Spring 2008

Program correctness

Proof Outlines

Marcello Bonsangue

Leiden Institute of Advanced Computer Science **Research & Education**

Proof outlines

- Formal proofs are long and tedious to follow.
- \blacksquare It is better to organize the proof in small local isolated steps
- We can use the structure of the program to structure our proof!

6/9/2008

The idea

For the program $P = c_1$; c_2 ; c_3 ; ... c_n we want to show

$\vdash_{\mathsf{par}} \{\phi_0\} \mathsf{P} \{\varphi_n\}$

■ We can split the problem into smaller ones if we find formulas ϕ_i *'*s such that

$$
\vdash_{\text{par}} \{\varphi_i\} \ C_i \{\varphi_{i+1}\}
$$

6/9/2008

The idea (cont.d)

Thus we have to find a calculus for presenting a proof $\vdash_{\textsf{par}}\!\{\phi_{0}\}$ P $\{\phi_{\textsf{n}}\}$ by interleaving formulas with code

```
\{\phi_0\}C_1;
\{\phi_1\}justification (i.e. skip, ass, if, while, implied)
 C_2;
\{\phi_2\}justification
C_3;
 .
.
.
\{\phi_{n-1}\}\justification
C_n\{\phi_n\}
```
Composition is implicit !

Verification condition

Problem: How can we find the φ_i's?

Solution: Use Hoare rules and calculate verification conditions, i.e. conditions needed to establish the validity of certain assertions.

Skip, assignment, implied

Slide 6

6/9/2008

• To prove
$$
\vdash_{par}\{y = 5\} x := y + 1\{x = 6\}
$$

$$
{y = 5}{y+1 = 6}x := y + 1{x = 6}assignment
$$

we only need to prove the verification condition $y = 5 \implies y + 1 = 6$

6/9/2008

Composition, conditional

 $\{\phi\}$ C₁ $\{\psi\}$ $\{\psi\}$ C₂ $\{\phi\}$ ------------------------------ seq $\{\phi\}$ C₁; { ψ } C₂ { ϕ }

$\{\phi_1\}$ C₁ $\{\psi\}$ $\{\phi_2\}$ C₂ $\{\psi\}$ --- if $\{\mathsf{b}\Rightarrow_{\phi_1} \land \neg \mathsf{b} \Rightarrow_{\phi_2} \}$ if b then $\{\phi_1\} \mathsf{c}_1 \{\psi\}$ else $\{\phi_2\} \mathsf{c}_2 \{\psi\}$ fi $\{\psi\}$

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 8

we only need to prove the verification condition true \Rightarrow x+y = x+y

Suppose we want to prove

$$
\begin{aligned} &\{\text{true}\} \\ &a := x + 1; \\ &\underline{\text{if } a = 1 \text{ then } y := 1 \text{ else } y := a \underline{\text{fi}} \\ &\{y = x + 1\} \end{aligned}
$$

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 10

{ true } {x+1=1 1=x+1 x+1 1 x+1=x+1} implied a := x+1; {a=1 1=x+1 a 1 a=x+1} assignment if a = 1 then {1 = x+1} y := 1 { y = x+1} assignment else {a = x+1} y := a { y = x+1 } assignment fi { y = x+1 } if-then-else**6/9/2008** *Slide 11*

While statement

$\{I \wedge b\}$ c $\{I\}$ --- while {I} <u>while</u> b <u>do</u> {I^b} c {I} <u>od</u> {I^¬b}

We must discover an invariant I \Box need not hold during the execution of c \Box if I holds before c is executed then it holds if and when c terminates.

Invariant

■ For any while b do c od these are invariants \square true

 \Box false

 \Box b

because $\{I \wedge b\}$ c $\{I\}$ is valid. However they are useless to prove

 $\phi \Rightarrow I$ or $I \wedge \neg b \Rightarrow \psi$

when considering the while in a context.

 \blacksquare To find a useful invariant it may help to look at the execution of the while and at the relationships among the variables manipulated by the while-body

6/9/2008

Let $W = \underline{\text{while}} x > 0 \underline{\text{do}} y := x^*y$; $x := x-1 \underline{\text{od}}$ To prove $\{x = n \land n \ge 0 \land y=1\}$ W $\{y = n!\}$

6/9/2008

Example I

Invariant Hypothesis $y^*x! = n!$

Slide 15

Leiden Institute of Advanced Computer Science

6/9/2008

Example II

Since $y^*x! = n!$ is an invariant we have

$$
\{x = n \land n \ge 0 \land y = 1 \}
$$

\n
$$
\{y^*x! = n! \}
$$
 implied
\nW
\n
$$
\{y^*x! = n! \land \neg x > 0 \}
$$
 while
\n
$$
\{y^*x! = n! \land x \le 0 \}
$$
 implied
\n
$$
\{y = n! \}
$$
 implied??

The invariant is too weak!

6/9/2008

Leiden Institute of Advanced Computer Science

 \mathbf{o}

 \bullet

Example III

Another invariant hypothesis $y^*x! = n! \wedge x \ge 0$

$$
\{y^*x! = n! \land x \ge 0\}
$$
\nwhile x > 0 do\n
$$
\{y^*x! = n! \land x \ge 0 \land x > 0\}
$$
\n
$$
\{x^*y^*(x-1)! = n! \land x \ge 1\}
$$
\n
$$
y := x^*y;
$$
\n
$$
\{y^*(x-1)! = n! \land x-1 \ge 0\}
$$
\n
$$
x := x-1
$$
\n
$$
\{y^*x! = n! \land x \ge 0\}
$$
\n
$$
\{y^*x! = n! \land x \ge 0\}
$$
\n
$$
\{y^*x! = n! \land x \ge 0 \land \neg x > 0\}
$$
\nwhile\n
$$
\{y^*x! = n! \land x \ge 0 \land \neg x > 0\}
$$
\nwhile\n
$$
\{y^*x! = n! \land x \ge 0 \land \neg x > 0\}
$$
\nwhile\n
$$
\{y^*y! = n! \land x \ge 0 \land \neg x > 0\}
$$
\nwhile

Example IV

■ With the new invariant we have

$$
\{x = n \land n \ge 0 \land y = 1 \}
$$

\n
$$
\{y^*x! = n! \land x \ge 0 \}
$$
 implied
\n
$$
\{y^*x! = n! \land x \ge 0 \land \neg x > 0 \}
$$
 while
\n
$$
\{y^*x! = n! \land x = 0 \}
$$
 implied
\n
$$
\{y = n! \}
$$
 implied
\n
$$
\{ \log I \} \tag{0.0}
$$

Leiden Institute of Advanced Computer Science

6/9/2008