SPIM S20: A MIPS R2000 Simulator*

w1l
25

™ the performance at none of the cost”
James R. Larus
larus@cs.wisc.edu
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706, USA
608-262-9519

Copyright (©)1990-1997 by James R. Larus
(This document may be copied without royalties,
so long as this copyright notice remains on it.)

1 SPIM

SPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.!
SPIM can read and immediately execute files containing assembly language. SPIM is a self-
contained system for running these programs and contains a debugger and interface to a few
operating system services.

The architecture of the MIPS computers is simple and regular, which makes it easy to learn
and understand. The processor contains 32 general-purpose 32-bit registers and a well-designed
instruction set that make it a propitious target for generating code in a compiler.

However, the obvious question is: why use a simulator when many people have workstations
that contain a hardware, and hence significantly faster, implementation of this computer? One
reason is that these workstations are not generally available. Another reason is that these ma-
chine will not persist for many years because of the rapid progress leading to new and faster
computers. Unfortunately, the trend is to make computers faster by executing several instruc-
tions concurrently, which makes their architecture more difficult to understand and program.
The MIPS architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level programming than an
actual machine because they can detect more errors and provide more features than an actual
computer. For example, SPIM has a X-window interface that is better than most debuggers for
the actual machines.

I grateful to the many students at UW who used SPIM in their courses and happily found bugs in a professor’s
code. In particular, the students in CS536, Spring 1990, painfully found the last few bugs in an “already-debugged”
simulator. I am grateful for their patience and persistence. Alan Yuen-wui Siow wrote the X-window interface.

'For a description of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture, Prentice
Hall, 1992.

Finally, simulators are an useful tool for studying computers and the programs that run on
them. Because they are implemented in software, not silicon, they can be easily modified to add
new instructions, build new systems such as multiprocessors, or simply to collect data.

1.1 Simulation of a Virtual Machine

The MIPS architecture, like that of most RISC computers, is difficult to program directly because
of its delayed branches, delayed loads, and restricted address modes. This difficulty is tolerable
since these computers were designed to be programmed in high-level languages and so present
an interface designed for compilers, not programmers. A good part of the complexity results
from delayed instructions. A delayed branch takes two cycles to execute. In the second cycle,
the instruction immediately following the branch executes. This instruction can perform useful
work that normally would have been done before the branch or it can be a nop (no operation).
Similarly, delayed loads take two cycles so the instruction immediately following a load cannot
use the value loaded from memory.

MIPS wisely choose to hide this complexity by implementing a virtual machine with their
assembler. This virtual computer appears to have non-delayed branches and loads and a richer
instruction set than the actual hardware. The assembler reorganizes (rearranges) instructions
to fill the delay slots. It also simulates the additional, pseudoinstructions by generating short
sequences of actual instructions.

By default, SPIM simulates the richer, virtual machine. It can also simulate the actual
hardware. We will describe the virtual machine and only mention in passing features that
do not belong to the actual hardware. In doing so, we are following the convention of MIPS
assembly language programmers (and compilers), who routinely take advantage of the extended
machine. Instructions marked with a dagger () are pseudoinstructions.

1.2 SPIM Interface

SPIM provides a simple terminal and a X-window interface. Both provide equivalent function-
ality, but the X interface is generally easier to use and more informative.

spim, the terminal version, and xspim, the X version, have the following command-line
options:

-bare
Simulate a bare MIPS machine without pseudoinstructions or the additional addressing
modes provided by the assembler. Implies -quiet.

-asm
Simulate the virtual MIPS machine provided by the assembler. This is the default.

-pseudo
Accept pseudoinstructions in assembly code.

-nopseudo
Do not accept pseudoinstructions in assembly code.

-notrap
Do not load the standard trap handler. This trap handler has two functions that must
be assumed by the user’s program. First, it handles traps. When a trap occurs, SPIM
jumps to location 0x80000080, which should contain code to service the exception. Second,

this file contains startup code that invokes the routine main. Without the trap handler,
execution begins at the instruction labeled __start.

-trap
Load the standard trap handler. This is the default.

-trap_file
Load the trap handler in the file.

-noquiet
Print a message when an exception occurs. This is the default.

-quiet
Do not print a message at an exception.

-nomapped._io
Disable the memory-mapped IO facility (see Section 5).

-mapped_io
Enable the memory-mapped 10 facility (see Section 5). Programs that use SPIM syscalls
(see Section 1.5) to read from the terminal should not also use memory-mapped I0.

-file
Load and execute the assembly code in the file.

-s seg size Sets the initial size of memory segment seg to be size bytes. The memory
segments are named: text, data, stack, ktext, and kdata. For example, the pair of
arguments -sdata 2000000 starts the user data segment at 2,000,000 bytes.

-1seg size Sets the limit on how large memory segment seg can grow to be size bytes. The
memory segments that can grow are: data, stack, and kdata.

1.2.1 Terminal Interface

The terminal interface (spim) provides the following commands:

exit
Exit the simulator.

read "file"
Read file of assembly language commands into SPIM’s memory. If the file has already
been read into SPIM, the system should be cleared (see reinitialize, below) or global
symbols will be multiply defined.

load "file"
Synonym for read.

run <addr>
Start running a program. If the optional address addr is provided, the program starts
at that address. Otherwise, the program starts at the global symbol __start, which is
defined by the default trap handler to call the routine at the global symbol main with the
usual MIPS calling convention.

step <N>
Step the program for N (default: 1) instructions. Print instructions as they execute.

continue
Continue program execution without stepping.

print $N
Print register N.

print $£fN
Print floating point register N.

print addr
Print the contents of memory at address addr.

print_sym
Print the contents of the symbol table, i.e., the addresses of the global (but not local)
symbols.

reinitialize
Clear the memory and registers.

breakpoint addr
Set a breakpoint at address addr. addr can be either a memory address or symbolic label.

delete addr
Delete all breakpoints at address addr.

list
List all breakpoints.

Rest of line is an assembly instruction that is stored in memory.

<nl>
A newline reexecutes previous command.

Print a help message.

Most commands can be abbreviated to their unique prefix e.g., ex, re, 1, ru, s, p. More
dangerous commands, such as reinitialize, require a longer prefix.

1.2.2 X-Window Interface

The X version of SPIM, xspim, looks different, but should operate in the same manner as spim.
The X window has five panes (see Figure 1). The top pane displays the contents of the registers.
It is continually updated, except while a program is running.

The next pane contains the buttons that control the simulator:

quit
Exit from the simulator.

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

Data and
Stack
Segments

SPIM
Messages

Single Floating Point Registers

(qui t) (| oad > (run) (step) (clear) éet valL@
(print) (breakpt) (hel p) Qerm’ nal) (node)

Text Segments

0x00400000] 0x8f a40000 |w R4, O(R29) []
0x00400004] 0x27a50004 addiu R5, R29, 4 []
0x00400008] 0x24a60004 addiu R6, R5, 4 []
0x0040000c] 0x00041090 sl| R2, R4,
0x00400010] 0x00c23021 addu R6, R6, R2
0x00400014] 0x0c000000 jal 0x00000000 []
0x00400018] 0x3402000a ori RO, RO, 10 []
0x0040001c] 0x0000000c syscal |

i PC 00000000 EPC 00000000 Cause = 0000000 BadVaddr = 00000000
i Status= 00000000 H = 00000000 LO = 0000000 H
H General Registers '
: RO (rO 00000000 R8 t0 00000000 6 (sO 0000000 R24 (t8 H
: RL (at 00000000 R9 t1l 00000000 R17 (s1 0000000 R25 (s9 H
¢ R2 (VO R10 (t2 00000000 R18 (s2 0000000 R26 (kO H
PR3 (vl R11 (t3 00000000 s3 0000000 R27 (k1 H
i R4 (a0 R12 (t4 00000000 R20 (s4 0000000 R28 (gp, H
¢ R5 (al R13 (t5 00000000 R21 (s5 0000000 R29 gg H
: R6 (a2 R14 (t6 00000000 R22 (s6 0000000 R30 (s H
: R7 (a3 R15 (t7 00000000 R23 (s7) = 0000000 R31 (ra
i EPO EP8 = O.%oéjg}foﬂoagpl%mm Regés%’.500000 EP24
i FP2 FP10 0.000000 FP18 = 0.00000 FP26 H
i FP4 EP12 = 0.000000 FP20 = 0.00000 FP28 H
1 FP6 FP14 = 0.000000 FP22 = 0.00000 FP30 H

Data Segments

0x10000000] . . . [0x10010000] 0x00000000

0x10010004] 0x74706563 0x206e6f69 0x636f 2000

0x10010010] 0x72727563 0x61206465 0x6920646e O0x726f6e67
0x10010020] 0x000a6465 0x495b2020 0x7265746e 0x74707572
0x10010030] 0x0000205d 0x20200000 0x616e555b 0x6e67696¢c
0x10010040] 0x61206465 0x65726464 0x69207373 0x6e69206e
0x10010050] 0x642f 7473 0x20617461 0x63746566 0x00205d68
0x10010060] 0x555b2020 0x696c616e 0x64656e67 0x64646120
0x10010070] 0x73736572 0x206€6920 0x726f7473 0x00205d65

SPI M Version 3.2 of January 14, 1990

Figure 1: X-window interface to SPIM.

load
Read a source file into memory.

run
Start the program running.

step
Single-step through a program.

clear
Reinitialize registers or memory.

set value
Set the value in a register or memory location.

print
Print the value in a register or memory location.

breakpoint
Set or delete a breakpoint or list all breakpoints.

help
Print a help message.

terminal
Raise or hide the console window.

mode
Set SPIM operating modes.

The next two panes display the memory contents. The top one shows instructions from the
user and kernel text segments.? The first few instructions in the text segment are startup code
(__start) that loads argc and argv into registers and invokes the main routine.

The lower of these two panes displays the data and stack segments. Both panes are updated
as a program executes.

The bottom pane is used to display messages from the simulator. It does not display output
from an executing program. When a program reads or writes, its IO appears in a separate
window, called the Console, which pops up when needed.

1.3 Surprising Features

Although SPIM faithfully simulates the MIPS computer, it is a simulator and certain things are
not identical to the actual computer. The most obvious differences are that instruction timing
and the memory systems are not identical. SPIM does not simulate caches or memory latency,
nor does it accurate reflect the delays for floating point operations or multiplies and divides.

Another surprise (which occurs on the real machine as well) is that a pseudoinstruction
expands into several machine instructions. When single-stepping or examining memory, the
instructions that you see are slightly different from the source program. The correspondence be-
tween the two sets of instructions is fairly simple since SPIM does not reorganize the instructions
to fill delay slots.

2These instructions are real—not pseudo—MIPS instructions. SPIM translates assembler pseudoinstructions
to 1-3 MIPS instructions before storing the program in memory. Each source instruction appears as a comment
on the first instruction to which it is translated.

1.4 Assembler Syntax

Comments in assembler files begin with a sharp-sign (#). Everything from the sharp-sign to the
end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (-), and dots (.) that do not
begin with a number. Opcodes for instructions are reserved words that are not valid identifiers.
Labels are declared by putting them at the beginning of a line followed by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Strings are enclosed in double-quotes ("). Special characters in strings follow the C conven-
tion:

newline \n
tab \t
quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n
Align the next datum on a 2" byte boundary. For example, .align 2 aligns the next value
on a word boundary. .align O turns off automatic alignment of .half, .word, .float,
and .double directives until the next .data or .kdata directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.

.byte b1, ..., bn
Store the n values in successive bytes of memory.

.data <addr>
The following data items should be stored in the data segment. If the optional argument
addr is present, the items are stored beginning at address addr.

.double di, ..., dn
Store the n floating point double precision numbers in successive memory locations.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global symbol. This
directive enables the assembler to store the datum in a portion of the data segment that
is efficiently accessed via register $gp.

.float f1, ..., fn
Store the n floating point single precision numbers in successive memory locations.

.globl sym
Declare that symbol sym is global and can be referenced from other files.

| Service | System Call Code | Arguments | Result |

print_int 1 $a0 = integer

print_float 2 $£12 = float

print_double 3 $£12 = double

print_string 4 $a0 = string

read-int 5 integer (in $v0)
read_float 6 float (in $£0)
read_double 7 double (in $£0)
read_string 8 $a0 = buffer, $al = length

sbrk 9 $a0 = amount address (in $v0)
exit 10

print_character 11 $a0 = integer

read_character 12 char (in $vO0)

Table 1: System services.

.half hil, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

.kdata <addr>
The following data items should be stored in the kernel data segment. If the optional
argument addr is present, the items are stored beginning at address addr.

.ktext <addr>
The next items are put in the kernel text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr.

.space n
Allocate n bytes of space in the current segment (which must be the data segment in
SPIM).

.text <addr>
The next items are put in the user text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr.

.word wi, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).

1.5 System Calls

SPIM provides a small set of operating-system-like services through the system call (syscall)
instruction. To request a service, a program loads the system call code (see Table 1) into register
$v0 and the arguments into registers $a0...$a3 (or $£12 for floating point values). System calls
that return values put their result in register $v0 (or $£0 for floating point results). For example,
to print “the answer = 5”, use the commands:

.data

str: .asciiz "the answer ="
.text
1i $vO, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string
1i $vO, 1 # system call code for print_int
1i %a0, 5 # integer to print
syscall # print it

print_int is passed an integer and prints it on the console. print_float prints a single
floating point number. print_double prints a double precision number. print_string is passed
a pointer to a null-terminated string, which it writes to the console.

read int, read float, and read _double read an entire line of input up to and including the
newline. Characters following the number are ignored. read_string has the same semantics as
the Unix library routine fgets. It reads up to m — 1 characters into a buffer and terminates
the string with a null byte. If there are fewer characters on the current line, it reads through
the newline and again null-terminates the string. Warning: programs that use these syscalls
to read from the terminal should not use memory-mapped IO (see Section 5).

sbrk returns a pointer to a block of memory containing n additional bytes. exit stops a
program from running.

2 Description of the MIPS R2000

A MIPS processor consists of an integer processing unit (the CPU) and a collection of coproces-
sors that perform ancillary tasks or operate on other types of data such as floating point numbers
(see Figure 2). SPIM simulates two coprocessors. Coprocessor 0 handles traps, exceptions, and
the virtual memory system. SPIM simulates most of the first two and entirely omits details of
the memory system. Coprocessor 1 is the floating point unit. SPIM simulates most aspects of
this unit.

2.1 CPU Registers

The MIPS (and SPIM) central processing unit contains 32 general purpose 32-bit registers that
are numbered 0-31. Register n is designated by $n. Register $0 always contains the hardwired
value 0. MIPS has established a set of conventions as to how registers should be used. These
suggestions are guidelines, which are not enforced by the hardware. However a program that
violates them will not work properly with other software. Table 2 lists the registers and describes
their intended use.

Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operating
system.

Registers $a0-$a3 (4-7) are used to pass the first four arguments to routines (remaining
arguments are passed on the stack). Registers $v0 and $v1 (2, 3) are used to return values
from functions. Registers $t0-$t9 (8-15, 24, 25) are caller-saved registers used for temporary
quantities that do not need to be preserved across calls. Registers $s0-$s7 (16-23) are callee-
saved registers that hold long-lived values that should be preserved across calls.

Register Name | Number |

Usage

ZEero
at
v0
vl
a0
al
a2
a3
t0
tl
t2
t3
t4
175)
t6
t7
sO
sl
s2
s3
s4
E5)
s6
s7
t8
t9
kO
k1
gp
Sp
fp
ra

0

0 O Ui Wi

Constant 0
Reserved for assembler
Expression evaluation and

results of a function
Argument 1
Argument 2
Argument 3
Argument 4
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Saved temporary (preserved across call
Saved temporary (preserved across call
Saved temporary (preserved across call
Saved temporary (preserved across call
Saved temporary (preserved across call
Saved temporary (preserved across call
Saved temporary (preserved across call
Saved temporary (preserved across call
Temporary (not preserved across call)
Temporary (not preserved across call)
Reserved for OS kernel
Reserved for OS kernel
Pointer to global area
Stack pointer
Frame pointer
Return address (used by function call)

PR
—

Table 2: MIPS registers and the convention governing their use.

10

CPU FPU (Coprocessor 1)
Registers .
Registers
$0
$0
$31 \
|7 $31
Arithmetic Multiply
Unit Divide
Arithmetic
Unit

Coprocessor 0 (Traps and Memory)

BadVAddr Cause

Status EPC

Figure 2: MIPS R2000 CPU and FPU

Register $sp (29) is the stack pointer, which points to the last location in use on the stack.?
Register $£p (30) is the frame pointer.* Register $ra (31) is written with the return address for
a call by the jal instruction.

Register $gp (28) is a global pointer that points into the middle of a 64K block of memory
in the heap that holds constants and global variables. The objects in this heap can be quickly
accessed with a single load or store instruction.

In addition, coprocessor 0 contains registers that are useful to handle exceptions. SPIM does
not implement all of these registers, since they are not of much use in a simulator or are part of
the memory system, which is not implemented. However, it does provide the following:

| Register Name | Number | Usage |
BadVAddr 8 Memory address at which address exception occurred
Status 12 Interrupt mask and enable bits
Cause 13 Exception type and pending interrupt bits
EPC 14 Address of instruction that caused exception

These registers are part of coprocessor 0’s register set and are accessed by the 1wcO, mfc0, mtcO,
and swcO instructions.

Figure 3 describes the bits in the Status register that are implemented by SPIM. The
interrupt mask contains a bit for each of the five interrupt levels. If a bit is one, interrupts at
that level are allowed. If the bit is zero, interrupts at that level are disabled. The low six bits of

3In earlier version of SPIM, $sp was documented as pointing at the first free word on the stack (not the last
word of the stack frame). Recent MIPS documents have made it clear that this was an error. Both conventions
work equally well, but we choose to follow the real system.

“The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register $s8.

11

