Spring 2008

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Course Information

- My e-mail: marcello@liacs.nl
- My office: 155a
- All important information on www.liacs.nl/~marcello/penc.html
 - Schedule
 - Grades
- Visit it regularly

6/9/2008

Lectures

- Where: room WI312
- When: Friday (11:15 13:00)

February	8	15	22	29
March	7	14		28
April	×	11	18	25
May		9	16	

Class participation is important

6/9/2008

Practice

- Where: room WI312
- When: Friday (13:45 15:30)

February	8	15	22	29
March	7	14		28
April	4	11	18	25
May		9	16	

Class participation is essential

Slide 4

6/9/2008

Grading

- This course is worth 5 ECTS
- Evaluation by home assignment (20%)
 +
 written examination (80%)

```
max {0.2*HA + 0.8 WE, 1.0*WE}
```

- Written examination
 - □ when: Wednesday 11 June from 14:00 to 17:00
 - □ where: room ???

and also

□ when: Thursday 21 Augustus from 10:00 to 13:00

□ where: room ???

Reading

Logic in Computer Science: Modelling and Reasoning about Systems Michael R. A. Huth and Mark D. Ryan Cambridge University Press, 2004 ISBN 0 521 54310 X paperback

Expected Background

Imperative programming

- Propositional logic
- Predicate logic
- Sets and functions
- Induction
- Recursion

PenC - Spring 2006

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 7

Course Organization

- The course cover model and proof-based techniques for proving programs correct
- The course combines
 - theory (logics)
 - practice (program and system modeling)

Course goals:

- introduction to fundamental concepts of formal methods
- □ usage of formal methods in software engineering

6/9/2008

Formal Methods

- Formal methods includes all applications of mathematics to software engineering problems.
 - type checkingmodel checking
 - program correctnesssemantics

PenC - Spring 2006

Formal Methods

- We consider formal methods for verifying the correctness of computer systems (hardware and/or software)
- Logics provide a mean for mechanizing verification details

computer aided verification

□ fully automated (e.g. model checking)

□ interactive (e.g. program correctness)

Why?

Avoid loss of life

Therac 25, a computer-controlled radiation therapy machine made by Atomic Energy of Canada killed 6 people by radiation overdoses between 1985 and 1987 because of a timing problem on a data entry:

"An operator mistake could be fixed within 8 seconds, but even though the monitor reflected the operator change, the change did not affected a part of the program"

6/9/2008

Why?

Save costs

In 1994, 2 million Intel Pentium V had a bug in the FDIV operation. It could be detected by the following MS-Excel operation:

(4195835/3145727)x3145727-4195835 = 512 !!!

□ Cost to Intel: \$475 million

From 1994 Intel applies formal verification techniques to its products

Why?

Guarantee security

In 1998 several e-mail systems did not check for the length of e-mail addresses, and allowed their buffers to overflow causing the applications to crash.

Hostile hackers used this fault to trick the operating system into running a malicious program in its place.

6/9/2008

Do you trust your system?

The real wonder is that the system works as well as it does

(Peterson, 1996)

but remember that software systems provide the infrastructure in virtually all industries today:

- air traffic control
- water level management
- energy production and distribution

• ...

Why Formal Methods?

Testing and simulation techniques are never exhaustive

Formal verification proves that a system works based on:

- □ mathematical principles
- exhaustive verification techniques
- mathematical model structures

Warning

- The use of formal methods does not solve all these problems
 - □ proof: hand-checked or machine supported?
 - □ modelling task: difficult and yet crucial!

- Formal methods should be part of a methodology together with
 - □ Reviews (of requirements, design, and code)
 - □ Testing (of software units and their integration)

Spring 2007

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Formal Verification

- Verification techniques comprise
- a modelling framework
 M, Γ

to describe a system

a specification language

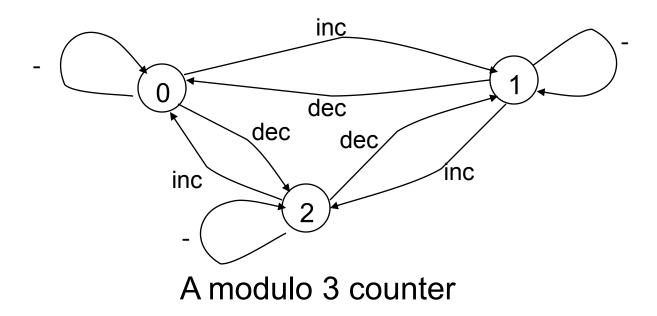
to describe the properties to be verified

• a verification method $M \vDash \phi, \Gamma \vdash \phi$

to establish whether a model satisfies a property

Transition Systems

- A very general modelling framework
- Intuitively: a system evolves from one state to another under the action of a transition



Leiden Institute of Advanced Computer Science

6/9/2008

Example: an assignment

States: s:Var -> Val

$$(s) \xrightarrow{x := x+1} (s')$$

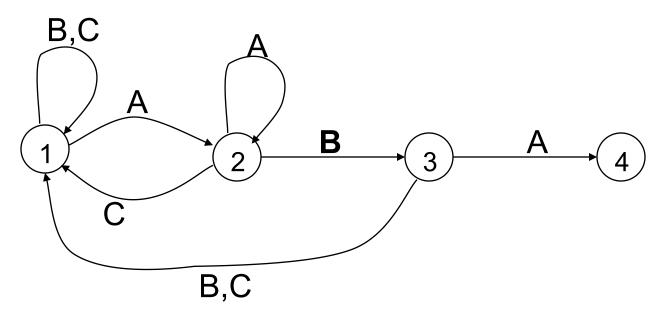
where s'=s[s(x)+1/x] and
$$f[v/x](y) = \begin{cases} f(y) & \text{if } x \neq y \\ v & \text{if } x = y \end{cases}$$

6/9/2008

Example: a digicode

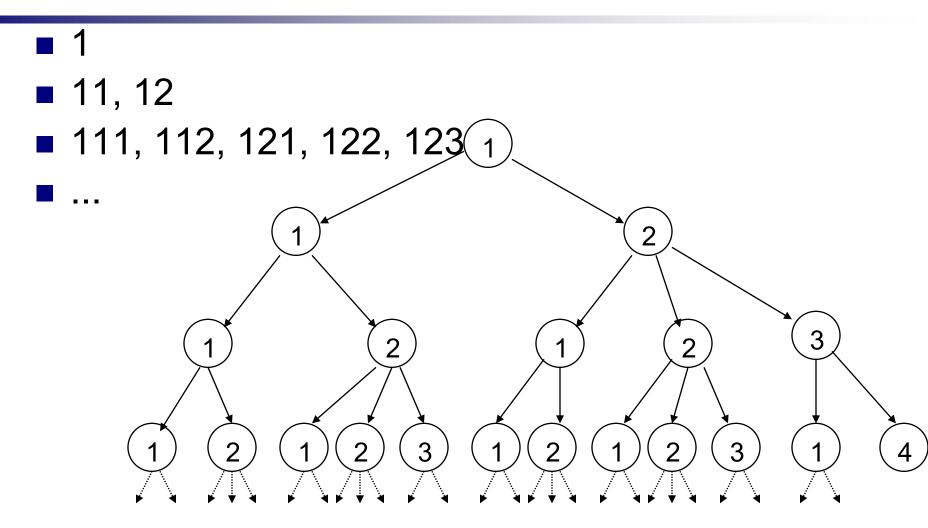
3 keys: A, B, C

The door open when ABA is keyed



6/9/2008

Digicode's executions



Leiden Institute of Advanced Computer Science

6/9/2008

A few definitions

- Transition system: <S,L,→>
 - □S set of states
 - L set of transition labels
 - $\Box \rightarrow \subseteq SxLxS$ transition relation
- Path: a sequence π of infinite transitions which follow each other

For example

$$3 \xrightarrow{B} 1 \xrightarrow{A} 2 \xrightarrow{A} 2 \dots$$

is a path of the digicode

6/9/2008

Adding data

- Real-life systems consist of control and data. We can model them by
 - control = states+transitions
 - \Box data = state variables
- A transition system interact with state variables in two ways
 - □ guards a transition cannot occur if the

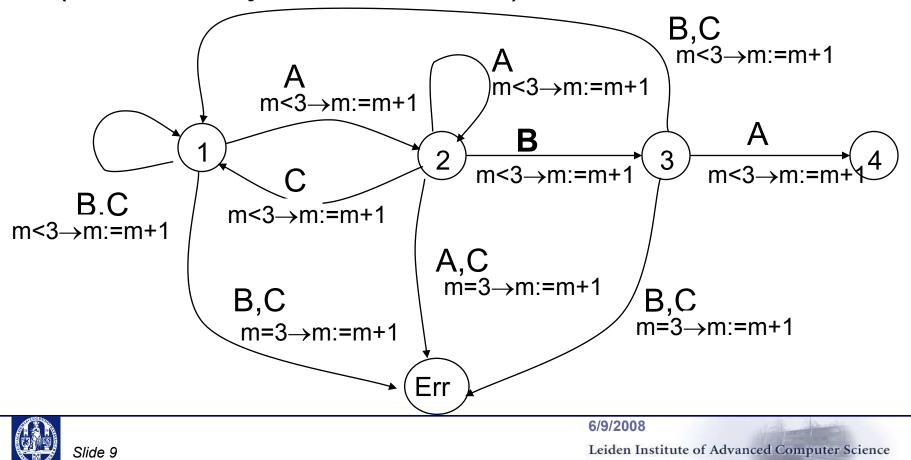
condition does not holds

assignment a transition can modify the value of some state variables

6/9/2008

Back to the digicode

We do not tolerate more than 3 mistakes (recorded by the variable m)

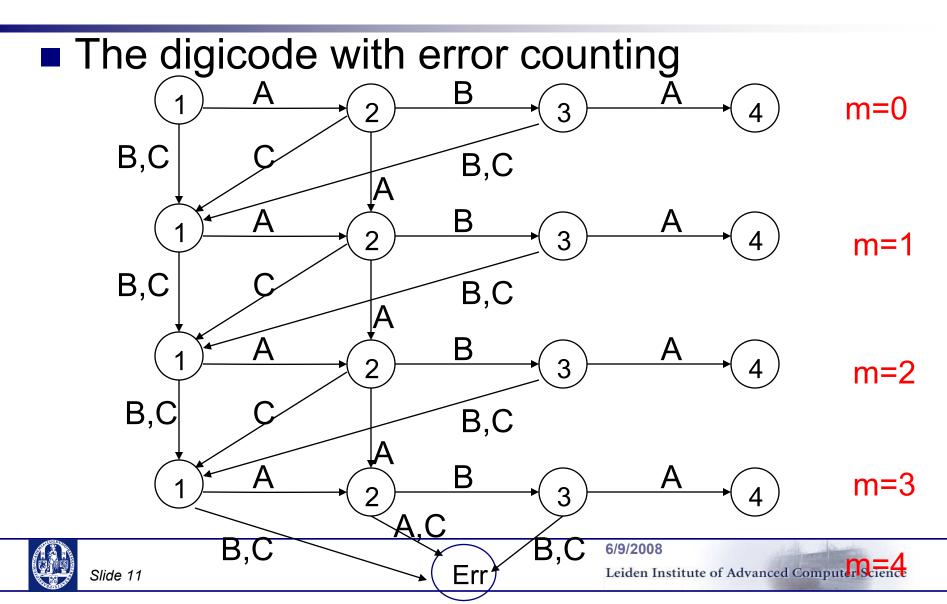


Unfolding

From a theoretical point of view, transition systems with state variables are not strictly necessary, as we can unfold them into ordinary transition systems.

- □ The new states correspond to the old ones + a component for each variable giving its value
- no more guards and assignment on the new transitions

Unfolding: example



Composing systems

- Systems often consists of cooperating subsystems. Next we describe how to obtain a global transition system form its subsystem by having them cooperate
- There are many ways to cooperate:
 - □ product (no interaction)
 - synchronous product
 - by message passing
 - by asynchronous channels
 - by shared variables

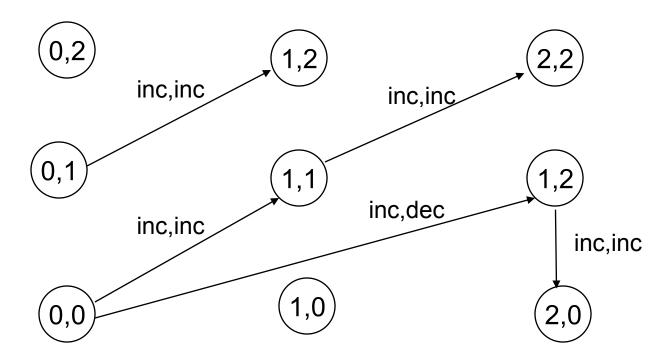
6/9/2008

Product

- Subsystems do not interact with each other
- The resulting transition system <S,L,→> is the cartesian product of the transition systems <S1,L1,→> ,..., <Sn,Ln,→> representing the subsystems
 - $\Box S = S1 x \dots xSn$
 - \Box L = L1 x ... x Ln
 - $\Box < s_1, \dots, s_n \stackrel{s_1, \dots, e_n \geq}{\longrightarrow} t_1, \dots, t_n > \text{ if for all } i, s_i \stackrel{e_i}{\longrightarrow} t_i$

Example

Few transitions of the product of two modulo 3 counters



6/9/2008

Synchronized Product

- Subsystems interact by doing some step together (synchronization).
- To synchronize subsystems we restrict the transitions allowed in their cartesian product.
- A synchronization set

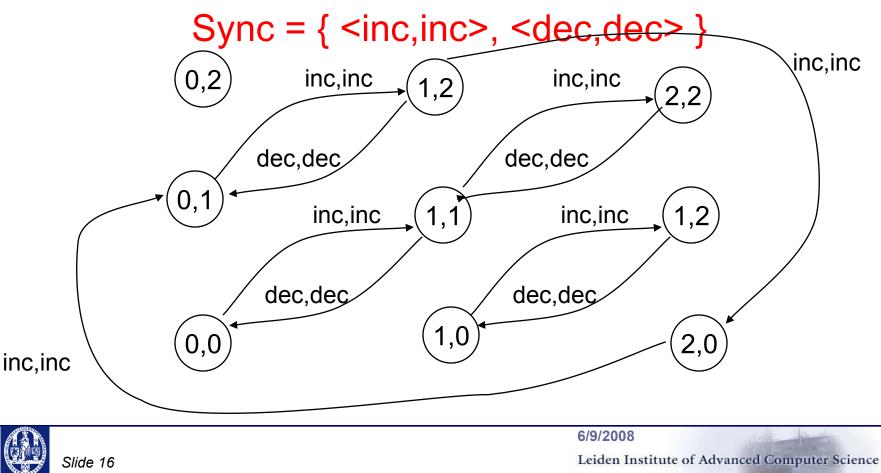
 $Sync \subseteq L1 x \dots x Ln$

define the labels of those transitions corresponding to a synchronization. Transitions with other labels are forbidden.

6/9/2008

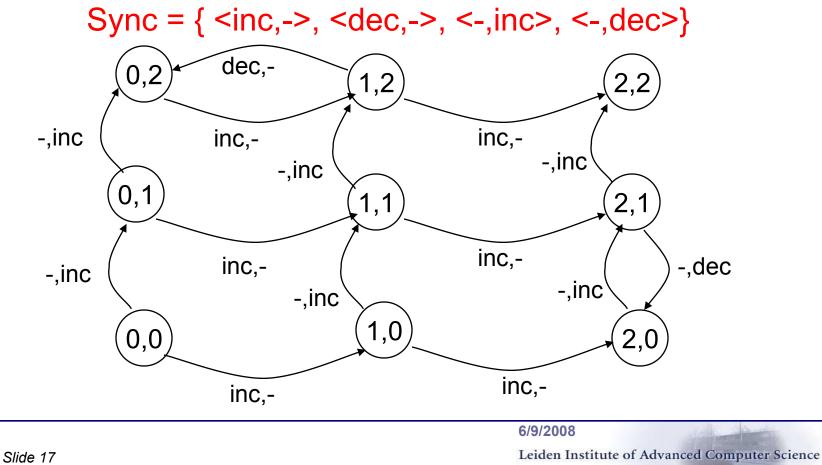
Example

Few transitions of two counters counting at the same time



Example

Few transitions of two counters counting one at the time



Message Passing

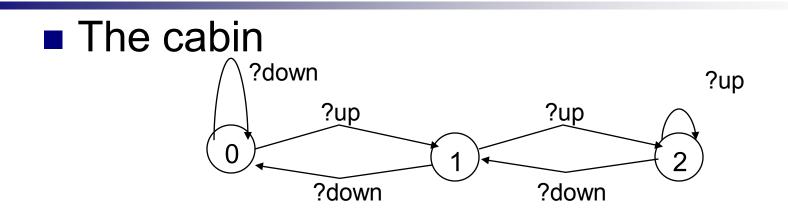
- A special case of synchronized product
- Two special sets of labels
 - □!m emission of message m
 - □?m reception of message m

In message passing, only transitions in which a given emission is executed simultaneously with the corresponding reception will be permitted

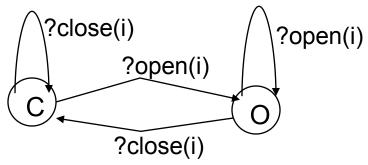
Example: An elevator

- An elevator in a three floors building consists of
 - $\Box \, a \, cabin$ which goes up and down
 - □ three doors which open an close
 - □ a controller which commands the three doors and the cabin
- Elevator requests from people at one of the three floors are not modeled, as they are the environment outside the system

Example: An elevator

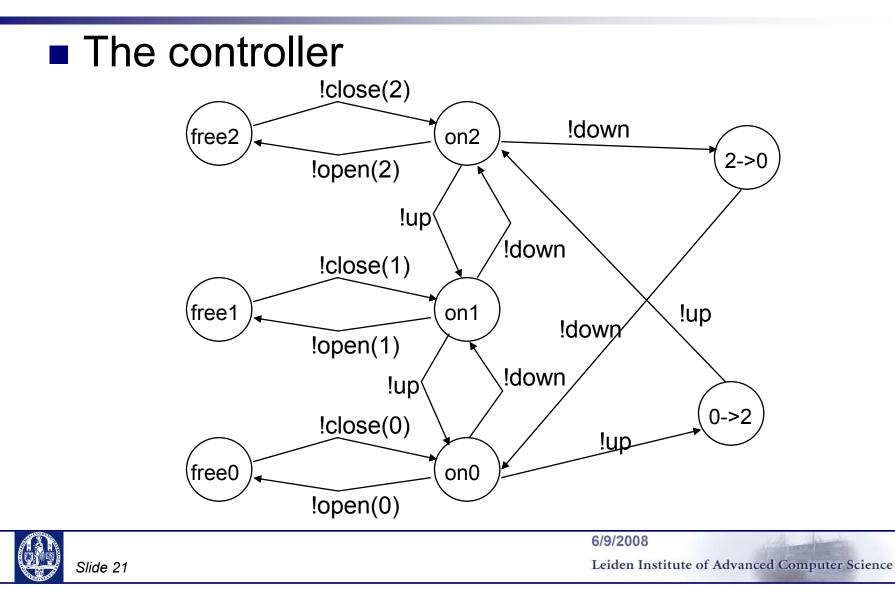


The i-th door



6/9/2008

Example: An elevator



Example: An elevator

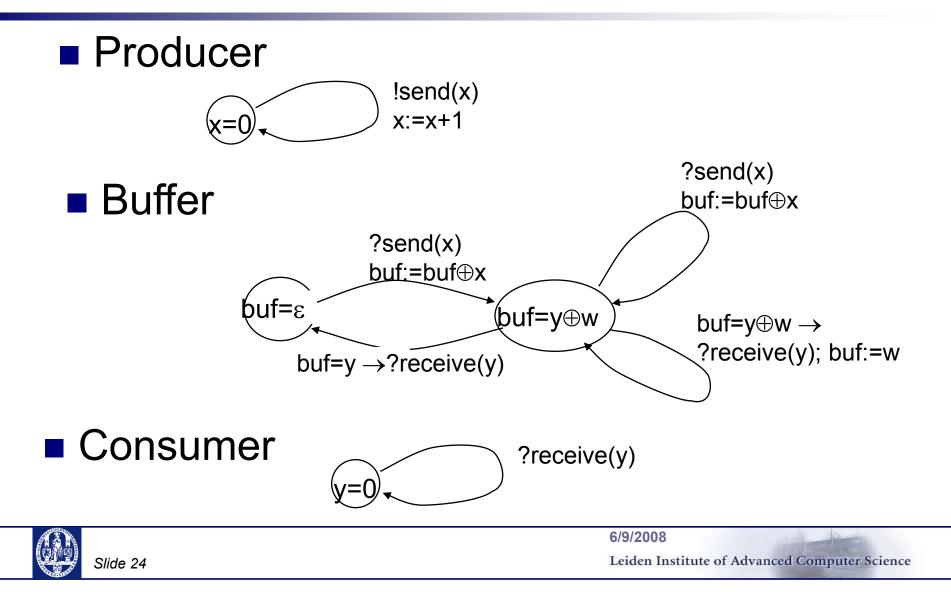
The synchronization

- □Sync =
- {<?open(0),-,-,-,!open(0)>,<?close(0),-,-,-,!close(0)>,
 - <-,?open(1),-,-,!open(1)>,<-,?close(1),-,-,!close(1)>,
- <-,-,?open(2),-,!open(2)>,<-,-,?close(2),-,!close(2)>,
- <-,-,-,?down,!down>,<-,-,?up,!up>}

Asynchronous Messages

- Like message passing, but messages are not received instantly.
- Emitted messages but not yet received remain in a communication channel, usually a FIFO buffer
- A communication channel can be modeled by a transition system with a variable (for the buffer content)

Example:



Spring 2007

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Formal Verification

Verification techniques comprise

a modelling framework

to describe a system

a specification language
\$\phi\$

to describe the properties to be verified

• a verification method $\mathcal{M} \vDash \phi, \ \Gamma \vdash \phi$

to establish whether a model satisfies a property

Slide 2

 \mathcal{M}

Motivations

• For an elevator system, consider the requirements:

- any request must ultimately be satisfied
- the elevator never traverses a floor for which a request is pending without satisfying it
- Both concern the dynamic behavior of the system. They can be formalized using a time-dependent notation, like

$$z(t) = 1/2gt^2$$

for the free-falling elevator

Slide 3

Example

In first order logic, with

- E(t) = elevator position at time t
- P(n,t) = pending request at floor n at time t
- S(n,t) = servicing of floor n at time t

Any request must ultimately be satisfied

$$\forall t \forall n (P(n,t) \Rightarrow \exists t' > t : S(n,t'))$$

The elevator never traverse a floor for which a request is pending without satisfying it

 $\forall t \forall t' > t \forall n (P(n,t) \land E(t') \neq n \land \exists t < t'' < t': E(t'') = n) \Rightarrow \exists t < t''' < t': S(n,t''')$

Temporal Logic

First order logic is too cumbersome for these specifications

- Temporal logic is a logic tailored for describing properties involving time
 - □ the time parameter t disappears
 - □ temporal operators mimic linguistic constructs
 - always, until, eventually
 - the truth of a proposition depend on the state on which the system is

6/9/2008

LTL: the language

• Atomic propositions $p_1, p_2, \dots, q, \dots$

to make statements about states of the system

- elementary descriptions which in a given state of the system have a well-defined truth value:
 - the printer is busy
 - nice weather
 - open
 - x+2=y

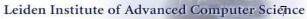
Their choice depend on the system considered

LTL: the language

Boolean combinators

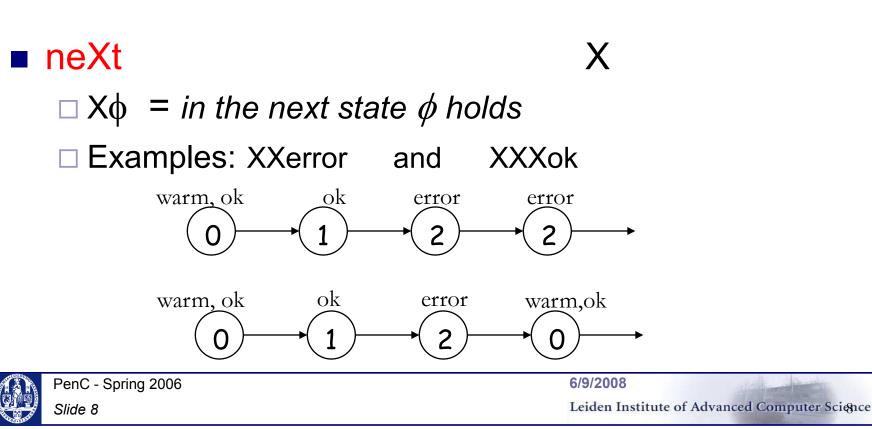
□ true	Т
□ false	\perp
negation	
conjunction	\wedge
disjunction	\vee
implication	\Rightarrow

Note: read $p \Rightarrow q$ as "*if p then q*" rather than "*p implies q*". Try (1 = 2) \Rightarrow Sint_Klas_exists



LTL: the language

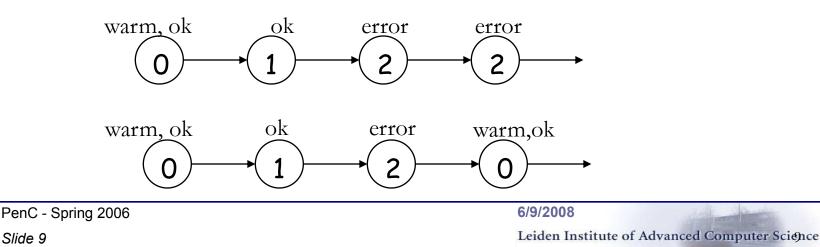
 Temporal combinators allows to speak about the sequencing of states along a computation (rather than about states individually)



Future

F

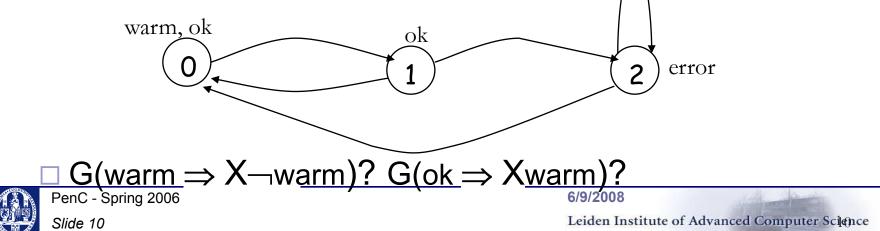
- □ $F\phi = in$ some future state ϕ holds (at least once and without saying in which state)
- \Box For example, warm \Rightarrow Fok holds if we are in a "warm" state then we will be in an "ok" state.



Globally

- □ Gφ = in all future states φ always holds
 □ It is the dual of F: Gφ = ¬F¬φ
- □ For example G(warm \Rightarrow Fok) holds if at any time when we are in a "warm" state we will later be in an "ok" state.

G



Until

- $\Box \phi_1 U \phi_2 = \phi_2$ will hold in some future state, and in all intermediate states ϕ_1 will hold.
- Weak until
 - $\Box \varphi_1 W \varphi_2 = \varphi_1 \text{ holds in all future states until } \\ \varphi_2 \text{ holds}$
 - \Box it may be the case φ_2 will never hold

IJ

Release

R

 $\Box \phi_1 R \phi_2 = \phi_2$ holds in all future state up to (and including) a state when ϕ_1 holds (if ever).

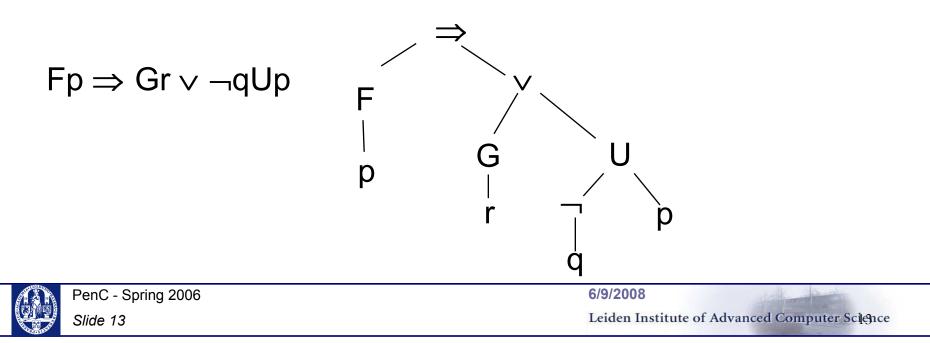
 $\Box \text{ It is the dual of U:} \quad \phi_1 R \phi_2 = \neg (\neg \phi_1 U \neg \phi_2)$

PenC - Spring 2006

LTL - Priorities

Unary connectives bind most tightly , X,F,G

- Next come U, R and W
- Finally come \land , \lor and \Rightarrow

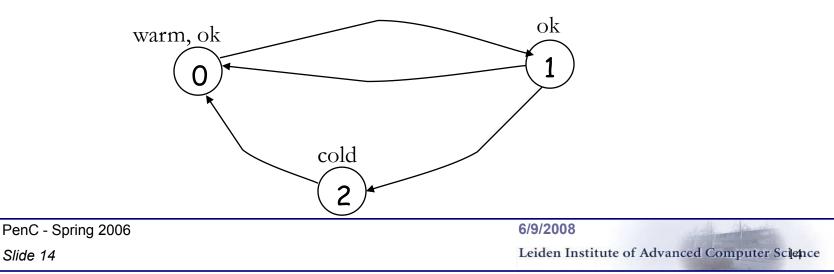


LTL models: Transition Systems

- **Transition system:** $\langle S, \rightarrow, L \rangle$
 - □ S set of states
 - $\Box \ \mathsf{L}:\mathsf{S} \to \mathcal{P}(\mathsf{Atoms})$
 - $\Box \rightarrow \subseteq SxS transition relation$
 - \Box Every state s has some successor state s' with s \rightarrow s'
- A system evolves from one state to another under the action of a transition

labelling function

We label a state with propositions that hold in that state



Computation paths

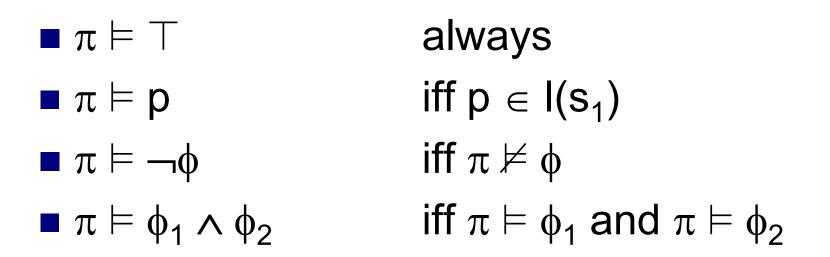
Path: an infinite sequence π of states such that each consecutive pair is connected by a transition

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 0 \rightarrow \dots$$

■ For i ≥ 1, we write π^i for the suffix of a path π starting at i.

Semantics (I)

• Let M = $\langle S, \rightarrow, L \rangle$ be a transition system, and $\pi = s_1 \rightarrow s_2 \rightarrow ...$ a path of M.



Slide 16

6/9/2008

Semantics (II)

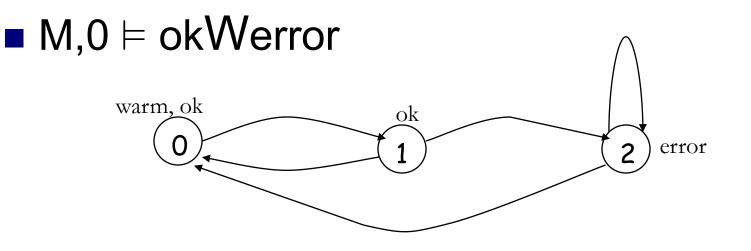
- $\pi \models X \phi$ if
- $\pi \models F\phi$
- $\pi \models G\phi$
- $\pi \vDash \phi_1 U \phi_2$
- $\pi \models \phi_1 W \phi_2$ • $\pi \models \phi_1 R \phi_2$

- iff $\pi^2 \vDash \phi$
 - iff there is $1 \leq i$ such that $\pi^i \vDash \varphi$
 - iff for all $1 \le i, \pi^i \vDash \phi$
 - iff there is $1 \le i$ such that $\pi^i \vDash \phi_2$ and for all j<i, $\pi^j \vDash \phi_1$
 - iff either $\pi \models \phi_1 U \phi_2$ or for all $1 \le i, \pi^i \models \phi_2$
 - $\begin{array}{l} \text{iff either there is } 1 \leq i \text{ such that } \pi^i \vDash \varphi_1 \\ \text{ and for all } j \leq i, \ \pi^j \vDash \varphi_2 \\ \text{ or for all } 1 \leq k, \ \pi^k \vDash \varphi_2 \end{array}$

Slide 17

System properties

M,s ⊨ φ iff π ⊨ φ for every path π of M starting from the state s



■ M,0 \nvDash okUerror (Why?)

PenC - Spring 2006

6/9/2008

Spring 2007

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

LTL equivalences

De Morgan-based

$$\Box \neg F \phi \equiv G \neg \phi$$
$$\Box \neg X \phi \equiv X \neg \phi$$

X-self duality: on a path each state has a unique successor

• Until reduction $\Box F \phi \equiv T U \phi$ $\Box F \phi \equiv T U \phi$

6/9/2008

LTL: Adequate sets of connectives

■ <u>Theorem</u>: The set of operators T,¬, ∧, U,X is adequate for LTL.

$$\Box \phi U \psi \equiv \neg (E[\neg \psi U(\neg \phi \land \neg \psi)] \lor AG \neg \psi)$$

$$\Box \phi \mathsf{R} \psi \equiv \neg (\neg \phi \mathsf{U} \neg \psi)$$
$$\Box \phi \mathsf{W} \psi \equiv \psi \mathsf{R} (\phi \lor \psi)$$

Other LTL equivalences

- $\ \, {\bf G}\varphi\equiv\varphi\wedge XG\varphi$
- $F\phi \equiv \phi \lor XF\phi$
- $\phi U \psi \equiv \psi \lor (\phi \land X \phi U \psi)$

• <u>Theorem</u>: $\phi U\psi \equiv \neg (\neg \psi U(\neg \phi \land \neg \psi)) \land F\psi$

PenC - Spring 2006

Slide 4

6/9/2008

Verification goals

- Formulating properties requires some expertise
- Today we present categories of fundamental properties commonly used for system verification
 - □ reachability properties
 - □ safety properties
 - □ liveness properties
 - □ fairness properties

Reachability

- A reachability property states that some particular situation can be reached
 - Simple
 - "We can obtain n < 0"</p>
 - "We can enter a critical section"
 - Conditional
 - "We can enter a critical section without traversing n= 0"
 - □Any
 - "we can always return to the initial state"

Reachability in LTL

LTL misses the existential quantifier on paths, thus it can only express reachability negatively:

something is not reachable

Simple reachability
 □¬G(n ≥0)
 □¬G(no_critic_sec)

Safety

- A safety property states that, under certain conditions, an event never occurs
 - "Two processes will never be both in their critical section"
 - □ "A memory overflow will never occur"
- In general, safety statements express that an undesirable event will not occur.
- The negation of a reachability property is a safety property (and the other way around)

Safety in LTL

Typically expressed by the combinator G in LTL

Examples

 $\Box G(\neg critic_sec_1 \land \neg critic_sec_2)$

 \Box G(¬overflow)

Conditional safety

"As long the key is not in, the car won't start"

- □ –start W key
- start U key as we are not required to have the key in some day

6/9/2008

Liveness

- A liveness property states that, under certain conditions, an event will ultimately occur
 - □ "Any request will be satisfied"
 - □ "The light will turn green"
 - □ "after the rain, the sunshine"
- Liveness is not reachability
 - "The light will turn green (some day, regardless of the system behavior)"
 - VS.
 - "It is possible for the light (some day) to turn green"

In general, liveness statements express that happy event will occur in the end

Termination is a liveness property:
 "The program will terminate"

Slide 11

6/9/2008

Liveness in LTL

Typically expressed by the combinator F

• Examples \Box G(req \Rightarrow Fsat) in LTL

In LTL $\phi_1 U \phi_2$ is a liveness property, whereas $\phi_1 W \phi_2$ is a safety property

Deadlock

A deadlock property states that, the system can never be in a situation in which no progress is possible

 Safety? Liveness?
 Deadlock freeness in LTL GX T
 whatever state may be reached (G) there exists an immediate successor state (X T)

Fairness

A fairness property states that, under certain conditions, an event will occur (or will fail to occur) infinitely often

"If access to a critical section is infinitely often requested, then access will be granted infinitely often

Fairness in LTL

- Typically expressed by the combinators
 - □GF (infinitely often)
 - □FG (eventually always)

Examples GF critic_in ∨ FG¬ critic_req

Slide 15

6/9/2008

Spring 2007

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

LTL equivalences

• We say that two LTL formulas ϕ and ψ are semantically equivalent, writing $\phi \equiv \psi$ if for all models M and for all paths π of M we have

$$\pi\vDash \varphi \text{ iff } \pi\vDash \psi$$

6/9/2008

De Morgan-based equivalences

$$\Box \neg F\phi \equiv G \neg \phi$$
$$\Box \neg G\phi \equiv F \neg \phi$$
$$\Box \neg X\phi \equiv X \neg \phi$$

X-self duality: on a path each state has a unique successor

$$\Box \neg (\phi \ \mathsf{U} \ \psi) \equiv \neg \phi \ \mathsf{R} \ \neg \psi$$
$$\Box \neg (\phi \ \mathsf{R} \ \psi) \equiv \neg \phi \ \mathsf{U} \ \neg \psi$$

6/9/2008

Distributivities

$$\Box F(\phi \lor \psi) \equiv F\phi \lor F\psi$$
$$\Box G(\phi \land \psi) \equiv G\phi \land G\psi$$

Slide 4

6/9/2008

Reductions

$$\Box F\phi \equiv T U \phi$$
$$\Box G\phi \equiv \bot R \phi$$

$$\Box \phi U \psi \equiv \phi W \psi \wedge F \psi$$
$$\Box \phi W \psi \equiv \phi U \psi \vee F \psi$$

$$\Box \phi W \psi \equiv \psi R (\phi \lor \psi)$$
$$\Box \phi R \psi \equiv \psi W (\phi \land \psi)$$

6/9/2008

LTL: Adequate sets of connectives

- A set of operators S is adequate for LTL if every formula in LTL can be expressed as an equivalent one using only the operators in S.
 - <u>Theorem</u>: The set of operators

is adequate for LTL.

Without negation, the set of operators T, ⊥, ∨, ∧, X, U, R is adequate but T, ⊥, ∨, ∧, X, R, G is not (because one cannot define F).

Other LTL equivalences

- $\ \, {\bf G}\varphi\equiv\varphi\wedge XG\varphi$
- $F\phi \equiv \phi \lor XF\phi$
- $\phi U \psi \equiv \psi \lor (\phi \land X(\phi U \psi))$

• <u>Theorem</u>: $\phi U\psi \equiv \neg (\neg \psi U(\neg \phi \land \neg \psi)) \land F\psi$

PenC - Spring 2006

Spring 2007

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education CTL

CTL = Computational Tree Logic the temporal combinators are under the immediate scope of the path quantifiers

Why CTL? The truth of CTL formulas depends only on the current state and not on the current execution!

Benefit: easy and efficient model checking

Disadvantages: hard for describing individual path

6/9/2008

The language

- Path quantifiers allows to speaks about sets of executions.
 - □ The model of time is tree-like: many futures are possible from a given state
- Inevitably
 - from the current state all executions satisfy $\boldsymbol{\varphi}$
- Possibly from the current state there exists an execution satisfying \u00f3

Leiden Institute of Advanced Computer Science

6/9/2008

$EX\phi \mid EF\phi \mid EG\phi \mid E[\phi \cup \phi]$.

AXφ | AFφ | AGφ | A[φ U φ] |

$\mathsf{T} \mid \bot \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \Rightarrow \phi \mid$

$\bullet ::= p_1 \mid p_2 \mid \dots$

CTL - Syntax

CTL - Priorities

- Unary connectives bind most tightly
 - □¬, AG, EG, AF, EF, AX, and EX
- Next come ∧, and ∨
- Finally come, AU and EU

• Example: $AGp_1 \Rightarrow EGp_2$ is not the same as $AG(p_1 \Rightarrow EGp_2)$

Slide 5

CTL - yes or no?

Yes EFE[p U q] A[p U EF q]

No

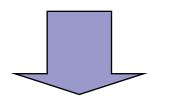
□ EF(p U q) □ FG p

Yes or no? □ AG(p ⇒ A[p U (¬p ∧ A[¬p U q])]) □ AF[(p U q) ∧ (q U p)]

6/9/2008

A is not G

- A states that all the executions starting from the current state will satisfy



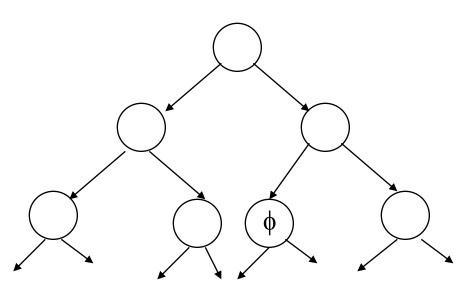
- A and E quantify over paths in a tree
- G and F quantify over positions along a given path in a tree

6/9/2008

Combining E and F (I)

■ EF¢

"it is possible that ϕ will hold in the future"



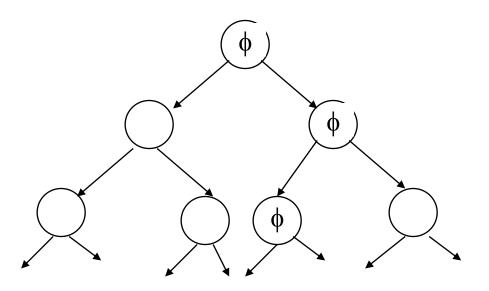
Slide 8

6/9/2008

Combining E and F (II)

• EG ϕ =E \neg F \neg ϕ

"it is possible that $\boldsymbol{\phi}$ will always hold"

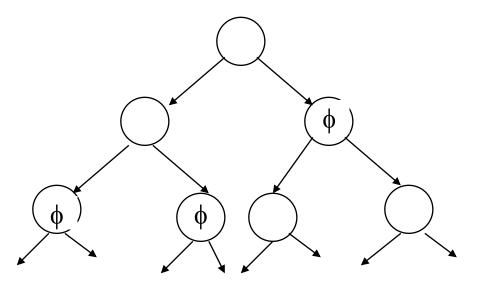


6/9/2008

Combining E and F (III)

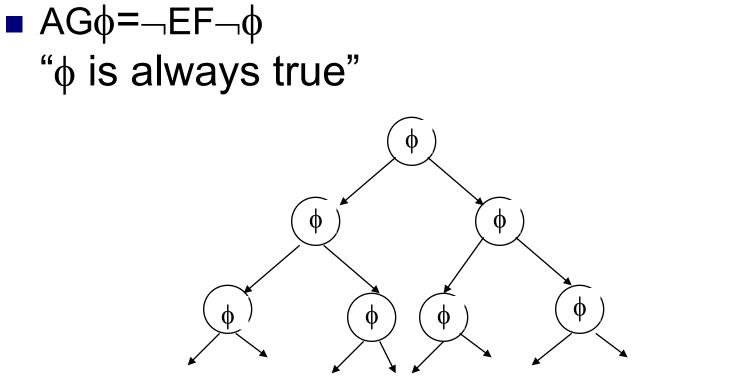
• $AF\phi = \neg E \neg F\phi$

"it is inevitable that $\boldsymbol{\phi}$ will hold in the future"



6/9/2008

Combining E and F (IV)



In this case \u03c6 is an invariant, that is, a property that is true continuously

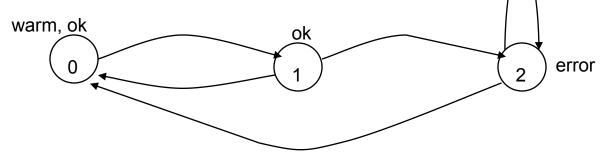
6/9/2008

Example

All executions starting from 0 satisfy

AFEXerror

Why? Because from 0 all executions traverse 1 and may go to 2



There exists an execution which does not satisfy AFAXerror. Which one?

6/9/2008

Examples

Along every execution (A) from every state (G) it is possible (E) that we will encounter a state (F) satisfying ϕ

that is, ϕ is always reachable

CTL - Satisfaction

- Let M = <S,→,I> be a transition system with I(s) the set of atomic propositions satisfied by a state s ∈S.
- Idea for a model: A CTL formula refers to a given state of a given transition system
 - \Box M,s $\vDash \phi$ means " ϕ is true at state s"

We will define it by induction

on the structure of ϕ

Slide 14

CTL - Semantics (I)

M,s ⊨ T
M,s ⊨ p
M,s ⊨ ¬φ
M,s ⊨ φ₁ ∧ φ₂

for all s in S iff $p \in I(s)$ iff $\stackrel{\models}{n}$ ot $M, s \vDash \phi$ iff $M, s \vDash \phi_1$ and $M, s \vDash \phi_2$

6/9/2008

CTL - Semantics (II)

■ M,s \models AX ϕ iff for all s' such that s \rightarrow s' we have M,s' $\models \phi$

■ M,s \models EX ϕ iff there exists s' such that s \rightarrow s' and M,s' $\models \phi$

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 16

CTL - Semantics (III)

 $\begin{array}{ll} \blacksquare M,s \vDash \mathsf{EG}\phi & \text{iff there exists an execution} \\ & \mathsf{S}_0 \rightarrow \mathsf{S}_1 \rightarrow \mathsf{S}_2 \rightarrow \mathsf{S}_3 \ \dots \ \text{with} \\ & \mathsf{s} = \mathsf{s}_0 \ \text{and such that} \ \mathsf{M},\mathsf{s}_i \vDash \phi \end{array}$

CTL - Semantics (IV)

- M,s ⊨ AF ϕ iff for all executions $S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow S_3 \dots$ with s = S₀ there is i such that M,s_i ⊨ ϕ
 - M,s ⊨ EF ϕ iff there exists an execution $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \dots$ with s=s₀ and there is i such that $M,s_i \models \phi$

CTL - Semantics (V)

• M,s \models A[$\phi_1 U \phi_2$]

iff for all executions $s \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \dots$ there is i such that $M, s_i \vDash \phi_2$ and for each j < i $M, s_i \vDash \phi_1$

• M,s \models E[$\phi_1 U \phi_2$]

iff there exists an execution $s \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \dots$ and there is i such that $M, s_i \vDash \phi_2$ and for each j < i $M, s_j \vDash \phi_1$

CTL equivalences

- De Morgan-based
 - $\Box \neg \mathsf{AF}\phi \equiv \mathsf{EG}\neg\phi$ $\Box \neg \mathsf{EF}\phi \equiv \mathsf{AG}\neg\phi$ $\Box \neg \mathsf{AX}\phi \equiv \mathsf{EX}\neg\phi$

X-self duality: on a path each state has a unique successor

Until reduction $\Box AF \phi \equiv A[T \cup \phi]$ $\Box EF \phi \equiv E[T \cup \phi]$

6/9/2008

CTL: Adequate sets of connectives

Theorem: The set of operators

T, \neg , \land , {AX or EX}, {EG,AF or AU}, and EU is adequate for CTL.

 $\Box \mathsf{A}[\phi \mathsf{U}\psi] \equiv \neg(\mathsf{E}[\neg \psi \mathsf{U}(\neg \phi \land \neg \psi)] \lor \mathsf{E}\mathsf{G} \neg \psi)$

Slide 21

6/9/2008

CTL: Weak until and release

- <u>Use LTL equivalence to define</u>: $\Box A[\phi R\psi] \equiv \neg E[\neg \phi U \neg \psi]$ $\Box E[\phi R\psi] \equiv \neg A[\neg \phi U \neg \psi]$
 - $\Box \mathsf{A}[\phi \mathsf{W}\psi] \equiv \mathsf{A}[\psi \mathsf{R}(\phi \lor \psi)]$ $\Box \mathsf{E}[\phi \mathsf{W}\psi] \equiv \mathsf{E}[\psi \mathsf{R}(\phi \lor \psi)]$

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 22

Other CTL equivalences

$$\mathsf{E}\mathsf{G}\phi \equiv \phi \land \mathsf{E}\mathsf{X} \mathsf{E}\mathsf{G}\phi$$

 $AG\phi \equiv \phi \land AX AG\phi$

•
$$AF\phi \equiv \phi \lor AX AF\phi$$

• $EF\phi \equiv \phi \lor EX EF\phi$

•
$$A[\phi U\psi] \equiv \psi \lor (\phi \land AXA[\phi U\psi])$$

• $E[\phi U\psi] \equiv \psi \lor (\phi \land EXE[\phi U\psi])$

Slide 23

LΨ

CTL* - Syntax

Path formulas (evaluated along paths) ψ ::= φ | ¬ ψ | ψ ∧ ψ | Χψ | Fψ | Gψ | ψ Uψ

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 24

Examples

Along every execution (A) from every state (G) we will encounter a state (F) satisfying φ

that is, $\boldsymbol{\phi}$ is satisfied infinitely often

Model

- Let M = <S,→,I> be a transition system with I(s) the set of atomic propositions satisfied by a state s ∈S.
- Idea for a model: A formula of temporal logic refers to an instant i of an execution π of a transition system M
- M, π ,i $\vDash \phi$ means
 - " ϕ is true at position i of path π of M"

Semantics (I)

M,π,i ⊨ T
M,π,i ⊨ p
M,π,i ⊨ ¬φ
M,π,i ⊨ φ₁ ∧ φ₂

always iff $p \in I(\pi(i))$ iff not $M,\pi,i \vDash \phi$ iff $M,\pi,i \vDash \phi_1$ and $M,\pi,i \vDash \phi_2$

6/9/2008

Semantics (II)

- M,π,i ⊨ Xφ
- M,π,i ⊨ Fφ
- M,π,i ⊨ Gφ

- iff M, π ,i+1 $\vDash \phi$
- iff there exists i $\leq j$ such that M, π ,j $\models \phi$
- $\text{iff } M, \pi, j \vDash \phi \text{ for all } i \leq j$

• $M,\pi,i \vDash \phi_1 U \phi_2$

iff there exists $i \le j$ such that $M, \pi, j \vDash \phi_2$ and for all $i \le k < j$ we have $M, \pi, k \vDash \phi_1$

Semantics (III)

• $M,\pi,i \vDash E\phi$ iff there exists π ' such that $\pi(0)...\pi(i) = \pi'(0)...\pi'(i)$ and $M,\pi',i \vDash \phi$

• $M,\pi,i \vDash A\phi$ iff for all π ' such that $\pi(0)... \pi(i) = \pi'(0)... \pi'(i)$ we have $M,\pi',i \vDash \phi$

6/9/2008

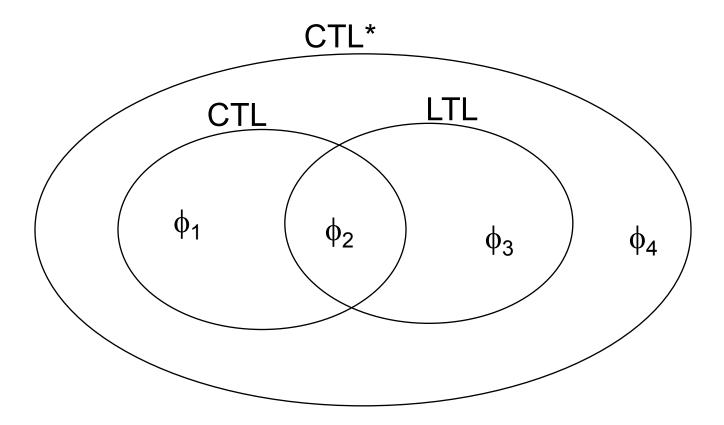
LTL and CTL \subseteq CTL*

CTL is a restricted fragment of CTL* with path formulas

$\psi ::= X\phi | F\phi | G\phi | \phi U \phi$ and the same state formulas as CTL*, i.e. $\phi ::= T | p | \neg \phi | \phi \land \phi | A\psi | E\psi$

Slide 30

Expressivity



6/9/2008

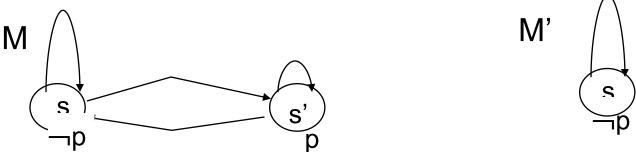
Leiden Institute of Advanced Computer Science

Slide 31

In CTL but not in LTL

$$\phi_1 = AG EF p$$
 in CTL

From any state we can always get to a state in which p holds



• It cannot be expressed as LTL formula ϕ because

- All executions starting from s in M' are also executions starting from s in M
- $\Box \text{ In CTL M,s} \vDash \phi_1 \text{ but M',s} \nvDash \phi_1$

6/9/2008

In CTL and in LTL

$$\phi_2 = AG(p \Rightarrow AFq)$$
 in CTL
and

$$\phi_2 = G(p \Rightarrow Fq)$$
 in LTL

"Any p is eventually followed by a q"

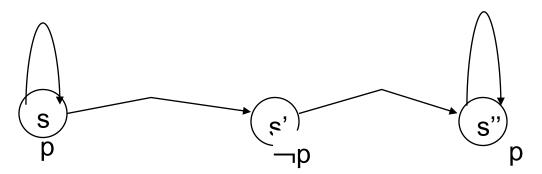
6/9/2008

In LTL but not in CTL

$\phi_3 = GFp \Longrightarrow Fq \text{ in }LTL$

"If p holds infinitely often along a path, then there is a state in which q holds"

Note: FGp is different from AFAGp since the first is satisfied in



whereas the latter is not (starting from s).

Leiden Institute of Advanced Computer Science

6/9/2008

Neither in CTL nor in LTL

ϕ_4 = E(GFp) in CTL* "There is a path with infinitely many state in which p holds"

Not expressible in LTL: TrivialNot expressible in CTL: very complex

Slide 35

6/9/2008

Boolean combination of path in CTL

• $CTL = CTL^*$ but

Without boolean combination of path formulas
 Without nesting of path formulas

The first restriction is not real ... E[Fp ^ Fq] = EF[p ^ EFq] ~ EF[q ^ EFp] First p and then q or viceversa

Slide 36

More generally ...

 $\Box E[\neg (pUq)] \equiv E[\neg qU(\neg p \land \neg q)] \lor EG \neg q$ $\Box E[(p_1Uq_1) \land (p_2Uq_2)] \equiv E[(p_1 \land p_2)U(q_1 \land E[p_2Uq_2])] \lor E[(p_1 \land p_2)U(q_2 \land E[p_1Uq_1])]$ $\Box E[Fp \land Gq] \equiv E[q U (p \land EG q)]$

$$\Box E[\neg Xp] \equiv EX\neg p$$

$$\Box E[Xp \land Xq] \equiv EX(p \land q)$$

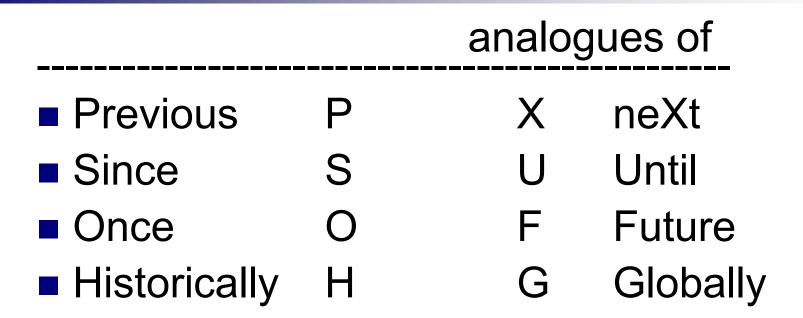
$$\Box E[Fp \land Xq] \equiv EX(q \land EFp)$$

$$\Box \mathsf{A}[\phi] \equiv \neg \mathsf{E}[\neg \phi]$$

PenC - Spring 2006

6/9/2008

Past operators



In LTL they do not add expressive power, but CTL they do!

6/9/2008

Spring 2007

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Formal Verification

- Verification techniques comprise
- a modelling framework

to describe a system

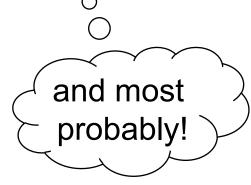
a specification language

to describe the properties to be verified **a verification method** $M \models \phi, \Gamma \vdash \phi$

to establish whether a model satisfies a property

Model Checking

- Question: does a given transition system satisfies a temporal formula?
- Simple answer: use definition of \models !
 - □ We cannot implement it as we have to unwind the transition system in a possibly infinite tree
 - Can we do better?



6/9/2008

The problem

We need efficient algorithms to solve the problems

 [1] M,s ⊨ φ
 [2] M,s ⊨ φ

where M should have finitely many states, and ϕ is a CTL formula.

We concentrate to solution of [2], as [1] can be easily derived from it.

6/9/2008

The solution

- **Input:** A CTL model M and CTL formula ϕ
- Output: The set of states of M which satisfy \u00f6
- Basic principles:
 - □ Translate any CTL formula ϕ in terms of the connectives AF, EU,EX, \land ,¬, and \bot .
 - \Box Label the states of M with sub-formulas of φ that are satisfied there, starting from the smallest sub-formulas and working outwards towards φ
 - \Box Output the states labeled by ϕ

6/9/2008

The labelling

- An immediate sub-formula of a formula φ is any maximal-length formula ψ other than φ itself
- Let ψ be a sub-formula of φ and assume the states of M have been already labeled by all immediate sub-formulas of ψ.
- Which states have to be labeled by ψ?
 We proceed by case analysis

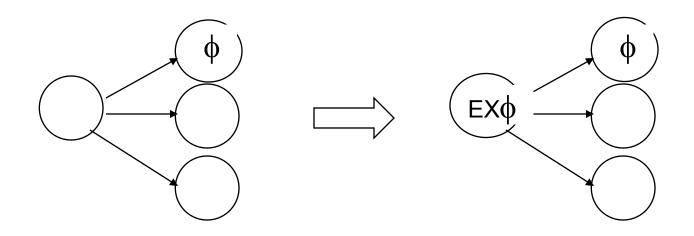
The basic labeling

- ⊥ no states are labeled
- $\blacksquare p \qquad \text{label a state s with p if } p \in I(s)$
- $\phi_1 \land \phi_2$ label a state s with $\phi_1 \land \phi_2$ if s is already labeled with ϕ_1 and ϕ_2
- $\neg \phi$ label a state s with $\neg \phi$ if s is not already labeled with ϕ

The EX labeling

■EXφ

Label with EX ϕ any state s with one of its successors already labeled with ϕ



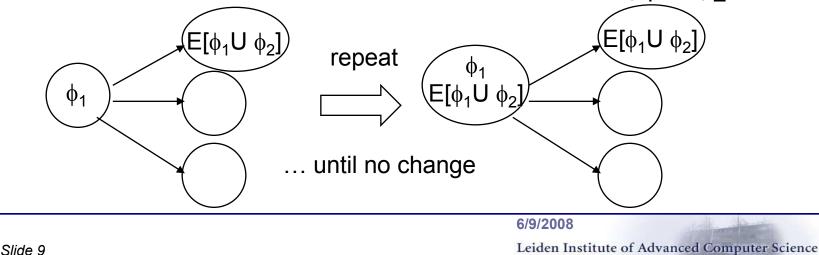
Slide 8

6/9/2008

The EU labeling

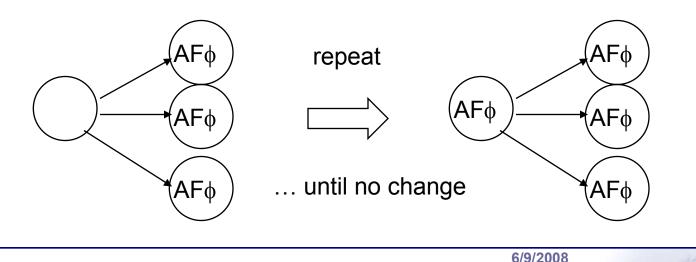
• $E[\phi_1 U \phi_2] \equiv \phi_2 \lor (\phi_1 \land EXE[\phi_1 U \phi_2])$

- 1. Label with E[$\phi_1 U \phi_2$] any state s already labeled with ϕ_2
- 2. <u>Repeat until no change</u>: label any state s with $E[\phi_1 U \phi_2]$ if s is labeled with ϕ_1 and at least one of its successor is already labeled with $E[\phi_1 U \phi_2]$



The AF labeling

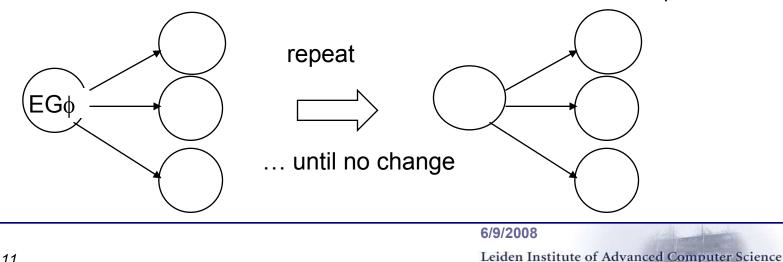
- $AF\phi \equiv \phi \lor AXAF\phi$
- 1. Label with AF ϕ any state s already labeled with ϕ
- 2. Repeat until no change: label any state s with AF ϕ if all successors of s are already labeled with AF ϕ



The EG labeling (direct)

•
$$EG\phi \equiv \phi \land EXEG\phi \equiv \neg AF\neg \phi$$

- 1. Label all the states with $EG\phi$
- 2. Delete the label EG ϕ from any state s not labeled with ϕ
- 3. <u>Repeat until no change</u>: delete the label EG ϕ from any state s if none of its successors is labeled with EG ϕ



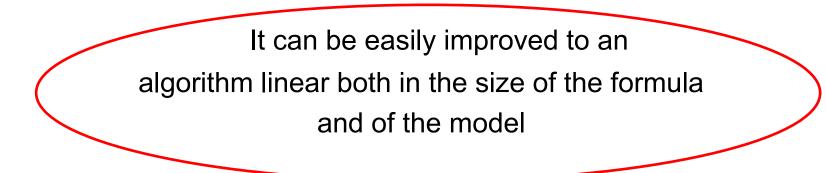
Complexity

The complexity of the model checking algorithm is O(f*V*(V+E))

where $f = number of connectives in \phi$

V = number of states of M

E = number of transitions of M



Slide 12

6/9/2008

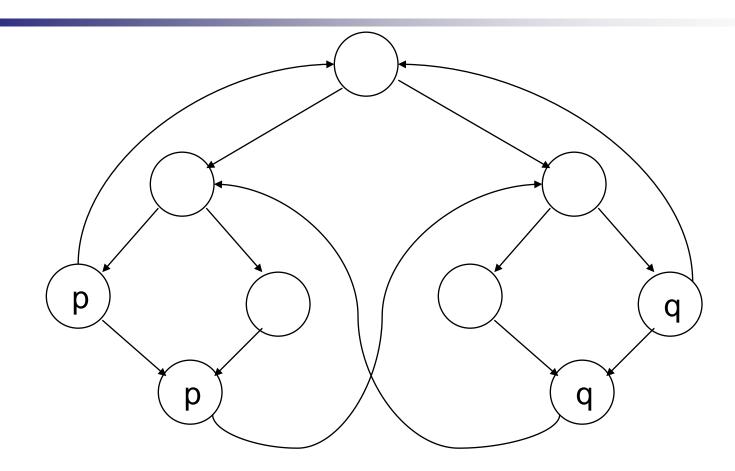
State explosion

The algorithm is linear in the size of the model but the size of the model is exponential in the number of variables, components, etc.

Can we reduce state explosion?

- □ Abstraction (what is relevant?)
- □ Induction (for 'similar' components)
- □ Composition (divide and conquer)
- □ Reduction (prove semantic equivalence)
- Ordered binary decision diagrams

Example: Input



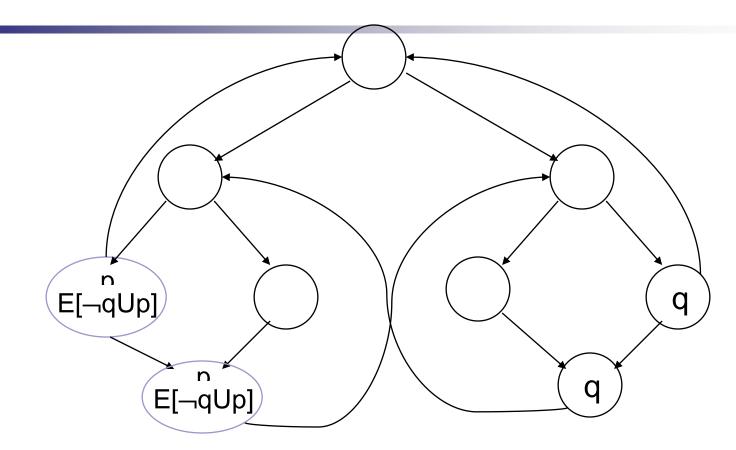
$\phi = AF(E[\neg q U p] v EXq)$

Slide 14

Leiden Institute of Advanced Computer Science

6/9/2008

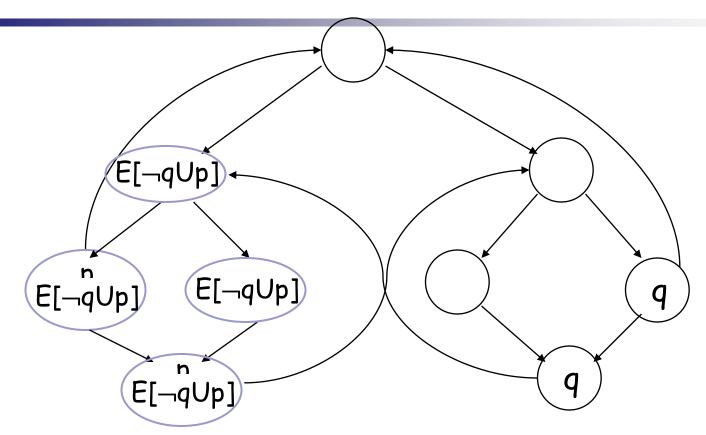
Example: EU - step 1



1. Label with E[-qUp] all states which satisfy p

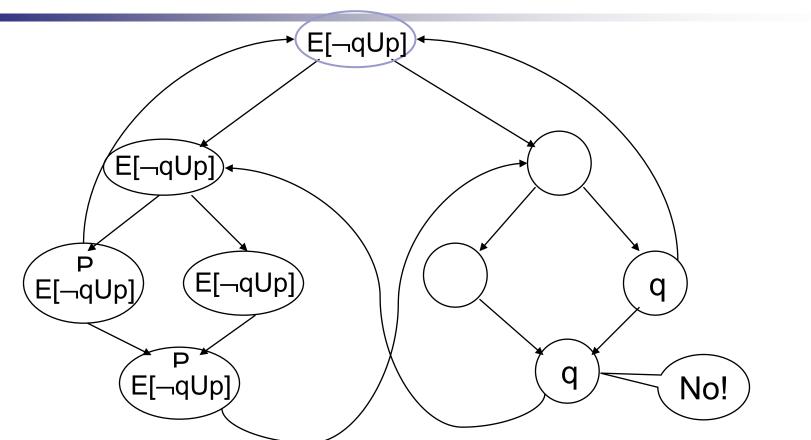
6/9/2008

Example: EU-step 2.1



2.1 label with E[¬qUp] any state that is already labeled with ¬q and with one of its successor already labeled by E[¬qUp]

Example: EU-step 2.2

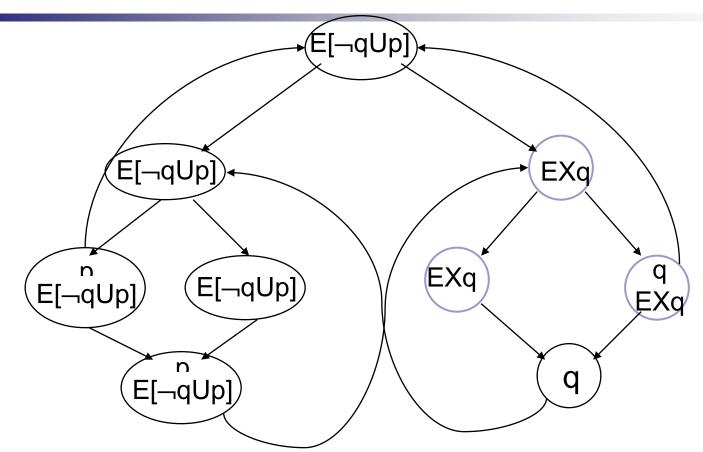


2.2 label with E[¬qUp] any state that is already labeled with ¬q and with one of its successor already labeled by E[¬qUp]

Leiden Institute of Advanced Computer Science

6/9/2008

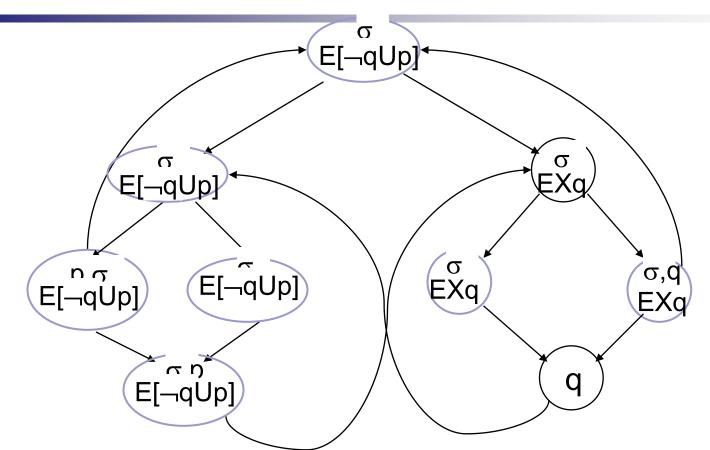
Example: EX-step 3



3. Label with EXq any state with one of it successors already labeled by q

6/9/2008

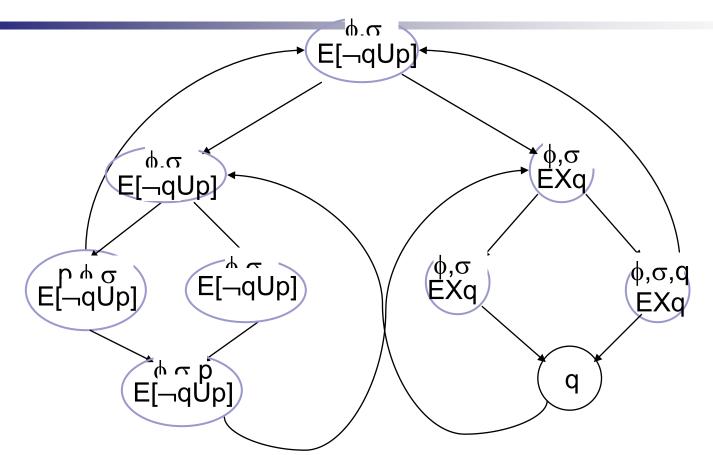
Example: v-step 4



 Label with σ = E[¬qUp] v EXq any state s already labeled by E[¬qUp] or EXq

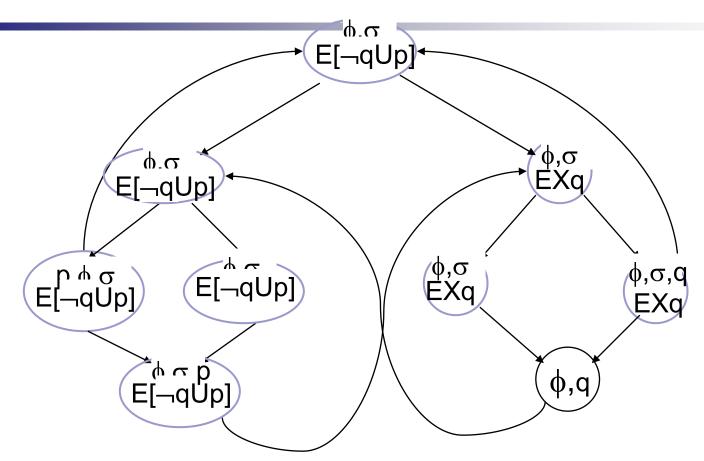
6/9/2008

Example: AF-step 5.1



5.1 Label with ϕ = AF(E[¬qUp]vEXq) any state already labeled by σ = E[¬qUp]vEXq

Example: AF-step 5.2



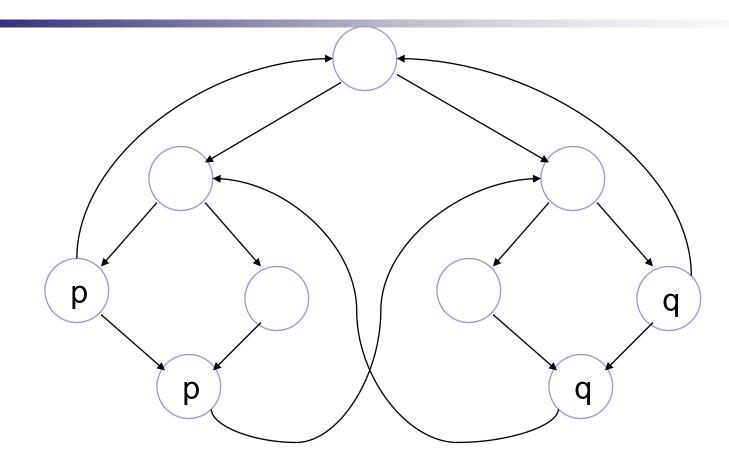
5.2 Label with ϕ any state with all successor already labeled by ϕ .

Slide 21

Leiden Institute of Advanced Computer Science

6/9/2008

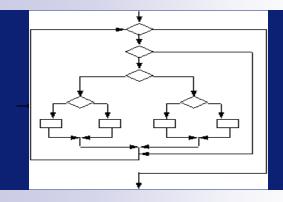
Example: Output



All states satisfy AF(E[¬q U p] v EXq)

6/9/2008

Spring 2007



Program correctness

SAT and its correctness

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Context

- 1. We have defined the semantics of CTL formulas $M, s \models \phi$
- 2. We have given an efficient method for model checking a CTL formula returning all states s such that $M, s \models \phi$

Next we present an algorithm for it and proves its correctness

The algorithm SAT

SAT stands for 'satisfies'

- □ Input: a well-formed CTL formula
 □ Output: a subset of the states of a transition system M = <S, →,I>
- Written in Pascal-like
 - □ <u>function</u> <u>return</u>
 - □ <u>local_var</u>
 - □ <u>while do od</u>
 - □ <u>case</u> is <u>end_case</u>

The main function (I)

Leiden Institute of Advanced Computer Science

.

The main function (II)

:
AX
$$\phi_1$$
 : return SAT(¬EX¬ ϕ_1)
EX ϕ_1 : return SAT_EX(ϕ_1)
A[$\phi_1 \cup \phi_2$] : return
SAT(¬E[¬ $\phi_2 \cup (\neg \phi_1 \land \neg \phi_2)$] \checkmark EG¬ ϕ_2)
E[$\phi_1 \cup \phi_2$] : return SAT_EU(ϕ_1, ϕ_2)
EF ϕ_1 : return SAT(E[T $\cup \phi_1$])
AF ϕ_1 : return SAT(E[T $\cup \phi_1$])
AF ϕ_1 : return SAT(¬AF¬ ϕ_1) /*SAT_EG(ϕ_1)*/
AG ϕ_1 : return SAT(¬EF¬ ϕ_1)

end

•

6/9/2008

The function SAT_EX

```
\begin{array}{l} \underline{function} \; SAT\_EX(\phi) \\ \underline{local\_var} \; X, Y \\ \underline{begin} \\ X := SAT(\phi) \\ Y := \{ \; s \in S \; | \; \exists s \rightarrow s' : s' \in X \} \\ \underline{return} \; Y \end{array}
```

end

6/9/2008

The function SAT_AF

```
<u>function</u> SAT_AF(\phi)
local var X,Y
begin
   X := S
   Y := SAT(\phi)
   while X \neq Y do
         X := Y
         Y := Y \cup \{ s \in S \mid \forall s \rightarrow s' : s' \in Y \}
   <u>od</u>
   return Y
end
```


The function SAT_EU

```
<u>function</u> SAT_EU(\phi, \psi)
local var W,X,Y
<u>begin</u>
    W := SAT(\phi)
    X := S
    Y := SAT(\psi)
                                   /* Calculated only once */
    while X \neq Y do
           X := Y
           \mathsf{Y} := \mathsf{Y} \cup (\mathsf{W} \cap \{ s \in \mathsf{S} \mid \exists s \to s' : s' \in \mathsf{Y} \})
    <u>od</u>
    <u>return</u> Y
end
```

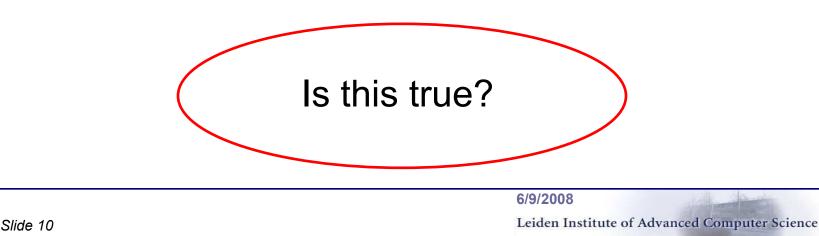

The function SAT_EG

```
<u>function</u> SAT_EG(\phi)
local var X,Y
begin
   X := \emptyset
   Y := SAT(\phi)
   while X \neq Y do
         X := Y
         Y := Y \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \}
   od
   return Y
end
```


Does it work?

Claim: For a given model M=<S, \rightarrow , I> and well-formed CTL formula ϕ ,

 $\mathsf{SAT}(\phi) = \{ s \in S \mid \mathsf{M}, s \vDash \phi \} \stackrel{\text{\tiny def}}{=} [[\phi]]$



The proof (I)

- The claim is proved by induction on the structure of the formula.
- For $\phi = T$, \bot , or atomic the set [[ϕ]] is computed directly
- For $\neg \phi$, $\phi_1 \land \phi_2$, $\phi_1 \lor \phi_2$ or $\phi_1 \Rightarrow \phi_2$ we apply induction and predicate logic equivalences
 - □ Example:
 - $SAT(\phi_1 \lor \phi_2) = SAT(\phi_1) \cup SAT(\phi_2)$
 - = $[[\phi_1]] \cup [[\phi_2]]$ (induction)
 - $= [[\phi_1 \lor \phi_2]]$

The proof (II)

For EX^{\(\phi\)} we apply induction

$$\begin{aligned} \mathsf{SAT}(\mathsf{EX}\phi) &= \mathsf{SAT}_\mathsf{EX}(\phi) \\ &= \{ s \in \mathsf{S} \mid \exists s \to s' : s' \in \mathsf{SAT}(\phi) \} \\ &= \{ s \in \mathsf{S} \mid \exists s \to s' : s' \in [[\phi]] \} \quad (\text{induction}) \\ &= \{ s \in \mathsf{S} \mid \exists s \to s' : \mathsf{M}, s' \models \phi \} \quad (\text{definition } [[-]]) \\ &= \{ s \in \mathsf{S} \mid \mathsf{M}, s \models \mathsf{EX}\phi \} \quad (\text{definition } \models) \\ &= [[\mathsf{EX}\phi]] \quad (\text{definition } [[-]]) \end{aligned}$$

6/9/2008

The proof (III)

For AXφ, A[φ₁ U φ₂], EFφ, or AGφ we can rely on logical equivalences and on the correctness of SAT_EX, SAT_AF, SAT_EU, and SAT_EG

□ Example:

SAT(AXφ) = SAT(¬EX¬φ) = S - SAT_EX(¬φ) = S - [[EX¬φ]]

= [[AX_{\$\$\$}]]

(def. SAT($\neg \phi$))

6/9/2008

(correctness SAT_EX)

(logical equivalence)

But we still have to prove the correctness

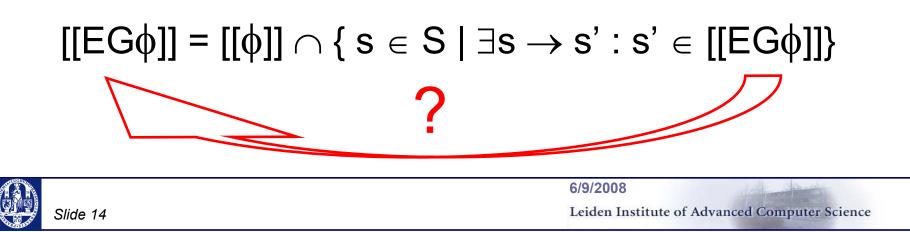
of SAT AF, SAT EU, and SAT EG

EG as fixed point

Recall that $EG\phi \equiv \phi \land EX EG\phi$. Since

$$\mathsf{EX}\psi = \{ \, s \in S \mid \exists \ s \rightarrow s' : s' \in [[\psi]] \}$$

we have the following fixed-point definition of EG



Fixed points

 Let S be a set and F:Pow(S) → Pow(S) be a a function
 F is monotone if

 X ⊆ Y implies F(X) ⊆ F(Y)
 for all subsets X and Y of S

 A subset X of S is a fixed point of F if
 F(X) = X

□ A subset X of S is a least fixed point of F if F(X) = X and $X \subseteq Y$

for all fixed point Y of F

Examples

• S = {s,t} and F:X \mapsto X \cup {s}

F is monotone

□ {s} and {s,t} are all fixed points of F

 \Box {s} is the least fixed point of F

□ G is not monotone

• $\{s\} \subseteq \{s,t\}$ but $G(\{s\}) = \{t\} \not\subset \{s\} = G(\{s,t\})$

□ G does not have any fixed point

Fixed points (II)

Let $F^{i}(X) = F(F(...F(X)...))$ for i > 0 (thus $F^{1}(X) = F(X)$) i-times

- Theorem: Let S be a set with n+1 elements. If $F:Pow(S) \rightarrow Pow(S)$ is a monotone function then
 - 1) $F^{n+1}(\emptyset)$ is the least fixed point of F
 - 2) $F^{n+1}(S)$ is the greatest fixed point of F

Least and greatest fixed points can be computed and the computation is guaranteed to terminate !

Computing EG¢

To find a set [[EG\u00f6]] such that

 $[[\mathsf{E} \mathsf{G} \varphi]] = [[\varphi]] \cap \{ \ s \in S \mid \exists s \to s' : s' \in [[\mathsf{E} \mathsf{G} \varphi]] \}$

we look if it is a fixed point of the function

 $\mathsf{F}(\mathsf{X}) = \llbracket [\phi] \rrbracket \cap \{ \ s \in \mathsf{S} \mid \exists s \to s' : s' \in \mathsf{X} \}$

Theorem: Let n = |S| be the size of S and F defined as above. We have

- 1. F is monotone
- 2. [[EG ϕ]] is the greatest fixed point of F
- 3. $[[EG\phi]] = F^{n+1}(S)$

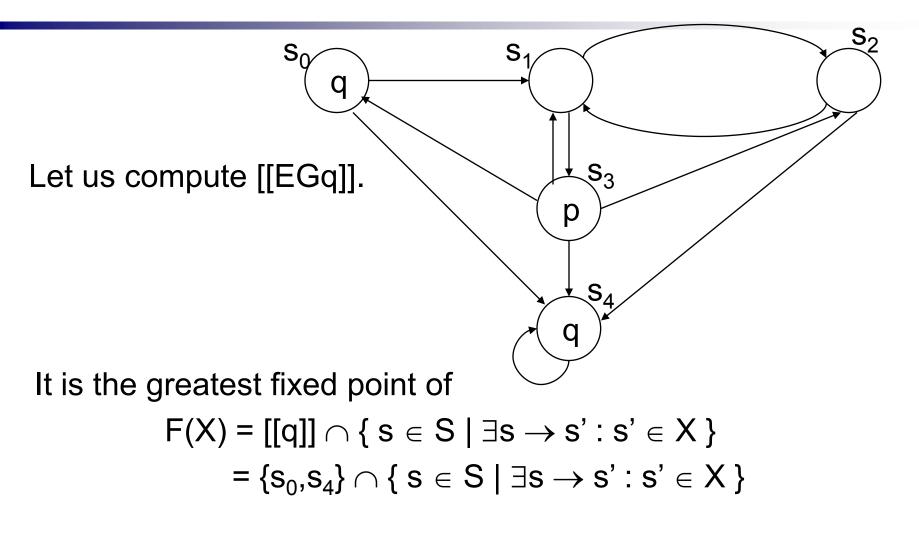
Correctness of SAT_EG

- 1. Inside the loop it always holds $Y \subseteq SAT(\phi)$
- 2. Because $Y \subseteq SAT(\phi)$, substitute in SAT_EG $Y := Y \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \}$ with $Y := SAT(\phi) \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \}$
- 3. Note that SAT_EG(ϕ) is calculating the greatest fixed point (use induction!)

 $\mathsf{F}(\mathsf{X}) = \llbracket[\varphi]] \cap \{ \, s \in \mathsf{S} \mid \exists s \to s' : s' \in \mathsf{X} \}$

4. It follows from the previous theorem that SAT_EG(ϕ) terminates and computes [[EG ϕ]].

Example: EG



6/9/2008

Example: EG

Iterating F on S until it stabilizes

$$\Box F^{1}(S) = \{s_{0}, s_{4}\} \cap \{ s \in S \mid \exists s \to s' : s' \in S \}$$
$$= \{s_{0}, s_{4}\} \cap S$$
$$= \{s_{0}, s_{4}\}$$

$$\Box F^{2}(S) = F(F^{1}(S))$$

= $F(\{s_{0}, s_{4}\})$
= $\{s_{0}, s_{4}\} \cap \{ s \in S \mid \exists s \to s' : s' \in \{s_{0}, s_{4}\} \}$
= $\{s_{0}, s_{4}\}$

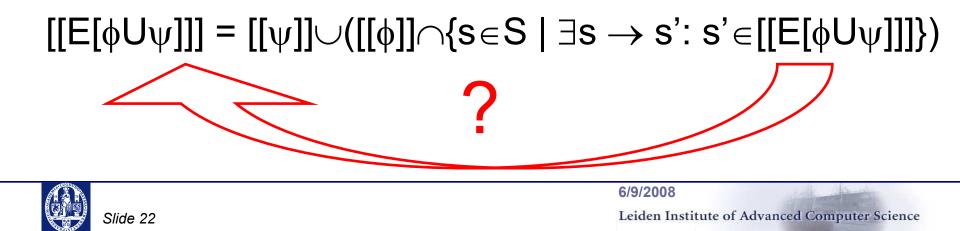
Thus {s₀,s₄} is the greatest fixed point of F and equals [[EGq]]

Leiden Institute of Advanced Computer Science

6/9/2008

EU as fixed point

- Recall that E[ϕ U ψ] = $\psi \lor (\phi \land EX E[\phi U \psi])$.
- Since EX ϕ = { s \in S | ∃ s \rightarrow s' : s' \in [[ϕ]]} we obtain



Computing E[ϕ U ψ]

As before, we show that [[E[ϕ U ψ]]] is a fixed point of the function

 $G(X) = \llbracket [\psi] \rrbracket \cup (\llbracket [\varphi] \rrbracket \cap \{ \ s \in S \mid \exists s \rightarrow s' : s' \in X \})$

- Theorem: Let n = |S| be the size of S and G defined as above. We have
 - 1. G is monotone
 - 2. [[E[ϕ U ψ]]] is the least fixed point of G
 - 3. $[[E[\phi U \psi]]] = G^{n+1}(\emptyset)$

Correctness of SAT_EU

- 1. Inside the loop it always holds $W=SAT(\phi)$ and $Y \supseteq SAT(\psi)$.
- 2. Substitute in SAT_EU Y:=Y \cup (W \cap { s \in S | \exists s \rightarrow s' : s' \in Y })

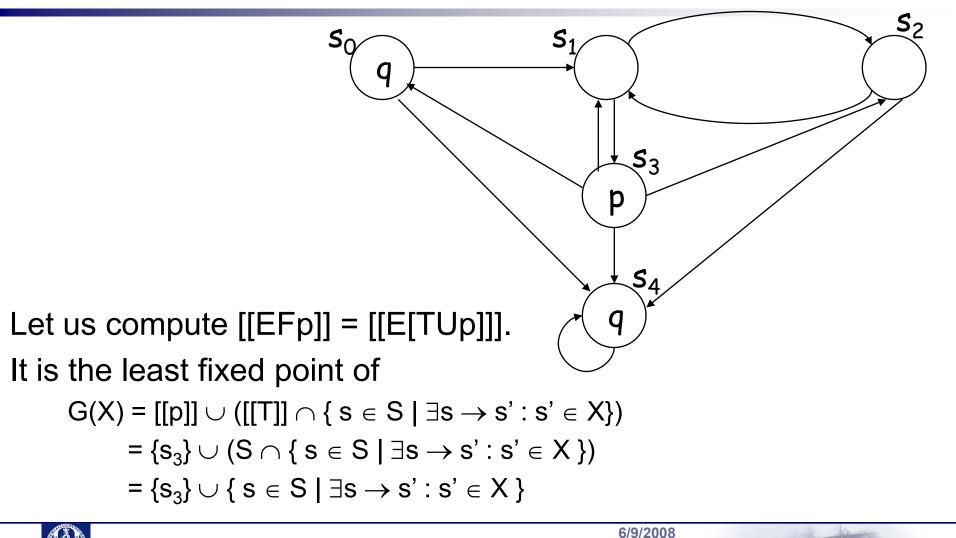
with

 $\mathsf{Y}{:=}\mathsf{SAT}(\psi) \cup (\mathsf{SAT}(\phi) \cap \{ \ s \in S \mid \exists s \to s' : s' \in Y \})$

- 3. Note that SAT_EU(ϕ) is calculating the least fixed point of G(X) = [[ψ]] \cup ([[ϕ]] \cap { s \in S | \exists s \rightarrow s' : s' \in X})
- 4. It follows from the previous theorem that SAT_EU(ϕ, ψ) terminates and computes [[E[ϕ U ψ]]]

6/9/2008

Example: EU



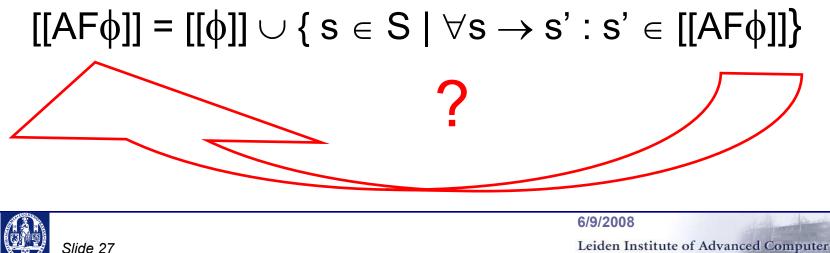
Example: EU

Iterating G on \emptyset until it stabilizes we have $\Box \ \mathsf{G}^{1}(\varnothing) = \{\mathsf{s}_{3}\} \cup \{\mathsf{s} \in \mathsf{S} \mid \exists \mathsf{s} \to \mathsf{s}' \colon \mathsf{s}' \in \varnothing\}$ $= \{S_3\} \cup \emptyset = \{S_3\}$ $\Box \ G^2(\emptyset) = G(G^1(\emptyset)) = G(\{s_3\})$ $= \{s_3\} \cup \{s \in S \mid \exists s \rightarrow s' : s' \in \{s_3\}\}$ $= \{S_1, S_3\}$ $\Box \ G^{3}(\varnothing) = G(G^{2}(\varnothing)) = G(\{s_{1}, s_{3}\})$ $= \{s_3\} \cup \{ s \in S \mid \exists s \rightarrow s' \colon s' \in \{s_1, s_3\} \}$ $= \{S_0, S_1, S_2, S_3\}$ $\Box G^{4}(\emptyset) = G(G^{3}(\emptyset)) = G(\{s_{0}, s_{1}, s_{2}, s_{3}\})$ $= \{s_3\} \cup \{ s \in S \mid \exists s \to s' : s' \in \{s_0, s_1, s_2, s_3\} \}$ $= \{S_0, S_1, S_2, S_3\}$ • Thus $[[EFp]] = [[E[TUp]]] = \{s_0, s_1, s_2, s_3\}.$

AF as fixed point

Since $AF\phi \equiv \phi \lor AX AF\phi$ and $\mathsf{AX}\phi = \{ s \in S \mid \forall s \rightarrow s' : s' \in [[\phi]] \}$

we obtain



Computing AF ϕ

 $H(X) = [[\varphi]] \cup \{ s \in S \mid \forall s \rightarrow s' : s' \in X \}$

Theorem: Let n = |S| be the size of S and G defined as above. We have

- 1. H is monotone
- 2. [[AF ϕ]] is the least fixed point of H
- 3. $[[AF\phi]] = H^{n+1}(\emptyset)$

Correctness of SAT_AF

- 1. Inside the loop it always holds $Y \supseteq SAT(\phi)$.
- 2. Substitute in SAT_AF $Y:=Y \cup \{ s \in S \mid \forall s \rightarrow s' : s' \in Y \}$ with

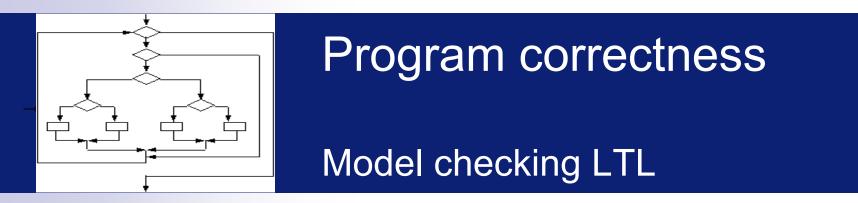
$$\mathsf{Y}:=\mathsf{SAT}(\phi) \cup \{ s \in \mathsf{S} \mid \forall s \to s' : s' \in \mathsf{Y} \}$$

3. Note that SAT_AF(ϕ) is calculating the least fixed point of

$$\mathsf{H}(\mathsf{X}) = [[\varphi]] \cup \{ s \in \mathsf{S} \mid \forall s \rightarrow s' : s' \in \mathsf{X} \}$$

4. It follows from the previous theorem that $AT_AF(\phi)$ terminates and computes [[**AF** ϕ]]

Spring 2007



Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Context

Next we concentrate on model checking LTL

LTL: a recap

Syntax

 $\phi ::= \top \mid p \mid \neg \phi \mid \phi \lor \phi \mid X \phi \mid \phi U \phi$

All other connectives can be written in the above syntax

Slide 3

6/9/2008

LTL formulas as languages (I)

 $\phi = GFp$

(infinitely often p)

The execution $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$ satisfies ϕ if it contains infinitely many s_{n_1} , s_{n_2} , ... at which p holds. In between there can be an arbitrary but finite number of state at which \neg p holds.

As a language $((\neg p)^*.p)^{\omega}$

 ω -regular expressions

* = an arbitrary but finite number of repetitions

 ∞ = an infinite number of repetitions

LTL formulas as languages(II)

• $\phi = FGp$ (Eventually always p)

6/9/2008

Automata on finite words: a recap

- A non-deterministic finite automaton is a special kind of transition systems for recognizing languages on finite words
- <u>NF-automaton</u> $A = \langle \Sigma, S, \rightarrow, I, F \rangle$ □ Σ finite alphabet □ S finite set of states □ $\rightarrow \subseteq S \times \Sigma \times S$ transition relation □ $I \subseteq S$ initial states □ $F \subseteq S$ accepting states
- The language of an automaton A is $L(A) = \{a_1 a_2 \dots a_n \in \Sigma^* | \exists s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots \xrightarrow{a_3} s_n \in F \text{ with } s_1 \in I\}$

Leiden Institute of Advanced Computer Science

6/9/2008

Properties of finite languages

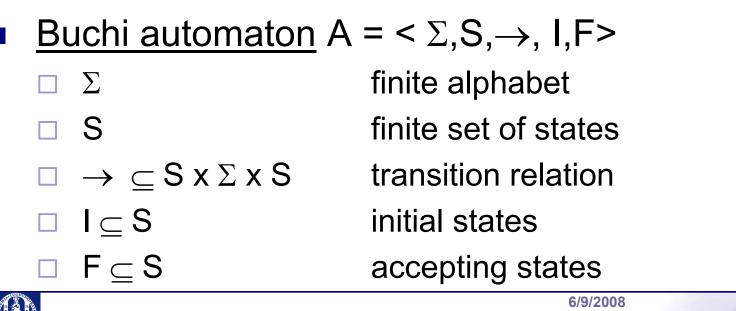
■ Theorem: $L(A_1 x A_2) = L(A_1) \cap L(A_2)$ $A_1 x A_2 = \langle \Sigma, S_1 x S_2, \rightarrow, I_1 x I_2, F_1 x F_2 \rangle$ where $\langle s, t \rangle \xrightarrow{a} \langle s', t' \rangle$ iff $s \xrightarrow{a}_1 s'$ and $t \xrightarrow{a}_2 t'$

Theorem: L(A) = Ø is decidable It is enough to find a path from an initial state in I to a final state in F.

6/9/2008

Automata on infinite words: Buchi

A Buchi automaton is a special kind of transition systems for recognizing languages on infinite words

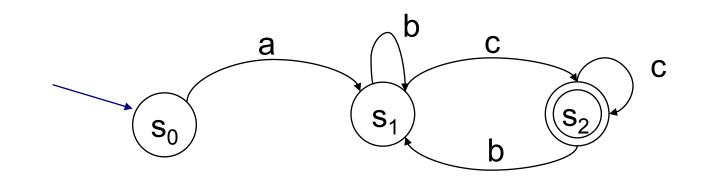


Buchi automata

An infinite execution of a Buchi automaton A $s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} s_4 \dots$ is accepted by A if $\Box s_1 \in I$ \Box there exists infinitely many i > 0 such that $s_i \in F$

• The language of a Buchi automaton A is $L_{\omega}(A) = \{a_1 a_2 \dots \in \Sigma^{\omega} | \exists s_1 \xrightarrow{a_1} s_2^{a_2} \rightarrow \dots \text{ accepted by } A\}$

Example



- abccccccc... accepted
- abcbcbcbcb... accepted

6/9/2008

Properties of infinite languages

• Theorem: $L_{\omega}(A_1 \otimes A_2) = L_{\omega}(A_1) \cap L_{\omega}(A_2)$ $A_1 \otimes A_2 = \langle \Sigma, S_1 x S_2 x \{1,2\}, \rightarrow, I_1 x I_2 x \{1\}, F_1 x S_2 x \{1\} \rangle$ where $\langle s, t, i \rangle \xrightarrow{a} \langle s', t', j \rangle$ iff

```
\square s \xrightarrow{a}_{1} s' and t \xrightarrow{a}_{2} t' and i=j unless
```

 \Box i=1 and s \in F₁ in which case j = 2, or

□ i=2 and $t \in F_2$ in which case j =1.

• Theorem: $L_{\omega}(A) = \emptyset$ is decidable

It is enough to find a path from an initial state $s \in I$ to a final state $t \in F$ such that t has a path to t itself.

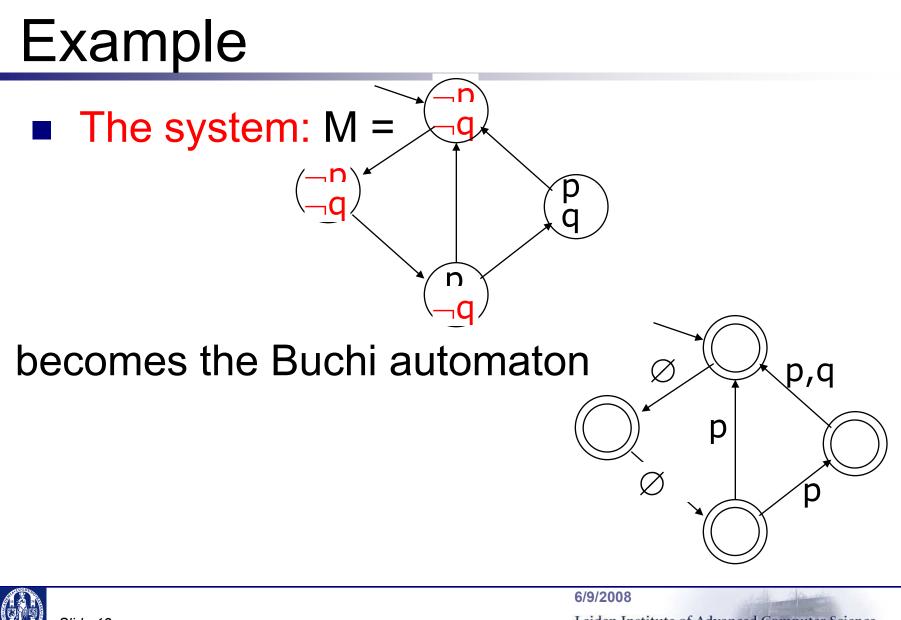
6/9/2008

Transition systems and Buchi automata

Any transition systems M = <S,→_M,s₀> with a labelling function ℓ:S → 2^{Prop} can be seen as a Buchi automata A_{M =} < Σ,S,→, I,F> where

 $\Sigma = 2^{Prop}$ assignment of truth values to propositions (i.e. valuations)

□Ssame states□s \xrightarrow{a} t iff s \rightarrow_M t and a = $\ell(s)$ transition relation□I = {s_0}same initial state□F = Severy state is final



Slide 13

LTL and Buchi automata

- An LTL formula denotes a set of infinite traces which satisfy that formula
- A Buchi automaton accepts a set of infinite traces
- Theorem: Given an LTL formula \u03c6, we can build a Buchi automaton

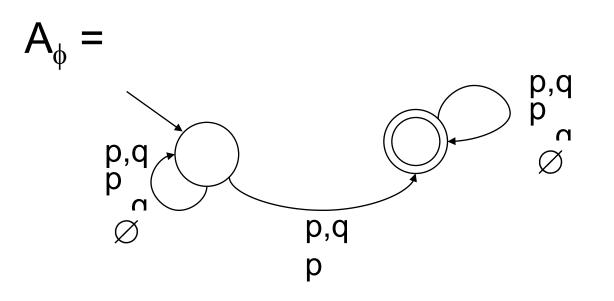
$$\mathsf{A}_{\phi} = <\Sigma, \mathsf{S}, \rightarrow, \mathsf{I}, \mathsf{F} >$$

where $\Sigma = 2^{Prop}$ consists of the subsets of (possibly negated) atomic propositions (i.e. valuations), which accepts only and all the executions satisfying the formula ϕ .

Slide 14

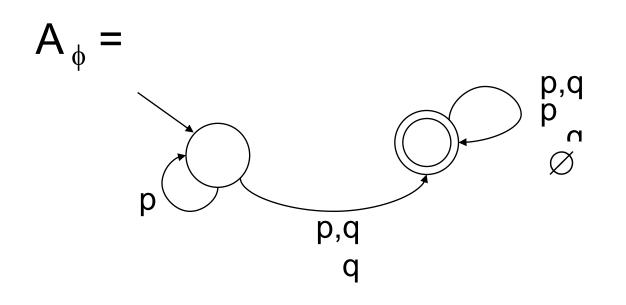
Example (1)

• ϕ = Fp eventually p



6/9/2008

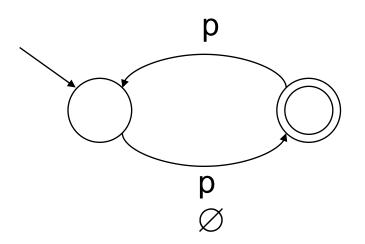
Example (2) • = p U q p until q



6/9/2008

LTL and Buchi automata

Not every Buchi automaton is an LTL formula:

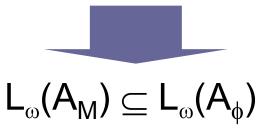


"p holds on every odd step"

6/9/2008

Model checking LTL: the idea

- - \Box A₆ corresponds to all allowable behavior of the system
 - A_M corresponds to all possible behavior of the system (all infinite paths of M that are potentially interesting)
 - To see whether a system satisfies a specification we need to check if every path of A_M is in A_{ϕ}



Model checking LTL

To check set inclusion note that

$$\mathsf{B} \subseteq \mathsf{A} \Leftrightarrow \mathsf{B} \ \cap \ \overline{\mathsf{A}} = \emptyset$$

• Further,
$$L_{\omega}(A_{\varphi}) = L_{\omega}(A_{\neg \varphi})$$
 thus

Every possible path is allowable is equivalent to say that *there is no path that is possible and not allowable*

that is $M, s \models \phi$ if and only if $L_{\omega}(A_M) \cap L_{\omega}(A_{\neg \phi}) = \emptyset$

The method

Problem: M,s $\vDash \phi$?

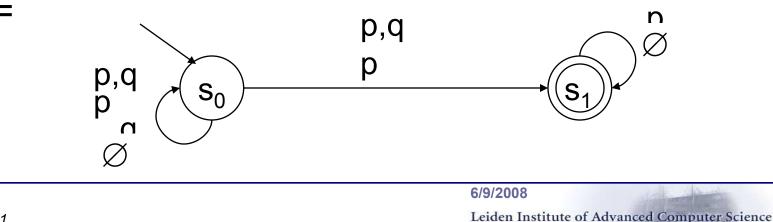
- 1. Construct a Buchi automaton $A_{\neg\phi}$ representing the negation of the desired LTL specification ϕ
- 2. Construct the automaton A_M representing the system behavior
- 3. Construct the automaton $A_M \otimes A_{\neg\phi}$
- 4. Check if $L_{\omega}(A_{M} \otimes A_{\neg \phi}) = \emptyset$
- 5. If yes then $M, s \vDash \phi$

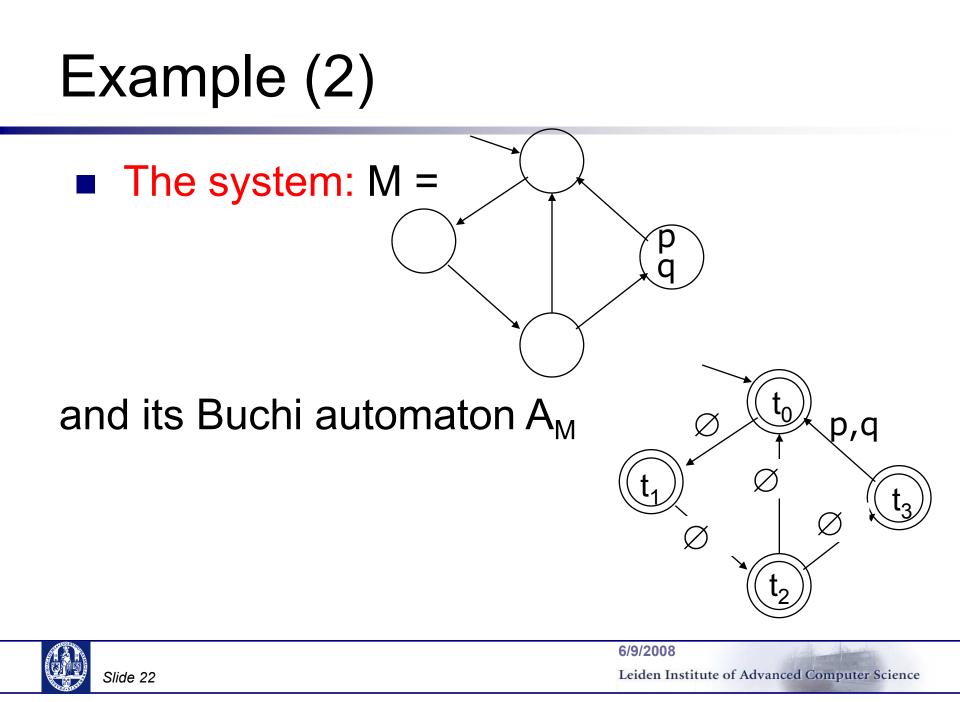
Example (1)

Specification: $\phi = G(p \Rightarrow XFq)$ Any occurence of p must be followed (later) by an

occurrence of q

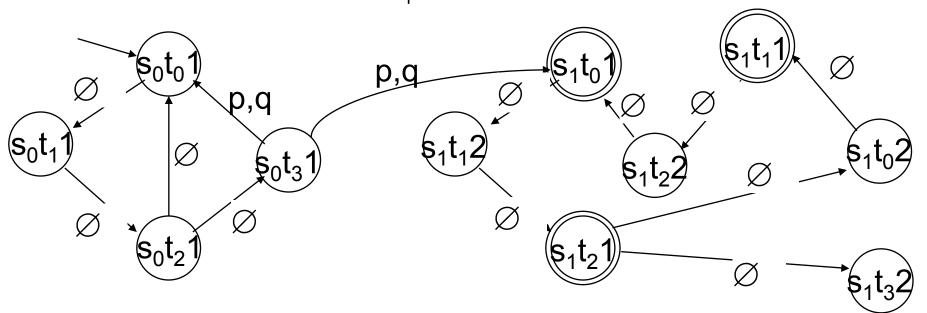
 $\neg \phi = F(p \land XG \neg q)$ there exist an occurrence of p after which q will never be encountered again





Example: (3)

• The product $A_{\neg\phi} \otimes A_M$



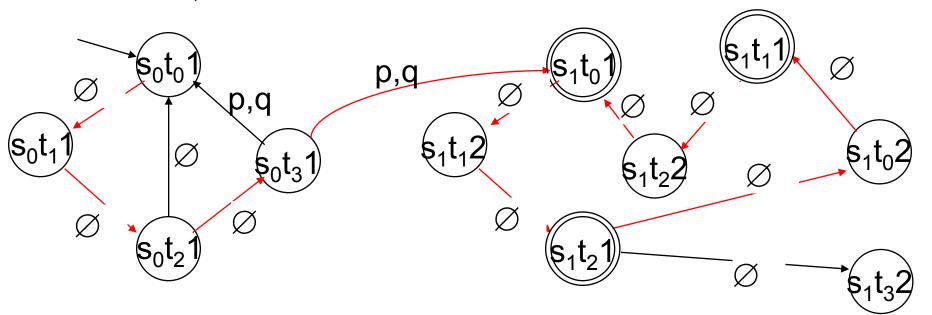
6/9/2008

Leiden Institute of Advanced Computer Science

Slide 23

Example: (4)

• $L(A_{\neg\phi} \otimes A_M) = \emptyset$?



There is a path starting from $<s_0t_01>$ that passes infinitely often through the final states

6/9/2008

Example: (5)

Since $L(A_{\neg\phi} \otimes A_M)$ is not empty

$\mathsf{M},\mathsf{s}\nvDash\mathsf{G}(\mathsf{p}\Rightarrow\mathsf{XFq})$

The counterexample is given by the path $t_0t_1t_2t_3t_0t_1t_2t_0t_1t_2t_0...$

6/9/2008

From LTL to Buchi automata

- General approach:
 - □ Rewrite formula in normal form
 - Translate formula into generalized Buchi automata
 - Turn generalized Buchi automata into ordinary Buchi automata

Normal form

- LTL formulas with the until operator U that may contains also the next operators X
- Every formula φ can be converted into an equivalent formula ψ in normal form expressing an infinite behavior using equivalences such as:
 - 🗆 T = T U T
 - $\Box p = p \land XT$
 - \Box F ϕ = T U ϕ

$$G \phi = \bot R \phi$$

6/9/2008

 $\Box \phi_1 R \phi_2 = \neg (\neg \phi_1 U \neg \phi_2)$

Additional simplifications

Use extra equivalences to reduce size of the formula. For example:

 $\Box \neg \neg \phi = \phi$

$$\Box X\phi_1 \lor X\phi_2 = X(\phi_1 \lor \phi_2)$$

$$\Box X\phi_1 \land X\phi_2 = X(\phi_1 \land \phi_2)$$

$$\Box X\phi_1 U X\phi_2 = X(\phi_1 U\phi_2)$$

Example:

■ G(Fp
$$\Rightarrow$$
 q) = G(¬Fp ∨ q)
= ⊥ R (¬Fp ∨ q)
= ¬ (¬ ⊥ U ¬(¬ (T U p) ∨ q))

■
$$p \land \neg q = (p \land \neg q) \land T$$

= $(p \land \neg q) \land XT$
= $(p \land \neg q) \land XGT$
= $(p \land \neg q) \land XGT$
= $(p \land \neg q) \land X(T \cup T)$

PenC - Spring 2006

Slide 29

6/9/2008

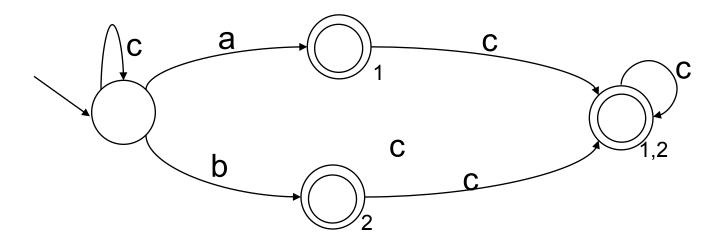
Generalized Buchi Automata

- They differ from (normal) Buchi automata only in the acceptance condition, which is a 'set of acceptance sets', i.e. *F*⊆2^s
- The language of a generalized Buchi automaton
 A = < Σ,S,→, I, F > is

 $L(A) = \cap \{ L(A_F) \mid F \in \mathcal{F} \text{ and } A_F = <\Sigma, S, \rightarrow, I, F> \}$

that is, a path has to visit for each set of final states $F \in \mathcal{F}$ infinitely many times states from *F*.

A generalized Buchi automaton:



Every path of c's with either eventually one a or eventually one b is accepted

PenC - Spring 2006

Slide 31

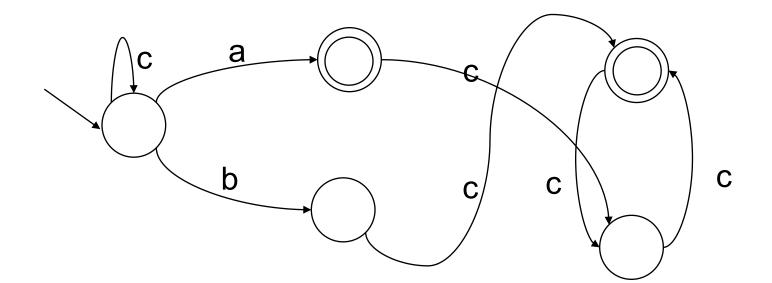
6/9/2008

Generalized Buchi Automata

- A generalised Buchi automaton A = < Σ,S,→, I, F > can be translated back into an ordinary Buchi automata by taking the intersection of the automata A_F = < Σ,S,→, I,F> for each F ∈ F.
- If *F* = Ø then every infinite path is accepted.
 The ordinary Buchi automata of < Σ,S,→, I, Ø> is
 < Σ,S,→, I, S >

Example (cont'd)

The translation of the previous automaton into an ordinary Buchi automaton is



PenC - Spring 2006

Slide 33

6/9/2008

Closure of a formula

- Given an LTL formula φ define its closure Cl(φ) to be the set of subformulas ψ of φ and of their complement.
 - $\Box \ \phi \in \mathsf{Cl}(\phi)$
 - $\Box \ \psi \in Cl(\phi) \text{ implies } \neg \psi \in Cl(\phi)$
 - $\Box \ \psi_1 \lor \psi_2 \in Cl(\phi) \text{ implies } \psi_1, \psi_2 \in Cl(\phi)$
 - $\Box X \psi \in Cl(\phi) \text{ implies } \psi \in Cl(\phi)$
 - $\Box \ \psi_1 U \psi_2 \in Cl(\phi) \text{ implies } \psi_1, \psi_2 \in Cl(\phi)$

Constructing the automata A_{ϕ} :states

- The states Sub(φ) of the automata are the maximal subsets S of Cl(φ) that have no propositional inconsitency
 - 1. For all $\psi \in Cl(\phi)$, $\psi \in S$ iff $\neg \psi \notin S$
 - 2. If $T \in Cl(\phi)$ then $T \in S$
 - 3. $\psi_1 \lor \psi_2 \in S \text{ iff } \psi_1 \in S \text{ or } \psi_2 \in S, \text{ whenever } \psi_1 \lor \psi_2 \in Cl(\phi)$
 - 4. $\neg (\psi_1 \lor \psi_2) \in S \text{ iff } \neg \psi_1 \in S \text{ and } \neg \psi_2 \in S, \text{ whenever } \neg (\psi_1 \lor \psi_2) \in Cl(\phi)$
 - 5. If $\psi_1 U \psi_2 \in S$ then $\psi_1 \in S$ or $\psi_2 \in S$
 - 6. If $\neg(\psi_1 U \psi_2) \in S$ then $\neg \psi_2 \in S$

Intuition: $\psi \in S$ implies that ψ holds in S

□ The initial states are those states containing ϕ

Example

Cl(pUq) = {p,q,¬p,¬q, pUq, ¬(pUq) }

Sub(pUq) = { { p, q,pUq }, {p,¬q,pUq }, {p,¬q,¬(pUq) } {¬p,q, pUq } {¬p,q, pUq }

Slide 36

Constructing the automata: transitions

Define the transition relation by setting s \xrightarrow{a} s' iff

- 1. $X\psi \in s$ implies $\psi \in s'$
- 2. $\neg X\psi \in s \text{ implies } \neg \psi \in s'$
- 3. $\psi_1 U \psi_2 \in s \text{ and } \psi_2 \notin s \text{ implies } \psi_1 U \psi_2 \in s'$
- 4. $\neg(\psi_1 U \psi_2) \in s \text{ and } \psi_1 \in s \text{ implies } \neg(\psi_1 U \psi_2) \in s'$
- 5. a = set of all atomic propositions that hold in s

N.B.: Conditions 3. and 4. are there because

$$\begin{split} \psi_1 U\psi_2 &\equiv \psi_2 \lor (\psi_1 \land X(\psi_1 U\psi_2)) \\ \psi_1 R\psi_2 &\equiv \psi_2 \land (\psi_1 \lor X(\psi_1 R\psi_2)) \end{split}$$

Slide 37

Constructing the automata: acceptance

For each $\chi_i U \psi_i \in Cl(\phi)$ define the set of accepting states F_i by

- $\exists \quad s \in \mathsf{F}_i \text{ iff } \neg(\chi_i U \psi_i) \in s \text{ or } \psi_i \in s$
- The above means that we only accept executions for which infinitely many time $\neg(\chi_i U \psi_i) \lor \psi_i$ holds

Intuition:

For each $\chi_i U \psi_i \in Cl(\phi)$ we have to guarantee that eventually ψ_i holds.

- 1. Suppose we accept an execution for which only finitely many time $\neg(\chi_i U \psi_i) \lor \psi_i$ holds.
- 2. Then we can find a suffix such that $\neg(\chi_i U\psi_i) \lor \psi_i$ will never hold, that is $(\chi_i U\psi_i) \land \neg \psi_i$ will always hold.
- 3. Thus we have an execution for which our goal is not guaranteed

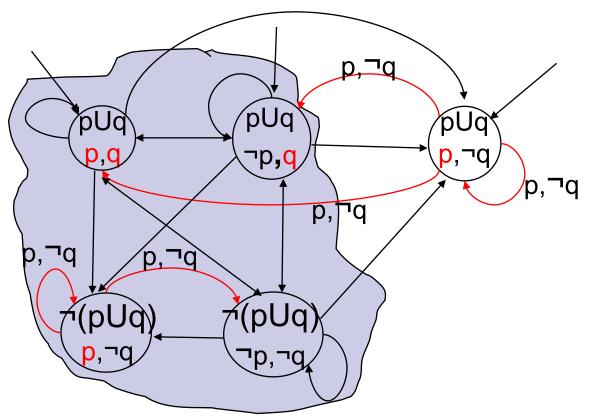
6/9/2008

Complexity

- $A_{\neg\phi}$ has size $O(2^{|\phi|})$ in the worst case
- The product A⊗B has size O(|A|x|B|)
- We can determine if there no acceptable path in A⊗B in O(|A⊗B|) time
- Thus, model checking M,s ⊨ \u03c6 can be done in O(|M|x 2^{|\u03c6|}) time

Example: pUq

Cl(pUq) = { p, ¬p, q, ¬q, pUq, ¬(pUq) }



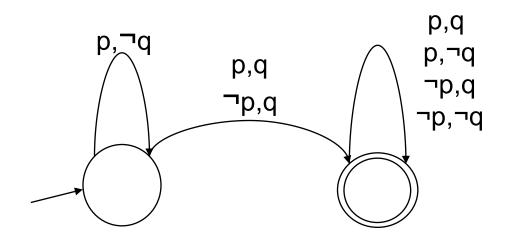
PenC - Spring 2006

Slide 40

6/9/2008

Example: pUq

The previous automata is equivalent to



PenC - Spring 2006

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 41

Example II

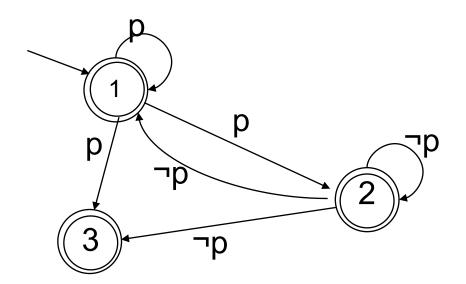
Buchi automaton for atomic proposition p

- $\Box p = p \land X(T \cup T) = \phi$
- $\Box CI(\phi) = \{ p, \neg p, T, \neg T, TUT, \neg (T U T), X(TUT), \neg X(TUT), \phi, \neg \phi \}$
- □ Sub(ϕ) = {1,2,3} with
 - 1 ={p,T,TUT, X(TUT), φ },
 - 2 = {¬p, T,TUT, X(TUT), ¬φ}
 - 3 = {p, T,TUT, ¬X(TUT), ¬φ}}

Slide 42

Example II

Buchi automaton for atomic proposition p

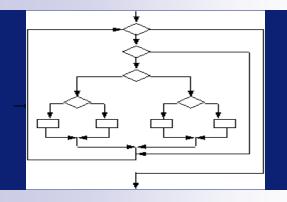


PenC - Spring 2006

Slide 43

6/9/2008

Spring 2008



Program correctness

Program verification and operational semantics

Marcello Bonsangue

System verification

- Model checking verification is
 - \Box model based M,s $\vDash \varphi$
 - fully automatic
 - intended for hardware or software systems with finitely many states
 - control is the main issue
 - no complex data
 - mainly reactive
 - \square reaction-> computation -> reaction -> ...
 - not intended to terminated

System verification

Program verification:

- $\Box \operatorname{Proof} \mathsf{based} \qquad \Gamma \vdash \phi$
 - It is impossible to check infinite states !

Semi-automatic

□ intended for software systems with possibly infinite states

- mainly sequential
- transformational
 - □ input -> computation -> output
 - □ like methods of an object

Program verification

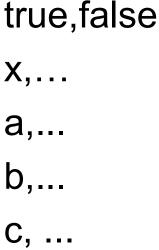
The verification framework:

- 1. Convert an informal specification S in an 'equivalent' formula ϕ of some logic
- 2. Write a program P realizing ϕ (or S)
- 3. Prove that P satisfies the formula ϕ

A simple language

Syntactic sets associated to the language:

- □N positive and negative integers n,...
- $\square B$ truth values
 - □Var program variables
 - □ Aexp arithmetic expressions
 - □ Bexp boolean expressions
 - □Com commands



Arithmetic expressions

•
$$A ::= n | x | (A+A) | (A-A) | (A^*A)$$

where n ∈ N and x ∈ Var
Here * binds more tightly than - and +
Examples:

2 + 3 * 4 - 5	is	(2 + 3) * (4 - 5)
- 3	is	(0 - 3)
5	is	(05)
2 + x + 5	is	(2 + x) + 5

Boolean expressions

■ B ::= true | false | ¬B | B∧B | B∨B | A < A

Examples:

$$\begin{array}{ll} \mathsf{A}_1 = \mathsf{A}_2 & \text{is} & \neg(\mathsf{A}_1 < \mathsf{A}_2) \land \neg(\mathsf{A}_2 < \mathsf{A}_1) \\ \mathsf{A}_1 \neq \mathsf{A}_2 & \text{is} & \neg(\mathsf{A}_1 = \mathsf{A}_2) \end{array}$$

Boolean expression are built on top of arithmetic expressions

- 3+5 < 9
- 4 = 5 is a correct boolean expression !!!
- true < 10 is not a boolean expression</p>

Commands

C ::= skip |
 x := A |
 C;C |
 if B then C else C fi |
 while B do C od

```
Example (Fact1)
y := 1;
z := 0;
while z ≠ 0 do
z := z + 1;
y := y*z
od
```


Slide 8

6/9/2008

The behaviour

We need a formal model to understand correctly the behavior of a program

• State σ : Var \rightarrow N

An arithmetic expression a in a state σ evaluates to an integer n

 $\langle a, \sigma \rangle \rightarrow n$

configuration

6/9/2008

Evaluating arithmetic expressions

$$\Box < n, \sigma > \rightarrow n$$

$$\Box < x, \sigma > \rightarrow \sigma(x)$$

 \Box If n is the sum of n₁ and n₂

$$\begin{array}{c} <\mathbf{a}_1,\,\sigma^{>}\to\mathbf{n}_1<\mathbf{a}_2,\,\sigma^{>}\to\mathbf{n}_2\\ \hline <\mathbf{a}_1+\mathbf{a}_2,\,\sigma^{>}\to\mathbf{n} \end{array}$$

 \square If n is the subtraction of n₂ from n₁

$$\begin{array}{c} <\mathbf{a}_1, \, \sigma > \to \mathbf{n}_1 < \mathbf{a}_2, \, \sigma > \to \mathbf{n}_2 \\ <\mathbf{a}_1 - \mathbf{a}_2, \, \sigma > \to \mathbf{n} \end{array}$$

 \Box If n is the product of n₁ and n₂

$$\begin{array}{c} <\mathbf{a}_1,\,\sigma^{>}\to\mathbf{n}_1\,<\!\mathbf{a}_2,\,\sigma^{>}\to\mathbf{n}_2\\ <\mathbf{a}_1^{*}\mathbf{a}_2,\,\sigma^{>}\to\mathbf{n} \end{array}$$

6/9/2008

An Example Derivation

What is the n such that

$<(3+4)-(x^{*}2), \sigma > \rightarrow n ?$

Slide 11

6/9/2008

Semantics of arithmetic expressions

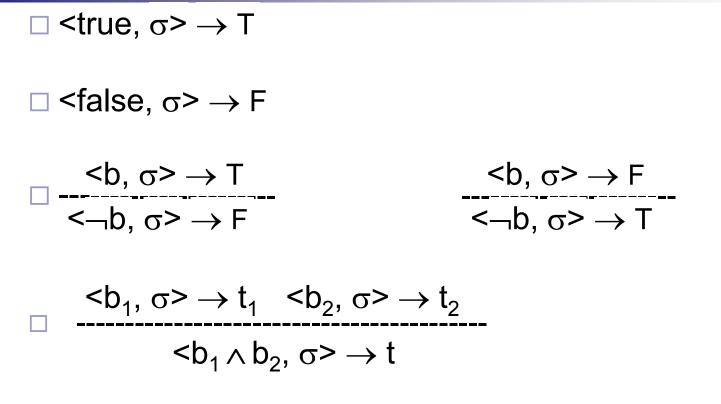
Two arithmetic expressions are equivalent if they evaluate to the same value in all states

```
a<sub>1</sub> ≈ a<sub>2</sub>
iff
```

```
(\forall n \in \mathbb{N}. \forall \sigma. < a_1, \sigma > \rightarrow n \iff < a_2, \sigma > \rightarrow n)
```

- Examples:
 - $\Box <2+3,\sigma > \rightarrow 5 \text{ and } <3+2, \sigma > \rightarrow 5 \text{ thus } (2+3) \approx (3+2)$
 - 2+x is not equivalent to 2+3 because there are states in which x evaluates to an integer different from 3

Evaluating Boolean expressions



where t = T if both t_1 = T and t_2 =T, otherwise t = F

Evaluating boolean expressions

$$\begin{array}{c} <\mathsf{b}_1,\,\sigma\!\!>\!\rightarrow t_1 \quad <\mathsf{b}_2,\,\sigma\!\!>\!\rightarrow t_2 \\ <\mathsf{b}_1 \lor \,\mathsf{b}_2,\,\sigma\!\!>\!\rightarrow t \end{array}$$

where t = T if $t_1 = T$ or $t_2 = T$, and t = F otherwise

□ If n_1 is less than n_2 then $<a_1, \sigma > \rightarrow n_1 \qquad <a_2, \sigma > \rightarrow n_2$ $<a_1 < a_2, \sigma > \rightarrow T$

□ If n_1 is greater than or equal to n_2 then $<a_1, \sigma > \rightarrow n_1 \qquad <a_2, \sigma > \rightarrow n_2$ $<a_1 < a_2, \sigma > \rightarrow F$

Semantics of Boolean expressions

- We could improve the evaluation of Boolean expressions using
 - □ a left-first sequential strategy
 - □ a parallel strategy

The command behaviour

A program may

terminate in a final state or

□ diverge and never yield a final state

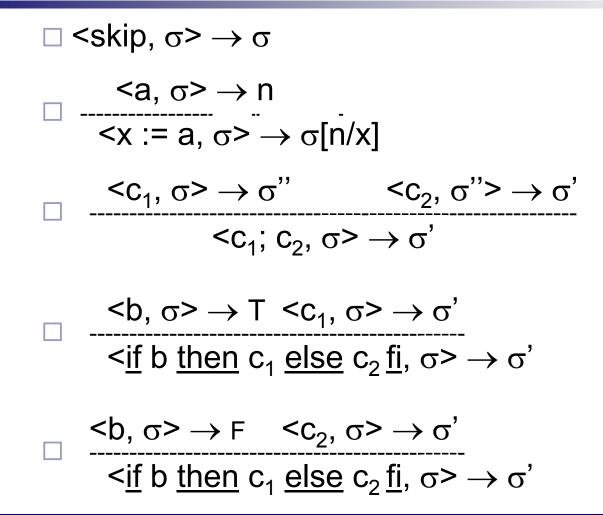
We denote by

<C, σ > $\rightarrow \sigma'$

the execution of a command c in an initial state σ and terminating in a final state σ'

Recall:
$$\sigma[n/x](y) = \begin{cases} n & \text{if } x = y \\ \sigma(y) & \text{if } x \neq y \end{cases}$$

Executing commands I



Example: MAX

• What is the final state σ ' of

\sigma>
$$\rightarrow \sigma$$
'

for
$$\sigma(x) = 2$$
, $\sigma(y) = 1$ and $\sigma(z) = 0$?

PenC - Spring 2006

Slide 18

6/9/2008

Executing commands II

$${}^{<}b, \sigma {}^{>} \rightarrow {}^{F}$$

 ${}^{<}while b do c od, \sigma {}^{>} \rightarrow \sigma$

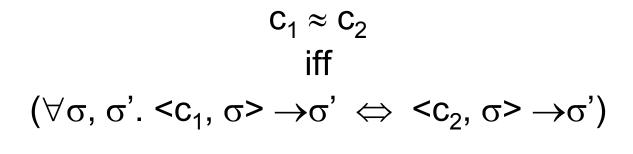
6/9/2008

Leiden Institute of Advanced Computer Science

Slide 19

Semantics of commands

Two commands are equivalent if when executed from the same initial state they terminate in the same final state



Examples

□ x := x ≈ <u>skip</u>

 \Box while b do c of \approx if b then c; while b do c od

fi

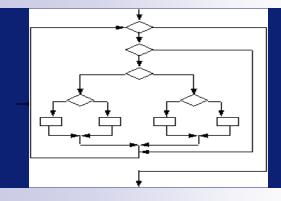
else skip

Execution of Commands

- The order of evaluation is important and explicit.
 - \Box c₁ is evaluated before c₂ in c₁; c₂
 - \Box c₂ is not evaluated in <u>if</u> true <u>then</u> c₁ <u>else</u> c₂ <u>fi</u>
 - \Box b is evaluated first in <u>if</u> b <u>then</u> c₁ <u>else</u> c₂ <u>fi</u>
 - c is not evaluated in "<u>while</u> false <u>do</u> c <u>od</u>
- The execution rules suggest an interpreter but abstract from a concrete one
- Execution is deterministic: only one rule can be applied at time.

6/9/2008

Spring 2008



Program correctness

Axiomatic semantics

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Axiomatic Semantics

- We have introduced
 - □ a syntax for sequential programs
 - An operational semantics (transition system) for "running" those programs from a starting state. A computation may terminate in a state or run forever.

We would also like to have a semantics for reasoning about program correctness

6/9/2008

Axiomatic semantics

We need

- A logical language for making assertions about programs
 - The program terminates
 - If x = 0 then y = z+1 throughout the rest of the execution of the program
 - If the program terminates, then x = y + z

□ A proof system for establishing those assertions

Why axiomatic semantics

- Documentation of programs and interfaces (Meyer's Design by Contract)
- Guidance in language design and coding
- Proving the correctness of algorithms
- Extended static checking
 - checking array bounds
- Proof-carrying code
- Why not testing?

Dijkstra: Program testing can be used to show the presence of bugs, but never to show their absence!

The idea

"Compute a number y whose square is less than the input x"

We have to write a program P such that

y*y < x

But what if x = -4? There is no program computing y!!

6/9/2008

The idea (continued)

"If the input x is a positive number then compute a number y whose square is less than the input x"

We need to talk about the states before and after the execution of the program P

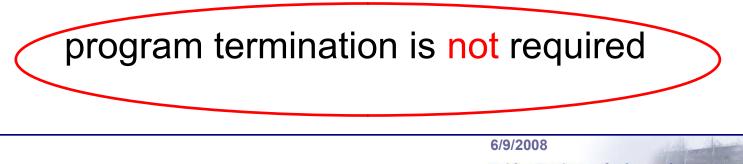
{ x>0 } P { y*y < x }

Slide 6

6/9/2008

The idea (continued)

If the command c terminates when it is executed in a state that satisfies ϕ , then the resulting state will satisfy ψ



Leiden Institute of Advanced Computer Science

command

Examples

Image: true and true do skip od { false } is valid

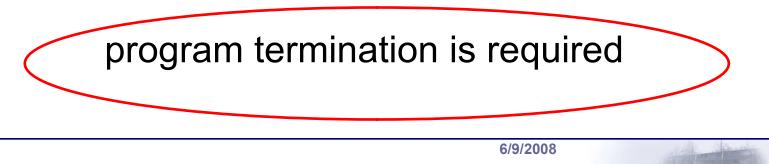
Is
$$\models_{par} \{ x \ge 0 \}$$
 Fact $\{ y = x! \}$ valid?

Total correctness

Hoare triple for total correctness

precondition $\models_{tot} \{\phi\} \in \{\psi\}$ command

If the command c is executed in a state that satisfies ϕ then c is guaranteed to terminate and the resulting state will satisfy ψ



Example

■
$$\models_{tot} \{ y \le x \} z := x; z := z + 1 \{ y < z \}$$
is valid

 \models_{tot} { true } while true do skip od { false } is not valid
 \models_{tot} { false } while true do skip od { true } is valid

Is
$$\models_{tot} \{ x \ge 0 \}$$
 Fact $\{ y = x! \}$ valid?

Partial and total correctness: meaning

• Hoare triple for partial correctness $\vDash_{par} \{\phi\} \subset \{\psi\}$ If ϕ holds in a state σ and $\langle c, \sigma \rangle \rightarrow \sigma'$ then ψ holds in σ'

- Hoare triple for total correctness $\vDash_{tot} \{\phi\} \in \{\psi\}$ If ϕ holds in a state σ then there exists a σ ' such that $\langle c, \sigma \rangle \rightarrow \sigma$ ' and ψ holds in σ '
- To be more precise, we need to:
 Formalize the language of assertions for φ and ψ
 Say when an assertion holds in a state.
 Give rules for deriving Hoare triples

The assertion language

Extended arithmetic expressions

Assertions (or extended Boolean expressions)

n

Program variables

- We need program variables Var in our assertion language
 - □ To express properties of a state of a program as basic assertion such as

that can be used in more complex formulas such as

$$x = n \Rightarrow y+1 = x^*(y-x)$$
 i.e. "If the

.e. "If the value of x is n then that of y + 1 is x times y - x"

Logical variables

We need a set of logical variables LVar

- □ To express mathematical properties such as ∃i. n = i * m i.e. "an integer n is multiple of another m"
- To remember the value of a program variable destroyed by a computation

$$Fact2 \equiv y := 1;$$

$$\underbrace{while \ x \neq 0 \ do}_{y := y^*x;}$$

$$x := x - 1$$

$$\underbrace{od}_{par}\{x \ge 0\} Fact2\{y = x!\} \text{ is not valid but}$$

$$\vDash_{par}\{x = x_0 \land x \ge 0\} Fact2\{y = x_0!\} \text{ is.}$$

Meaning of assertions

Next we assign meaning to assertions

- □ **Problem**: " ϕ holds in a state σ " may depends on the value of the logical variables in ϕ
- □ Solution: use interpretations of logical variables

Examples

- z < x holds in a state σ :Var \rightarrow N with $\sigma(x) = 3$ for all interpretations I:LVar \rightarrow N of the logical variables such that I(i) < 3
- i < i+1 holds in a state for all interpretations

Meaning of expressions

- Given a state σ:Var → N and an interpretation I:LVar→N we define the meaning of an expression e as [[e]]I_σ, inductively given by
 - □ [[n]]Iσ = n
 - $\Box [[X]] I \sigma = \sigma(X)$
 - □ [[i]]Iσ = I(i)
 - $\Box [[a_1 + a_2]] | \sigma = [[a_1]] | \sigma + [[a_2]] | \sigma$
 - □ [[a₁-a₂]]Ισ
- = [[a₁]]Ισ [[a₂]]Ισ
- □ [[a₁*a₂]]Ισ = [[a₁]]Ισ *[[a₂]]Ισ

Meaning of assertions

■ Given a state σ : Var \rightarrow N and an interpretation I:LVar \rightarrow N we define σ ,I $\models \phi$ inductively by

$$\begin{array}{l} \Box \sigma, \mathbf{I} \vDash \mathsf{true} \\ \Box \sigma, \mathbf{I} \vDash \neg \phi & \text{iff not } \sigma, \mathbf{I} \vDash \phi \\ \Box \sigma, \mathbf{I} \vDash \phi \land \psi & \text{iff } \sigma, \mathbf{I} \vDash \phi \text{ and } \sigma, \mathbf{I} \vDash \psi \\ \Box \sigma, \mathbf{I} \vDash a_1 < a_2 & \text{iff } [[a_1]] \mathsf{I} \sigma < [[a_2]] \mathsf{I} \sigma \\ \Box \sigma, \mathbf{I} \vDash \forall \mathbf{i}.\phi & \text{iff } \sigma, \mathsf{I}[\mathsf{n}/\mathsf{i}] \vDash \phi \text{ for all } \mathsf{n} \in \mathsf{N} \end{array}$$

Leiden Institute of Advanced Computer Science

6/9/2008

Partial and total correctness

Partial correctness: $I \vDash_{par} \{\phi\} \subset \{\psi\}$

$$\forall \sigma \ (\sigma, I \vDash \phi \text{ and } < c, \sigma > \rightarrow \sigma') \Rightarrow \sigma', I \vDash \psi$$

Total correctness: $I \vDash_{tot} \{\phi\} \subset \{\psi\}$

 $\forall \sigma. \sigma, I \vDash \phi \Rightarrow \exists \sigma'. (<c, \sigma > \rightarrow \sigma' \text{ and } \sigma', I \vDash \psi)$

where ϕ and ψ are assertions and c is a command

Leiden Institute of Advanced Computer Science

6/9/2008

Validity

To give an absolute meaning to {i < x} x := x+3 {i < x} we have to quantify over all interpretations I

Partial correctness:

$$\vDash_{\mathsf{par}} \{\phi\} \mathsf{C} \{\psi\} \quad \equiv \quad \forall \mathsf{I}. \mathsf{I} \vDash_{\mathsf{par}} \{\phi\} \mathsf{C} \{\psi\}$$

Total correctness:

$$\vDash_{\text{tot}} \{\phi\} C \{\psi\} \equiv \forall I. I \vDash_{\text{tot}} \{\phi\} C \{\psi\}$$

Deriving assertions

We have the meaning of both

 $\vDash_{\mathsf{par}} \{ \phi \} c \{ \psi \} \quad \text{and} \quad \vDash_{\mathsf{tot}} \{ \phi \} c \{ \psi \}$

but it depends on the operational semantics and it cannot be effectively used

- Thus we want to define a proof system to derive symbolically valid assertions from valid assertions.
 - $\Box \vdash_{par} \{\phi\}c\{\psi\} \text{ means that the Hoare triple } \{\phi\}c\{\psi\} \text{ can be derived by some axioms and rules}$

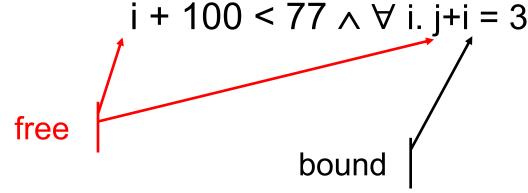
 \Box Similarly for $\vdash_{tot} \{\phi\}c\{\psi\}$

Free and bound variables

A logical variable is bound in an assertion if it occurs in the scope of a quantifier

∃i. n = i * m

A logical variable is free if it is not bound



6/9/2008

Substitution (I)

- For an assertion φ, logical variable i and arithmetic expression e we define φ[e/i]
 - as the assertion resulting by substituting in ϕ the free occurrence of i by e.
- Definition for extended arithmetic expressions

 $\begin{array}{ll} n[e/i] = n & (a_1 + a_2)[e/i] = (a_1[e/i] + a_2[e/i]) \\ x[e/i] = x & (a_1 - a_2)[e/i] = (a_1[e/i] - a_2[e/i]) \\ i[e/i] = e & (a_1^* a_2)[e/i] = (a_1[e/i]^* a_2[e/i]) \\ i[e/i] = i \end{array}$

Substitution (II)

Definition for assertions

true[e/i] $(\neg \phi)[e/i]$ $(\phi_1 \land \phi_2)[e/i] = (\phi_1[e/i] \land \phi_2[e/i])$ $(a_1 < a_2)[e/i]$ (∀i.¢)[e/i] (∀i.¢)[e/i]

- = true
- = ¬**(**φ[e/i])
- $= (a_1[e/i] < a_2[e/i])$
- = ∀i.¢
- $= \forall j. \phi[e/i] \quad j \neq i$

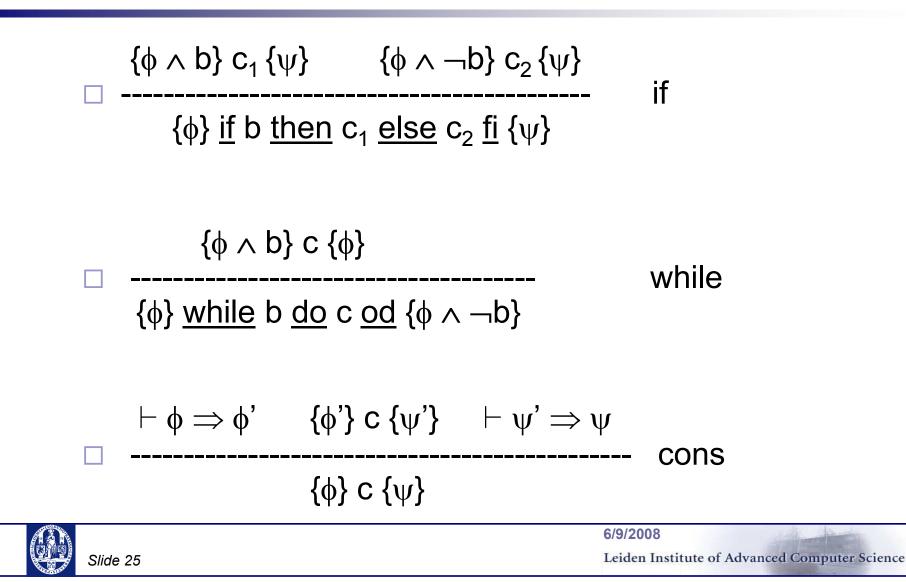
• Pictorially, if $\phi = ---i$ with i free, then **∮**[e/i] = ---e--e-

Proof rules partial correctness (I)

- There is one derivation rule for each command in the language.
 - $\Box \{\phi\} \text{ skip } \{\phi\}$ skip

$$\Box \{\phi[a/x]\} := a \{\phi\}$$
ass

Proof rules partial correctness (II)



A first example: assignment

Let's prove that

6/9/2008

Leiden Institute of Advanced Computer Schence

Slide 26

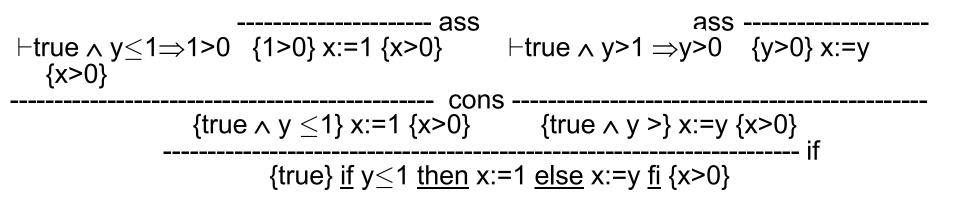
Another example: assignment

- Prove that {true} x:= e {x=e} when x does not appear in e
 - 1. Because x does ot appear in e we have $(x=e)[e/x] \equiv (x[e/x]=e[e/x]) \equiv (e=e)$
 - 2. Use assignment + consequence to obtain the proof

6/9/2008

Another example: conditional

■ Prove \vdash_{par} {true} if y≤1 then x:=1 else x:=y fi {x>0}

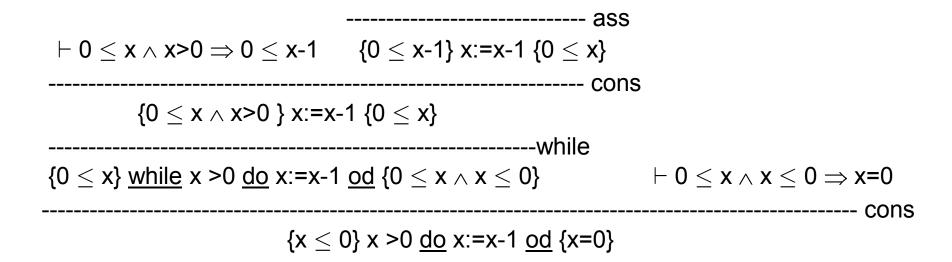


6/9/2008

An example: while

Prove
$$\vdash_{par} \{0 \le x\} \text{ while } x > 0 \text{ do } x := x-1 \text{ od } \{x=0\}$$

We take as invariant $0 \le x$ in the while-rule



An example: while, again

Prove that $\{x \le 0\}$ while $x \le 5$ do x:=x+1 od $\{x=6\}$

1. We start with the invariant $x \le 6$ in the while-rule

 $\begin{array}{l} ------ass\\ +x\leq 6\wedge x\leq 5\Rightarrow x+1\leq 6 \qquad \{x+1\leq 6\}x{:=}x+1\;\{x\leq 6\}\\ \hline x\leq 6\wedge x\leq 5\}\;x{:=}x+1\;\{x\leq 6\}\\ \hline x\leq 6\}\;while\;x\leq 5\;do\;x{:=}x+1\;da\;\{x\leq 6\wedge x>5\}\end{array}$

2. We finish with the consequence rule

 $\begin{array}{l} \vdash x \leq 0 \Rightarrow x \leq 6 \quad \{x \leq 6\} \text{ while } x \leq 5 \text{ do } x := x+1 \text{ od } \{x \leq 6 \land x > 5\} \quad \vdash x \leq 6 \land x > 5 \Rightarrow x=6 \\ \hline x \leq 0\} \text{ while } x \leq 5 \text{ do } x := x+1 \text{ od } \{x=6\} \end{array}$

Auxiliary rules

They can be derived from the previous ones

 $\Box \{\phi\} \in \{\phi\}$ if the program variables in ϕ do not appear in c

$$\Box \{\phi\} \mathbf{x} := \mathbf{a} \{\exists \mathbf{x}_0 (\phi[\mathbf{x}_0 / \mathbf{x}] \land \mathbf{x} = \mathbf{a}[\mathbf{x}_0 / \mathbf{x}])\}$$

$$\begin{array}{c} \{\phi_1\} c_1 \{\psi\} & \{\phi_2\} c_2 \{\psi\} \\ \hline \{(b \Rightarrow \phi_1) \land (\neg b \Rightarrow \phi_2)\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \text{ fi } \{\psi\} \\ \hline \{\phi_1\} c \{\psi\} & \{\phi_2\} c \{\psi\} \\ \hline \{\phi_1 \lor \phi_2\} c \{\psi\} \\ \hline \{\phi_1 \lor \phi_2\} c \{\psi\} \\ \hline \{\phi_1 \land \phi_2\} c \{\psi_1\} & \{\phi_2\} c \{\psi_2\} \\ \hline \{\phi_1 \land \phi_2\} c \{\psi_1 \land \psi_2\} \end{array}$$

Comments on Hoare logic

The rules are syntax directed

□ Three problems:

- When to apply the consequence rule
- How to prove the implication in the consequence rule
- What invariant to use in the while rule
- The last is the real hard one

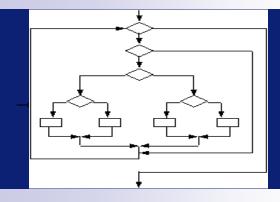
□ Should it be given by the programmer?

An extensive example: a program

 $DIV \stackrel{\circ}{=} q := 0;$ r := x; while r \ge y do r := r-y; q := q+1 od

We wish to prove $\{x \ge 0 \land y \ge 0\}$ DIV $\{q^*y+r=x \land 0 \le r \le y\}$

Spring 2006



Program correctness

Weakest preconditions

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Axiomatic semantics

- We have a language for asserting properties of programs (syntax).
- We know when an assertion is true (validity).
- We have a symbolic way for deriving assertions (proof system).
- What is the relation between validity and provability?

Hoare Logic soundness and completeness

Soundness (what can be proved is valid):

 $\vdash_{\mathsf{par}} \{\phi\} c \{\psi\} \quad \text{ implies } \vDash_{\mathsf{par}} \{\phi\} c \{\psi\}$

Completeness (what is valid can be proved):

 $\vDash_{\mathsf{par}} \{\phi\} c \{\psi\} \quad \text{ implies } \vdash_{\mathsf{par}} \{\phi\} c \{\psi\}$

Soundness

Theorem: The proof system for partial correctness is sound

equivalently, if $\vdash_{par} \{\phi\} \in \{\psi\}$ then

 $\forall \sigma, \mathsf{I} \ (\sigma, \mathsf{I} \vDash_{\mathsf{par}} \phi \text{ and } < c, \sigma > \rightarrow \sigma') \Rightarrow \sigma', \mathsf{I} \vDash_{\mathsf{par}} \psi$

Proof by induction on the length of the derivation of the Hoare triples, reasoning about each axiom and rule separately. (why?)

Soundness of skip

Case: last rule used in the derivation is $\{\phi\} \underline{skip} \{\phi\}.$

We have to prove

 $\forall \sigma, \mathsf{I} (\sigma, \mathsf{I} \vDash_{\mathsf{par}} \phi \text{ and } \leq \underline{\mathsf{skip}}, \sigma > \rightarrow \sigma') \Rightarrow \sigma', \mathsf{I} \vDash_{\mathsf{par}} \phi$

Which follows because $\sigma' = \sigma$.

6/9/2008

Soundness of assignment

Case last rule in the derivation is $\{\phi[a/x]\} x := a \{\phi\}$

Take σ and I such that σ ,I $\vDash \phi$ [a/x]. Then

$$< x := a, \sigma > \rightarrow \sigma[a/x]$$

We need to prove $\sigma[a/x], I \models \phi$, which follows from the substitution lemma

LEMMA: σ , **I** $\vDash \phi$ [a/x] implies σ [a/x], **I** $\vDash \phi$

Proof: by induction on the structure of $\boldsymbol{\varphi}$

Slide 6

Soundness of consequence rule

• Case last rule in the derivation is $\begin{array}{c}
\vdash \phi \Rightarrow \phi' \quad \{\phi'\} c \{\psi'\} \\
\hline \{\phi\} c \{\psi\}
\end{array}$

- From soundness of first order logic we have σ,I ⊨ φ ⇒ φ'. Hence σ,I ⊨ φ'.
- From induction hypothesis we get σ ',I $\vDash \psi$ '.
- From soundness of first order logic we finally obtain $\sigma', I \vDash \psi' \Rightarrow \psi$.

Therefore $\sigma', I \vDash \psi$ PenC - Spring 2006

6/9/2008

Soundness of while

Case last rule in the derivation is

{∲ ∧ b} c {∳}

 $\{\phi\}$ while b do c od $\{\phi \land \neg b\}$

• Assume σ ,I $\vDash \phi$. We proceed by induction on the derivation of <<u>while</u> b <u>do</u> c <u>od</u>, σ > $\rightarrow \sigma$ '

 \Box There are two cases (we treat only one):

 $\begin{array}{ll} \mathsf{<b}, \sigma\mathsf{>} \to \mathsf{T} & \mathsf{<c}, \sigma\mathsf{>} \to \sigma' & \mathsf{<\underline{while}} \ \mathsf{b} \ \underline{\mathsf{do}} \ \mathsf{c} \ \underline{\mathsf{od}}, \sigma'\mathsf{>} \to \sigma'' \\ & \mathsf{<\underline{while}} \ \mathsf{b} \ \underline{\mathsf{do}} \ \mathsf{c} \ \underline{\mathsf{od}}, \sigma\mathsf{>} \to \sigma'' \end{array}$

□ We need to prove σ ", I $\models \phi \land \neg b$

Soundness of while (II)

- By definition of derivation of <b, σ > \rightarrow T we obtain σ ,I \models b Hence σ ,I $\models \phi \land b$
- By induction hypothesis on derivation of $\{\phi \land b\} c \{\phi\}$ we have $\sigma', I \vDash \phi$
- By induction hyp. on derivation of <<u>while</u> b <u>do</u> c <u>od</u>, σ '> → σ '' we finally obtain

Slide 9

Hoare Logic

We have seen that if we can derive an assertion in the Hoare logic then this assertion is true (soundness).

Next we concentrate on the opposite direction (completeness).

Slide 10

6/9/2008

Completeness of Hoare Logic

- Can we prove that if an assertion is true then it is derivable?
- More formally, can we prove

 $\vDash_{\text{par}}\{\phi\} c \{\psi\} \text{ implies} \vdash_{\text{par}}\{\phi\} c \{\psi\}?$

- The answer is yes, but only if the underlying logic is complete ($\vDash \phi$ implies $\vdash \phi$) and expressive enough
 - □ This is called relative completeness.

Idea for proving completeness

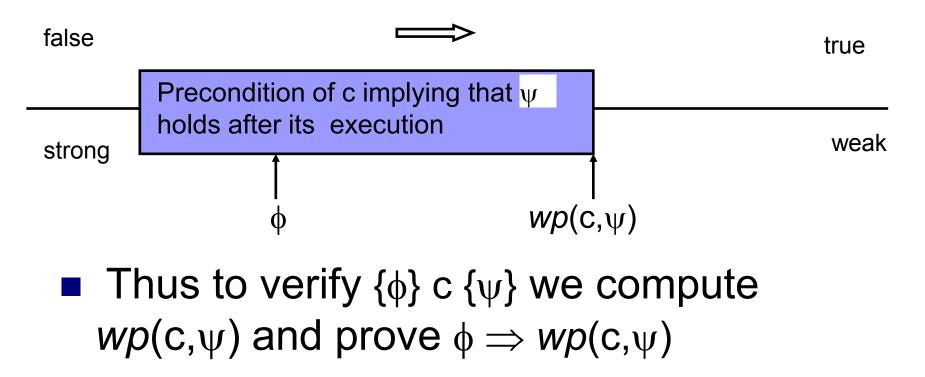
To prove $\vDash_{tot}\{\phi\} \in \{\psi\}$ implies $\vdash_{tot}\{\phi\} \in \{\psi\}$

- 1. Assume we can compute $wp(c,\psi)$ such that $\square wp(c,\psi)$ is a precondition of ψ , i.e. $\vdash_{tot} \{wp(c,\psi)\} c \{\psi\}$
 - $\Box \quad wp(c,\psi) \text{ is the weakest precondition of } \psi, \text{ i.e.} \\ \vDash_{tot} \{\phi\} c \{\psi\} \text{ implies } \vDash \phi \Rightarrow wp(c,\psi)$
- 2. By completeness of the underlying logic and the consequence rule we obtain

$$\begin{array}{c} \vdash \phi \Rightarrow \textit{wp}(c,\psi) & \vdash_{tot} \{\textit{wp}(c,\psi)\} c \{\psi\} \\ & \vdash_{tot} \{\phi\} c \{\psi\} \end{array} \end{array}$$

Weakest precondition (Dijkstra)

Assertions can be ordered



Slide 13

The definition of the weakest precondition follows the rules of the Hoare logic

{φ} skip {φ}

wp(skip, ϕ) = ϕ

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 14

ASSIGNMENT

{φ[a/x]} x := a {φ}

 $wp(x:=a,\phi) = \phi[a/x]$

SEQUENTIAL COMPOSITION

$$\frac{\{\phi\}\; c_1\; \{\psi\} \quad \{\psi\}\; c_2\; \{\phi\}}{\{\phi\}\; c_1;\; c_2\; \{\phi\}}$$

 $wp(c_1; c_2, \phi) = wp(c_1, wp(c_2, \phi))$ 6/9/2008

CONDITIONAL

$$\begin{split} & \{\varphi_1\} \ c_1 \left\{\psi\right\} & \{\varphi_2\} \ c_2 \left\{\psi\right\} \\ & \{b \Rightarrow \varphi_1 \land \neg b \Rightarrow \varphi_2\} \ \underline{if} \ b \ \underline{then} \ c_1 \ \underline{else} \ c_2 \ \underline{fi} \left\{\psi\right\} \end{split}$$

 $wp(if b then c_1 else c_2 fi, \psi) = b \Rightarrow wp(c_1, \psi) \land \neg b \Rightarrow wp(c_2, \psi)$

6/9/2008

LOOP

- 1. We already know that while b do c od = if b then (c; while b do c od) else skip fi
- 2. Let w = while b do c od and $W = wp(w, \psi)$. We have

$$\mathsf{W} = \mathsf{b} \Rightarrow wp(\mathsf{c},\mathsf{W}) \land \neg \mathsf{b} \Rightarrow \psi$$

3. This is a recursive equation

- We know how to solve it
- We need a complete partial order (cpo) of assertions

A CPO of assertions

Refinement order:

$$\phi \leq \psi \text{ iff } \models \psi \Rightarrow \phi$$

True is the bottom: it does not says much about a state.

• It forms a complete partial order: the least upper bound of every chain $\phi_1 \leq \phi_2 \leq \ldots \leq \phi_n \leq$ is the infinite conjunction /\ ϕ_i

where $\sigma, I \vDash \land \phi_i$ iff $\sigma, I \vDash \phi_i$ for all i

Weakest precondition (LOOP)

• Let
$$F(X) = b \Rightarrow wp(c, X) \land \neg b \Rightarrow \psi$$
.

Then F is monotone and continuous. Thus it has a least fixed point (the weakest fixed point) and

$$wp(while \ b \ do \ c \ od, \psi) = \wedge F^{i}(true)$$

We need an assertion language expressive enough to be able to write /\ Fⁱ(true).

6/9/2008

Weakest precondition (LOOP)

- Define a family of preconditions wp(while b do c od, ψ)_k as follows:
 - $$\begin{split} & wp(\underline{while} \ b \ \underline{do} \ c \ \underline{od}, \ \psi)_0 &= \neg b \Rightarrow \psi \\ & wp(\underline{while} \ b \ \underline{do} \ c \ \underline{od}, \ \psi)_{n+1} = \\ & b \Rightarrow wp(c, \ wp(\underline{while} \ b \ \underline{do} \ c \ \underline{od}, \ \psi)_n) \land \neg b \Rightarrow \psi \end{split}$$
 - Then $wp(while \ b \ do \ c \ od, \ \psi) = \land wp(while \ b \ do \ c \ od, \ \psi)_k$
- Here $wp(while \ b \ do \ c \ od, \ \psi)_k$ is the weakest precondition on which the loop if terminated in k or less iterations terminates in ψ .

Weakest precondition: properties

- For each command c in our language we have
 wp(c,true) = true
 - $\Box \text{ if } \psi \Rightarrow \psi' \text{ then } \textit{wp}(c, \psi) \Rightarrow \textit{wp}(c, \psi')$
 - $\Box wp(c, \psi \land \psi') = wp(c, \psi) \land wp(c, \psi')$
 - $\Box wp(c, \psi \lor \psi') = wp(c, \psi) \lor wp(c, \psi')$

 wp(c,false) characterizes all states in which c does not terminate

Spring 2008

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

Proof outlines

- Formal proofs are long and tedious to follow.
- It is better to organize the proof in small local isolated steps
- We can use the structure of the program to structure our proof!

6/9/2008

The idea

For the program P = c₁; c₂; c₃; ... c_n we want to show

$\vdash_{\mathsf{par}} \{ \varphi_0 \} \mathsf{P} \left\{ \varphi_n \right\}$

We can split the problem into smaller ones if we find formulas \u03c6_i's such that

$$-_{\mathsf{par}} \{ \phi_i \} C_i \{ \phi_{i+1} \}$$

6/9/2008

The idea (cont.d)

• Thus we have to find a calculus for presenting a proof $\vdash_{par}\{\phi_0\} P \{\phi_n\}$ by interleaving formulas with code

 $\begin{cases} \varphi_0 \\ c_1; \\ \{\varphi_1\} & \text{justification (i.e. skip, ass, if, while, implied)} \\ c_2; \\ \{\varphi_2\} & \text{justification} \\ c_3; \\ \vdots \\ \{\varphi_{n-1}\} & \text{justification} \\ c_n \\ \{\varphi_n\} \end{cases}$

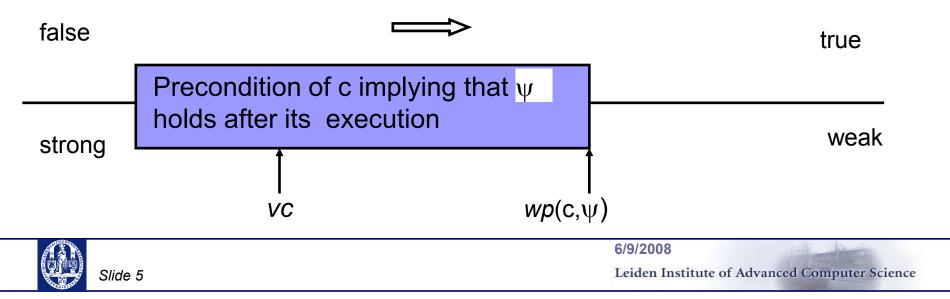
Composition is implicit !

6/9/2008

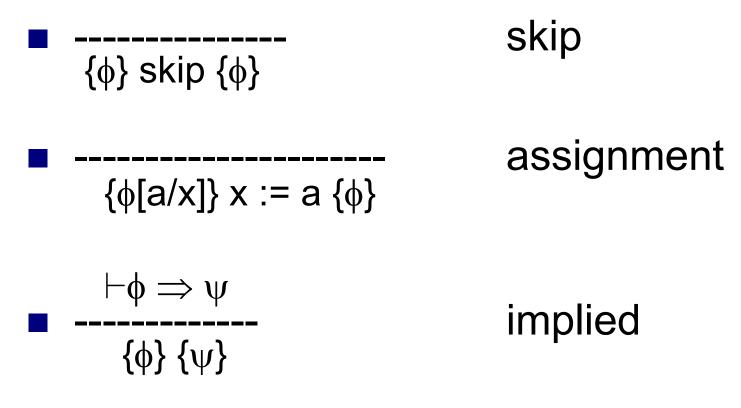
Verification condition

<u>Problem</u>: How can we find the ϕ_i 's ?

<u>Solution</u>: Use Hoare rules and calculate verification conditions, i.e. conditions needed to establish the validity of certain assertions.



Skip, assignment, implied



Slide 6

6/9/2008

To prove
$$\vdash_{par} \{y = 5 \} x := y + 1 \{x = 6 \}$$

$$\{y = 5\}$$

 $\{y+1 = 6\}$ implied
 $x := y + 1$
 $\{x = 6\}$ assignment

we only need to prove the verification condition $y = 5 \Rightarrow y+1 = 6$

6/9/2008

Composition, conditional

 $\{\phi\} C_1 \{\psi\} \qquad \{\psi\} C_2 \{\phi\}$ $\{\phi\} C_1; \{\psi\} C_2 \{\phi\}$

 $\{\phi_1\} C_1 \{\psi\} \qquad \{\phi_2\} C_2 \{\psi\}$ $\{b \Rightarrow \phi_1 \land \neg b \Rightarrow \phi_2\}$ if $b \underline{then} \{\phi_1\} c_1 \{\psi\} \underline{else} \{\phi_2\} c_2 \{\psi\}$ fi $\{\psi\}$

6/9/2008

seq

Leiden Institute of Advanced Computer Science

if

■ To prove ⊢ _{par} {true	} z:=x; z:=z+y; u:=z {u = x+y}
{true}	
{ x+y = x+y }	implied
z:=x;	
$\{ z+y = x+y \}$	assignment
z := z + y;	
$\{ z = x + y \}$	assignment
U:=Z ∫ u = x+v }	assianment
{ u = x+y }	assignment

we only need to prove the verification condition true $\Rightarrow x+y = x+y$

Suppose we want to prove

6/9/2008

Leiden Institute of Advanced Computer Science

{ true }
{ true }
{ x+1=1
$$\Rightarrow$$
 1=x+1 \land x+1 \neq 1 \Rightarrow x+1=x+1} implied
a := x+1;
{ a=1 \Rightarrow 1=x+1 \land a \neq 1 \Rightarrow a=x+1} assignment
if a = 1
then {1 = x+1}
y := 1
{ y = x+1} assignment
else
{ a = x+1}
y := a
{ y = x+1 } assignment
if -then-else

Side 11 Extraction of Advanced Computer Science

While statement

{I ^ b} c {I} ----- while {I} <u>while</u> b <u>do</u> {I^b} c {I} <u>od</u> {I^b}

We must discover an invariant I
 I need not hold during the execution of c
 if I holds before c is executed then it holds if and when c terminates.

Slide 12

6/9/2008

Invariant

For any <u>while</u> b <u>do</u> c <u>od</u> these are invariants
 true

false

□ ¬b

because $\{I \land b\} c \{I\}$ is valid. However they are useless to prove

 $\varphi \Rightarrow I \quad \text{ or } \quad I \land \neg b \Rightarrow \psi$

when considering the while in a context.

To find a useful invariant it may help to look at the execution of the while and at the relationships among the variables manipulated by the while-body

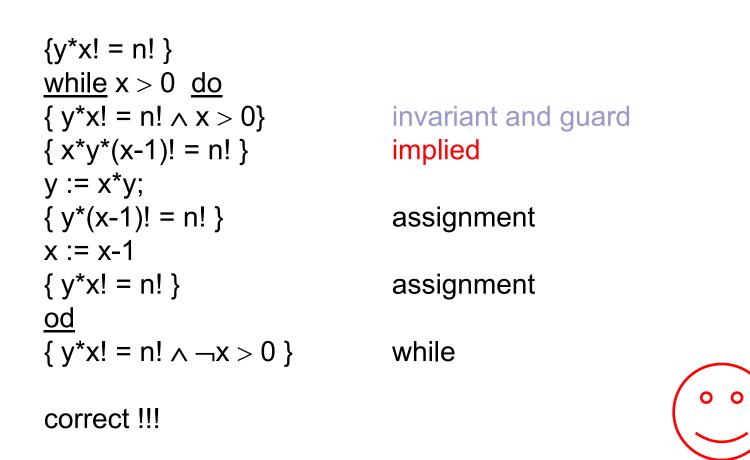
Let W = <u>while</u> x > 0 <u>do</u> y := x*y; x := x-1 <u>od</u>
 To prove {x = n ∧ n ≥ 0 ∧ y=1 } W { y = n! }

iteration	Х	У	x > 0 ?
			_
0	6	1	true
1	5	6	true
2	4	30	true
3	3	120	true
4	2	360	true
5	1	720	true
6	0	720	false

6/9/2008

Example I

Invariant Hypothesis y*x! = n!



Slide 15

Leiden Institute of Advanced Computer Science

6/9/2008

Example II

Since y*x! = n! is an invariant we have

$$\begin{array}{ll} \{x = n \land n \ge 0 \land y = 1 \} & \text{implied} \\ \{y^* x! = n! \} & \text{implied} \\ W & \\ \{y^* x! = n! \land \neg x > 0 \} & \text{while} \\ \{y^* x! = n! \land x \le 0 \} & \text{implied} \\ \{y = n! \} & \text{implied}?? \end{array}$$

The invariant is too weak!

6/9/2008

Leiden Institute of Advanced Computer Science

0

0

Example III

Another invariant hypothesis $y^*x! = n! \land x \ge 0$

Example IV

With the new invariant we have

$$\{x = n \land n \ge 0 \land y = 1 \}$$

$$\{y^*x! = n! \land x \ge 0 \}$$

$$\{y^*x! = n! \land x \ge 0 \land \neg x > 0 \}$$

$$\{y^*x! = n! \land x = 0 \}$$

$$\{y = n! \}$$

$$implied$$

$$(\circ \circ)$$

Leiden Institute of Advanced Computer Science

6/9/2008

Spring 2008

Marcello Bonsangue

Array Types and Array Syntax

- Let a[1 ... n] denote an array with as index an integer between 1 and n (included)
- Then a[e] denotes the element at position i in the array a if the evaluation of the expression e is the integer i with 1 ≤i ≤ n
- And |a| denote the length of the array a, □i.e. |a| = n

Meaning of array assignments

Let a, b be two array variables. Then:

- □ a:=b assigns the value of array a to the array variable b
- a[e]:=e' assigns the value of e' to position e in the array a
- □ but a[e]:=e' fails, or 'goes wrong', if e≤0 or e<|a|
- In partial correctness, we do not need to take array boundaries into account
 - □ For example, {true}a[|a|+1] {true} is valid

Array assignments and aliasing

- Simple assignments remain simple: {ψ[b/a]} a:=b {ψ}
 - is valid (partial correctness)
- But what about a[e]:=e' ?
- How can we substitute a[e] by e' ?
- Moreover, a[e] may have aliases: a[3], a[1+2], a[5-2], etc. all denote the same location

Arrays as functions

- An array a[1...|a|] of values can be seen as a function a from the index values to the element values
 - update: a[e] := e' is the same as a :=a[e'/e]
 - reading: a[e] is the same as a(e)

The solution: function substitution

Since an array is just a variable whose type happens to be "function", we can simply replace the entire function

a[i] := e is the same as a := a[e/i] thus along the lines of the ordinary assignment axiom we have

{ψ[a[e'/e]/a]} a[e] := e' {ψ}

Weakest precondition of array updates

- The formula ψ[a[e'/e]/a] is not the weakest precondition of ψ w.r.t. an array update a[e]:=e' Why?
 - Because the value e may fall outside that of the array a, so update may also fail! For total correctness we have to prove that assignment doesn't fail.

Example I

{ true } a[3] := 5 { a[3] = 5 }

We get: (a[3] = 5)[a[5/3]/a] ⇔ a[5/3][3] =5

Clearly, true \Rightarrow a[5/3][3]=5

6/9/2008

Leiden Institute of Advanced Computer Science

Example II

$$(a[i] = 5)[a[a[j]+1/i]/a]$$

$$\Leftrightarrow a[a[j]+1/i][i] = 5$$

$$\Leftrightarrow a[j]+1 = 5$$

$$\Leftrightarrow a[j] = 4$$

Leiden Institute of Advanced Computer Science

{|b|>2} a:=b; a[1]:=3; a[1]:= a[1]+1; b:=a {b[1]=4}

Slide 10

6/9/2008

$\begin{aligned} (a[i] = i)[(a[i/a[i]])/a] \\ \Leftrightarrow a[i/a[i]](i) = i \\ \Leftrightarrow (a[i] = i \land i = i) \lor (a[i] \neq i \land a[i] = i) \\ \Leftrightarrow a[i] = i \end{aligned}$

Slide 11

Spring 2008

Marcello Bonsangue

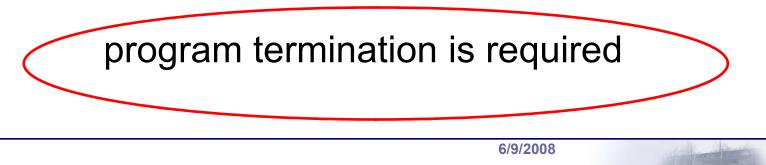
Leiden Institute of Advanced Computer Science Research & Education

Total correctness

Hoare triple for total correctness

precondition $\models_{tot} \{\phi\} \in \{\psi\}$ command

If the command c is executed in a state that satisfies ϕ then c is guaranteed to terminate and the resulting state will satisfy ψ



■
$$\models_{tot} \{ y \le x \} z := x; z := z + 1 \{ y < z \}$$
is valid

 \models_{tot} { true } while true do skip od { false } is not valid
 \models_{tot} { false } while true do skip od { true } is valid

Is
$$\models_{tot} \{ x \ge 0 \}$$
 Fact $\{ y = x! \}$ valid?

Total correctness

Total correctness: $I \vDash_{tot} \{\phi\} \in \{\psi\}$

$\forall \sigma. \ \sigma, \mathsf{I} \vDash \phi \Rightarrow \exists \ \sigma'. (< \mathsf{c}, \ \sigma > \rightarrow \sigma' \text{ and } \sigma', \mathsf{I} \vDash \psi)$

where ϕ and ψ are assertions and c is a command

Slide 4

6/9/2008

Validity

To give an absolute meaning to {i < x} x := x+3 {i < x} we have to quantify over all interpretations I

Total correctness:

$\vDash_{tot} \{ \phi \} c \{ \psi \} \quad \equiv \quad \forall I. \ I \vDash_{tot} \{ \phi \} c \{ \psi \}$

Slide 5

6/9/2008

Towards a calculus

Partial correctness does not tell anything about termination

Only <u>while</u> b <u>do</u> c <u>od</u> introduces the possibility of non-termination

a proof calculus for total correctness is the same as that for partial correctness except for the while-rule

6/9/2008

Intuition

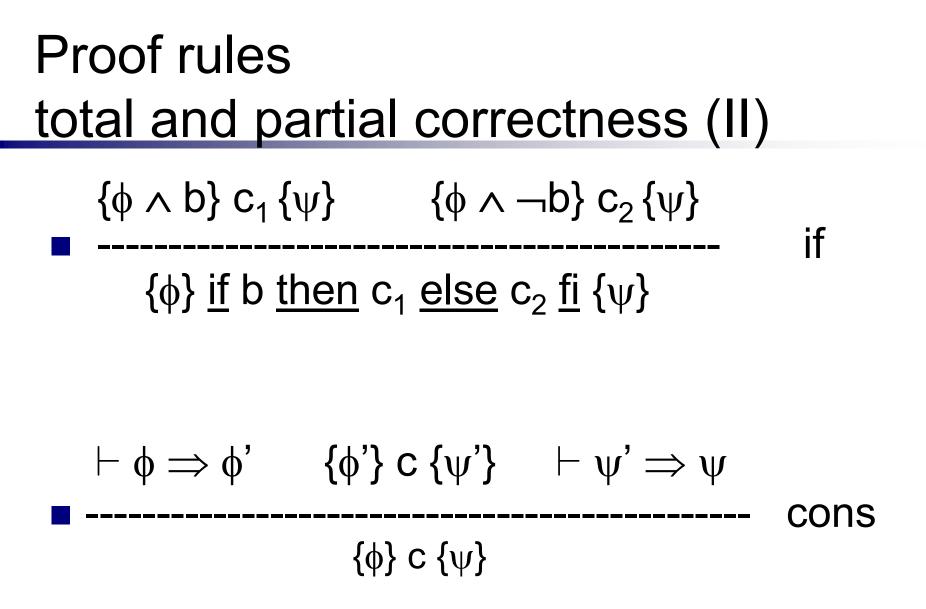
- To prove total correctness we need
 a proof of partial correctness
 a proof that the while statement terminates
- Termination can be proved by finding an integer expression E (the variant) that
 - □ is always non-negative
 - decreases every time we execute the body of the while statement

Proof rules total and partial correctness (I)

- {\$\$ skip {\$} skip
- {\u03c6[a/x] \u2285 def(a)} x := a {\u0366} ass

$$\begin{array}{ll} \{ \varphi \} \ c_1 \ \{ \psi \} & \{ \psi \} \ c_2 \ \{ \phi \} \\ & & \\ & \\ \{ \varphi \} \ c_1 ; \ c_2 \ \{ \phi \} \end{array} \hspace{1.5cm} seq$$

6/9/2008



6/9/2008

Leiden Institute of Advanced Computer Science

Proof rule total correctness (III)

$\{\phi \land b \land 0 \le E = E_0\} c \{\phi \land 0 \le E < E_0\}$ $\{\phi \land 0 \le E\} while b do c od \{\phi \land \neg b\}$

where E_0 is a logical variable for retaining the initial value of E

Finding E cannot be mechanized !!!

Proof outline for total correctness are similar to those for partial correctness except for
 □ the precondition of the while which now writes
 { \u03c6 \u03c6 0 ≤ E }

□ the body of the while which now writes { $\phi \land b \land 0 \le E = E_0$ } c { $\phi \land 0 \le E < E_0$ }

An example

 $DIV \equiv q := 0;$ r := x;<u>while</u> $r \ge y \underline{do}$ r := r-y; q := q+1<u>od</u>

We wish to prove ${x \ge 0 \land y > 0}$ DIV { $q^*y+r=x \land 0 \le r < y$ }

6/9/2008

An example (II)

```
\{x \ge 0 \land y > 0\}
\{0^*y + x = x \land 0 \le x\}
                                                                   implied
q := 0;
\{q^*y + x = x \land 0 \le x\}
                                                                   ass.
r := x;
{|}
                                                                   ass.
while r \ge y do
        \{ I \land r \ge y \}
                                                                    Inv \wedge guard
        \{ (q+1)^*y + r - y = x \land 0 \le r - y \}
                                                                   implied
        r := r - y;
        \{ (q+1)^* y + r = x \land 0 \le r \}
                                                                   ass.
        q := q+1
        {|}
                                                                   ass.
 <u>od</u>
\{ I \land r < y \}
                                                                   while
 \{ q^*y + r = x \land 0 \le r < y \}
                                                                   implied
```

where $I \equiv q^*y+r=x \land 0 \leq r$ is the invariant

Leiden Institute of Advanced Computer Science

6/9/2008

An example (III)

$\{x \ge 0 \land y \ge 0\}$	
{ 0*y+x=x ∧ 0≤x }	implied
q := 0;	
{q*y+x=x ∧ 0≤x }	ass.
r := x;	
{ I ∧ 0≤r }	ass.
<u>while</u> $r \ge y do$	
{ I ∧ r ≥ y ∧ 0≤r=z }	Inv ∧ guard
{ (q+1)*y+ r-y =x ∧ 0≤r-y <z td="" }<=""><td>implied?????</td></z>	implied?????
r := r-y;	
{ (q+1)*y+r=x ∧ 0≤r< <mark>z</mark> }	ass.
q := q+1	
{ I ∧ 0≤r <z td="" }<=""><td>ass.</td></z>	ass.
<u>od</u>	
{ ^ r <y td="" }<=""><td>while</td></y>	while
{ q*y+r=x ∧ 0≤r <y td="" }<=""><td>implied</td></y>	implied

where $I \equiv q^*y+r=x \land 0 \leq r$ is the invariant and r is the variant

Leiden Institute of Advanced Computer Science

6/9/2008

An example (IV)

$\{x \ge 0 \land y > 0\}$	
$\{ 0^*y + x = x \land 0 \le x \land y > 0 \}$	implied
q := 0;	
$\{q^*y + x = x \land 0 \le x \land y > 0\}$	ass.
r := x;	
$\{ I \land 0 \leq r \}$	ass.
<u>while</u> $r \ge y do$	
{ I ∧ r ≥ y ∧ 0≤r=z }	Inv ∧ guard
{ (q+1)*y+ r-y =x ∧y > 0 ∧ 0≤r-y <z td="" }<=""><td>implied</td></z>	implied
r := r-y;	
{ (q+1)*y+r=x ∧ y > 0 ∧ 0≤r <z td="" }<=""><td>ass.</td></z>	ass.
q := q+1	
{ I ∧ 0≤r <z td="" }<=""><td>ass.</td></z>	ass.
<u>od</u>	
{ I ∧ r <y td="" }<=""><td>while</td></y>	while
{ q*y+r=x ∧ 0≤r <y td="" }<=""><td>implied</td></y>	implied

where $I \equiv q^*y + r = x \land 0 \le r \land y > 0$ is the invariant and r is the variant

