

Extending linear classification

- Linear classifiers can't model nonlinear class boundaries
- Simple trick:
 - Map attributes into new space consisting of combinations of attribute values
 - E.g.: all products of *n* factors that can be constructed from the attributes
- Example with two attributes and n = 3:

$$x = w_1 a_1^3 + w_2 a_1^2 a_2 + w_3 a_1 a_2^2 + w_4 a_2^3$$

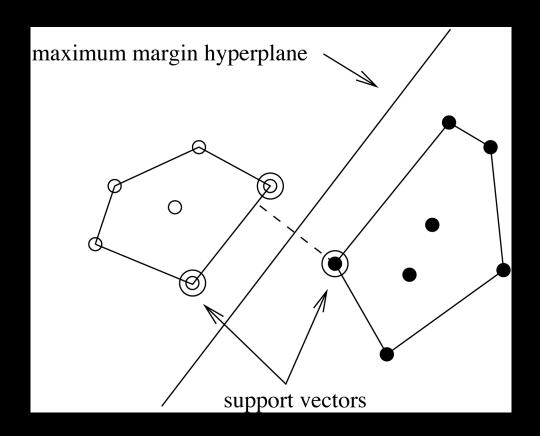
Problems with this approach

- 1st problem: speed
 - 10 attributes, and $n = 5 \Longrightarrow 2000$ coefficients
 - Use linear regression with attribute selection
 - Run time is cubic in number of attributes
- 2nd problem: overfitting
 - Number of coefficients is large relative to the number of training instances
 - Curse of dimensionality kicks in

Support vector machines

- Support vector machines are algorithms for learning linear classifiers
- Resilient to overfitting because they learn a particular linear decision boundary:
 - The maximum margin hyperplane
- Fast in the nonlinear case
 - Use a mathematical trick to avoid creating "pseudo-attributes"
 - The nonlinear space is created implicitly

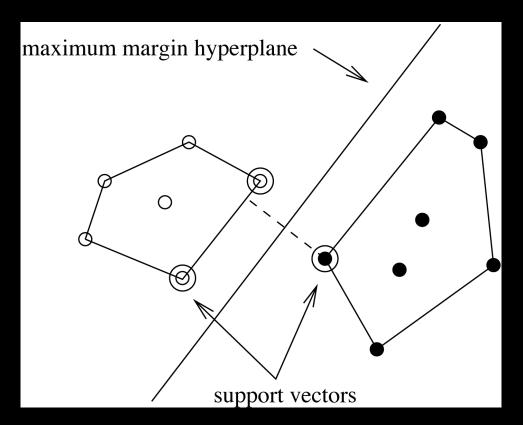
The maximum margin hyperplane



• The instances closest to the maximum margin hyperplane are called *support vectors*

Support vectors

- •The support vectors define the maximum margin hyperplane
 - All other instances can be deleted without changing its position and orientation



This means the hyperplane $x = w_0 + w_1 a_1 + w_2 a_2$ can be written as $x = b + \sum_{i \text{ is supp. vector}} \alpha_i y_i \vec{a}(i) \cdot \vec{a}$

Finding support vectors

$$x = b + \sum_{i \text{ is supp. vector}} \alpha_i y_i \vec{a}(i) \cdot \vec{a}$$

- Support vector: training instance for which $\alpha_i > 0$
- Determine α_l and b?— A constrained quadratic optimization problem
 - Off-the-shelf tools for solving these problems
 - However, special-purpose algorithms are faster
 - Example: Platt's sequential minimal optimization algorithm (implemented in WEKA)
- Note: all this assumes separable data!

Nonlinear SVMs

- "Pseudo attributes" represent attribute combinations
- Overfitting not a problem because the maximum margin hyperplane is stable
 - There are usually few support vectors relative to the size of the training set
- Computation time still an issue
 - Each time the dot product is computed, all the "pseudo attributes" must be included

A mathematical trick

- Avoid computing the "pseudo attributes"
- Compute the dot product before doing the nonlinear mapping
- Example:

$$x = b + \sum_{i \text{ is supp. vector}} \alpha_i y_i (\vec{a}(i) \cdot \vec{a})^n$$

• Corresponds to a map into the instance space spanned by all products of *n* attributes

Other kernel functions

- Mapping is called a "kernel function"

• Polynomial kernel
$$x=b+\sum_{i \text{ is supp. vector }} \alpha_i y_i (\vec{a}(i)\cdot\vec{a})^n$$

• We can use others:
$$x=b+\sum_{i \text{ is supp. vector}} \alpha_i y_i K(\vec{a}(i)\cdot\vec{a})$$

• Only requirement: $K(\vec{x}_i, \vec{x}_i) = \phi(\vec{x}_i) \cdot \phi(\vec{x}_i)$

$$K(\vec{x}_i, \vec{x}_j) = \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$$

• Examples:

$$K(\vec{x}_i, \vec{x}_j) = (\vec{x}_i \cdot \vec{x}_j + 1)^d$$

$$K(\vec{x}_i, \vec{x}_j) = \exp\left(\frac{-(\vec{x}_i - \vec{x}_j)^2}{2\sigma^2}\right)$$

$$K(\vec{x}_i, \vec{x}_j) = \tanh\left(\beta \vec{x}_i \cdot \vec{x}_j + b\right)$$

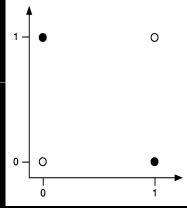
Applications

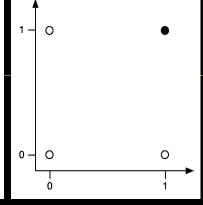
- Machine vision: e.g face identification
 - Outperforms alternative approaches (1.5% error)
- Handwritten digit recognition: USPS data
 - Comparable to best alternative (0.8% error)
- Bioinformatics: e.g. prediction of protein secondary structure
- Text classifiation
- Can modify SVM technique for numeric prediction problems

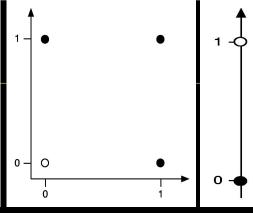
Multilayer perceptrons

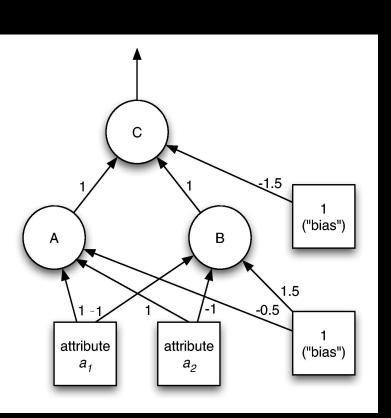
- Using kernels is only one way to build nonlinear classifier based on perceptrons
- Can create network of perceptrons to approximate arbitrary target concepts
- *Multilayer perceptron* is an example of an artificial neural network
 - Consists of: input layer, hidden layer(s), and output layer
- Structure of MLP is usually found by experimentation
- Parameters can be found using backpropagation

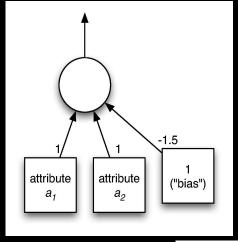
Examples

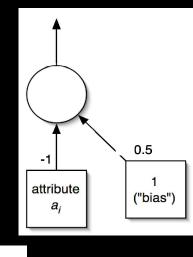


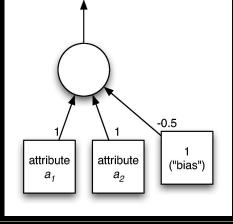












Backpropagation

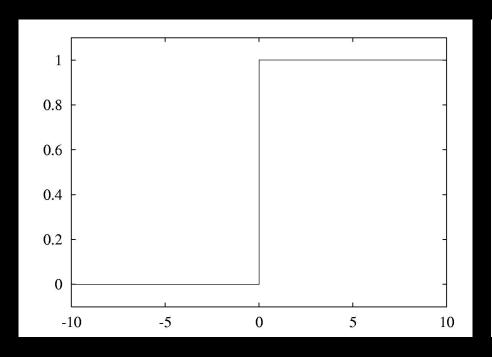
- How to learn weights given network structure?
 - Cannot simply use perceptron learning rule because we have hidden layer(s)
 - Function we are trying to minimize: error
 - Can use a general function minimization technique called gradient descent
 - Need differentiable activation function: use sigmoid function instead of threshold function

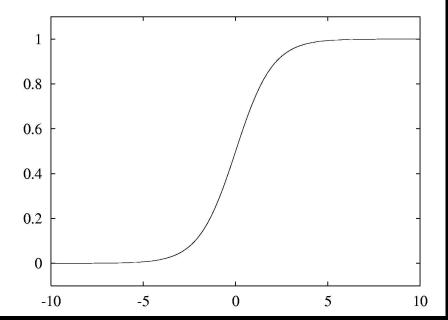
$$f(x) = \frac{1}{1 + \exp(-x)}$$

 Need differentiable error function: can't use zero-one loss, but can use squared error

$$E = \frac{1}{2} (y - f(x))^2$$

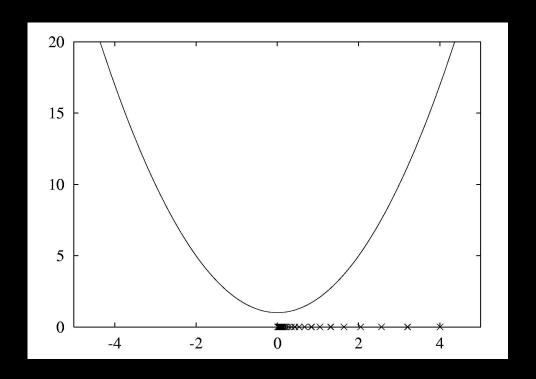
The two activation functions





Gradient descent example

- Function: x^2+1
- Derivative: 2x
- Learning rate: 0.1
- Start value: 4



Can only find a local minimum!

Minimizing the error I

 Need to find partial derivative of error function for each parameter (i.e. weight)

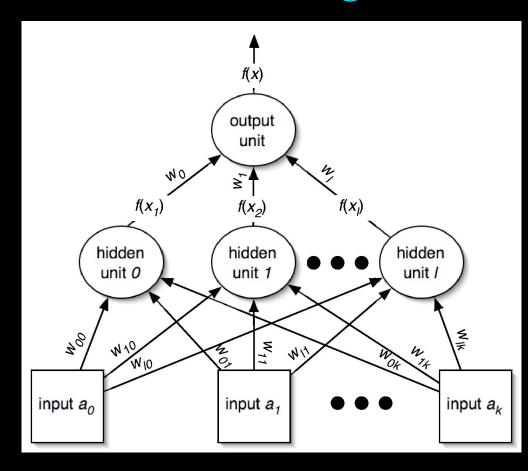
$$\frac{dE}{dw_i} = (y - f(x)) \frac{df(x)}{dw_i}$$

$$\frac{df(x)}{dx} = f(x)(1 - f(x))$$

$$x = \sum_i w_i f(x_i)$$

$$\frac{df(x)}{dw_i} = f'(x) f(x_i)$$

$$\frac{dE}{dw_i} = (y - f(x)) f'(x) f(x_i)$$



Minimizing the error II

 What about the weights for the connections from the input to the hidden layer?

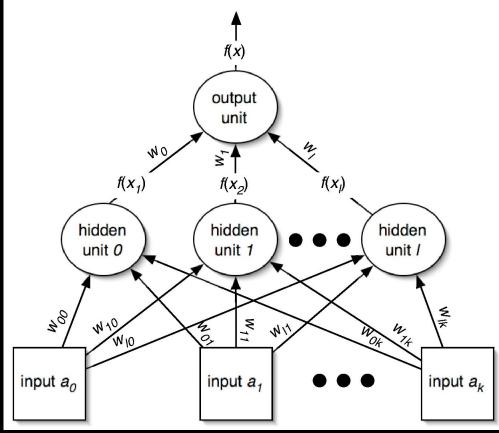
$$\frac{dE}{dw_{ij}} = \frac{dE}{dx} \frac{dx}{dw_{ij}} = (y - f(x)) f'(x) \frac{dx}{dw_{ij}}$$

$$x = \sum_{i} w_{i} f(x_{i})$$

$$\frac{dx}{dw_{ij}} = w_{i} \frac{df(x_{i})}{dw_{ij}}$$

$$\frac{df(x_{i})}{dw_{ij}} = f'(x_{i}) \frac{dx_{i}}{dw_{ij}} = f'(x_{i}) a_{i}$$

$$\frac{dE}{dw_{ij}} = (y - f(x)) f'(x) w_{i} f'(x_{i}) a_{i}$$



Remarks

- Same process works for multiple hidden layers and multiple output units (eg. for multiple classes)
- Can update weights after all training instances have been processed or incrementally:
 - batch learning vs. stochastic backpropagation
 - Weights are initialized to small random values
- How to avoid overfitting?
 - Early stopping: use validation set to check when to stop
 - Weight decay: add penalty term to error function
- How to speed up learning?
 - Momentum: re-use proportion of old weight change
 - Use optimization method that employs 2nd derivative

Radial basis function networks

- Another type of *feedforward network* with two layers (plus the input layer)
- Hidden units represent points in instance space and activation depends on distance
 - To this end, distance is converted into similarity: Gaussian activation function
 - Width may be different for each hidden unit
 - Points of equal activation form hypersphere (or hyperellipsoid) as opposed to hyperplane
- Output layer same as in MLP

Learning RBF networks

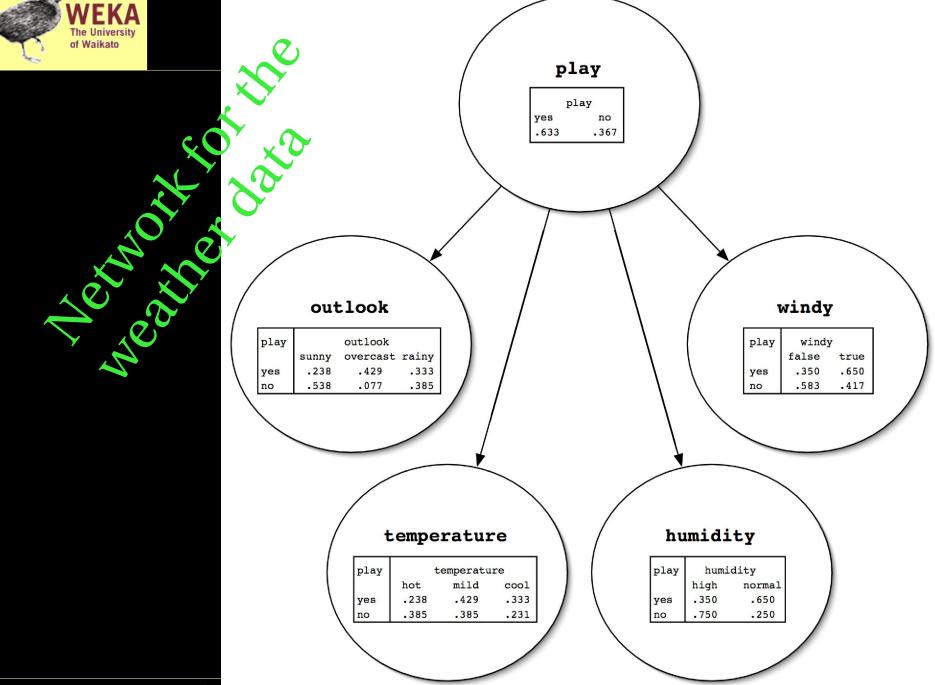
- Parameters: centers and widths of the RBFs + weights in output layer
- Can learn two sets of parameters independently and still get accurate models
 - Eg.: clusters from k-means can be used to form basis functions
 - Linear model can be used based on fixed RBFs
 - Makes learning RBFs very efficient
- Disadvantage: no built-in attribute weighting based on relevance
- RBF networks are related to RBF SVMs

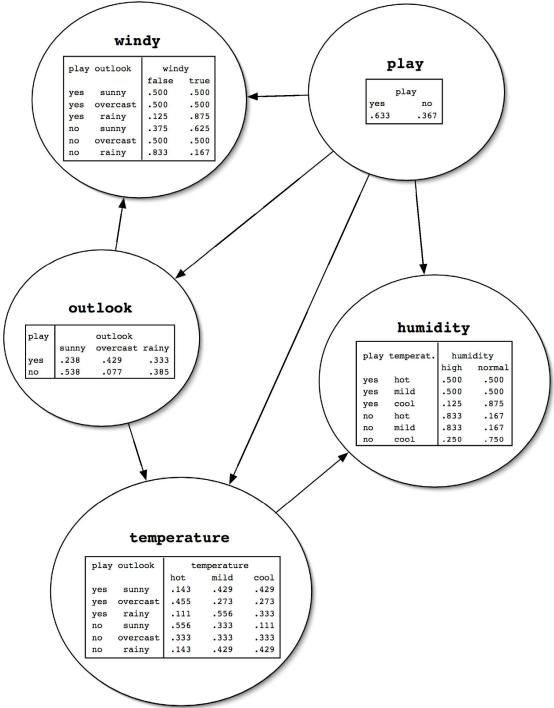
From naïve Bayes to Bayesian Networks

- Naïve Bayes assumes: attributes conditionally independent given the class
- Doesn't hold in practice but classification accuracy often high
- However: sometimes performance much worse than e.g. decision tree
- Can we eliminate the assumption?

Enter Bayesian networks

- Graphical models that can represent any probability distribution
- Graphical representation: directed acyclic graph, one node for each attribute
- Overall probability distribution factorized into component distributions
- Graph's nodes hold component distributions (conditional distributions)





Computing the class probabilities

- Two steps: computing a product of probabilities for each class and normalization
 - For each class value
 - Take all attribute values and class value
 - Look up corresponding entries in conditional probability distribution tables
 - Take the product of all probabilities
 - Divide the product for each class by the sum of the products (normalization)

Why can we do this? (Part I)

• Single assumption: values of a node's parents completely determine probability distribution for current node

Pr[node|ancestors] = Pr[node|parents]

Means that node/attribute is conditionally independent of other ancestors given parents

Why can we do this? (Part II)

Chain rule from probability theory:

$$Pr[a_{1}, a_{2}, ..., a_{n}] = \prod_{i=1}^{n} Pr[a_{i} | a_{i-1}, ..., a_{1}]$$

Because of our assumption from the previous slide:

$$Pr[a_{1_{i}}a_{2_{i}}...,a_{n}] = \prod_{i=1}^{n} Pr[a_{i}|a_{i-1},...,a_{1}] = \prod_{i=1}^{n} Pr[a_{i}|a_{i}'sparents]$$

Learning Bayes nets

- Basic components of algorithms for learning Bayes nets:
 - Method for evaluating the goodness of a given network
 - Measure based on probability of training data given the network (or the logarithm thereof)
 - Method for searching through space of possible networks
 - Amounts to searching through sets of edges because nodes are fixed