one, interrupts atthat level are allowed. If the bit is zero, interrupts at that level are disabled. The low six bits of3In earlier version of SPIM, $sp was do
umented as pointing at the �rst free word on the sta
k (not the lastword of the sta
k frame). Re
ent MIPS do
uments have made it
lear that this was an error. Both
onventionswork equally well, but we
hoose to follow the real system.4The MIPS
ompiler does not use a frame pointer, so this register is used as
allee-saved register $s8.11

