
Program correctness

Proof Outlines

Marcello Bonsangue

Spring 2008

6/9/2008

Slide 2

Proof outlines

 Formal proofs are long and tedious to follow.

 It is better to organize the proof in small local

isolated steps

 We can use the structure of the program to

structure our proof!

6/9/2008

Slide 3

The idea
 For the program P = c1; c2; c3; … cn we want

to show

par{ 0} P { n}

 We can split the problem into smaller ones if

we find formulas i’s such that

par{ i} ci{ i+1}

6/9/2008

Slide 4

The idea (cont.d)

 Thus we have to find a calculus for presenting a proof
par{ 0} P { n} by interleaving formulas with code

{ 0}

c1;

{ 1} justification (i.e. skip, ass, if, while, implied)

c2;

{ 2} justification

c3;...
{ n-1} justification
cn

{ n}

Composition is implicit !

6/9/2008

Slide 5

Verification condition
Problem: How can we find the i’s ?

Solution: Use Hoare rules and calculate

verification conditions, i.e. conditions needed

to establish the validity of certain assertions.

Precondition of c implying that

holds after its execution

false true

wp(c,)

strong weak

vc

6/9/2008

Slide 6

Skip, assignment, implied

 --------------- skip
{ } skip { }

 ---------------------- assignment
{ [a/x]} x := a { }

 ------------- implied

{ } { }

6/9/2008

Slide 7

Example

 To prove par{y = 5 } x := y + 1 { x = 6 }

{y = 5}

{y+1 = 6} implied

x := y + 1

{x = 6} assignment

we only need to prove the verification
condition y = 5 y+1 = 6

6/9/2008

Slide 8

Composition, conditional

{ } c1 { } { } c2 { }
 ------------------------------ seq

{ } c1; { } c2 { }

{ 1} c1 { } { 2} c2 { }
 --- if

{b 1 b 2 }if b then{ 1}c1{ }else{ 2}c2{ } fi{ }

6/9/2008

Slide 9

Example
 To prove par{true} z:=x; z:=z+y; u:=z {u = x+y}

{true}

{ x+y = x+y } implied

z:=x;

{ z+y = x+y } assignment

z:=z+y;

{ z = x+y } assignment

u:=z

{ u = x+y } assignment

we only need to prove the verification condition
true x+y = x+y

6/9/2008

Slide 10

Example

Suppose we want to prove

{true}

a := x+1;

if a = 1 then y := 1 else y := a fi

{y = x+1}

6/9/2008

Slide 11

Example

{ true }

{x+1=1 1=x+1 x+1 1 x+1=x+1} implied
a := x+1;
{a=1 1=x+1 a 1 a=x+1} assignment
if a = 1

then {1 = x+1}
y := 1

{ y = x+1} assignment

else

{a = x+1}

y := a

{ y = x+1 } assignment

fi

{ y = x+1 } if-then-else

6/9/2008

Slide 12

While statement

{I b} c {I}
--- while
{I} while b do {I b} c {I} od {I b}

 We must discover an invariant I
 I need not hold during the execution of c

 if I holds before c is executed then it holds if and when

c terminates.

6/9/2008

Slide 13

Invariant

 For any while b do c od these are invariants

 true

 false

 b

because {I b } c { I } is valid. However they are
useless to prove

I or I b

when considering the while in a context.

 To find a useful invariant it may help to look at the
execution of the while and at the relationships among
the variables manipulated by the while-body

6/9/2008

Slide 14

Example

 Let W = while x 0 do y := x*y; x := x-1 od

 To prove {x = n n 0 y=1 } W { y = n! }

iteration x 0 ?x y

0

1

2

3

4

5

6

6

5

4

3

2

1

0

1

6

30

120

360

720

720

true

true

true

true

true

true

false

6/9/2008

Slide 15

Example I

 Invariant Hypothesis y*x! = n!

{y*x! = n! }

while x 0 do

{ y*x! = n! x 0} invariant and guard

{ x*y*(x-1)! = n! } implied

y := x*y;

{ y*(x-1)! = n! } assignment

x := x-1

{ y*x! = n! } assignment

od

{ y*x! = n! x 0 } while

correct !!!

6/9/2008

Slide 16

Example II

 Since y*x! = n! is an invariant we have

{x = n n 0 y=1 }

{y*x! = n! } implied

W

{ y*x! = n! x 0 } while

{ y*x! = n! x 0 } implied

{ y = n! } implied??

The invariant is too weak!

6/9/2008

Slide 17

Example III

 Another invariant hypothesis y*x! = n! x 0

{y*x! = n! x 0 }

while x 0 do

{y*x! = n! x 0 x 0 } Inv. Hyp. and guard

{x*y*(x-1)! = n! x 1 } implied

y := x*y;

{y*(x-1)! = n! x-1 0} assignment

x := x-1

{ y*x! = n! x 0 } assignment

od

{ y*x! = n! x 0 x 0 } while

correct !!!

6/9/2008

Slide 18

Example IV

 With the new invariant we have

{x = n n 0 y=1 }

{y*x! = n! x 0 } implied

W

{ y*x! = n! x 0 x 0 } while

{ y*x! = n! x = 0 } implied

{ y = n! } implied

Yes!

