
Machine Learning in

Real World:

C4.5

Outline

!!Handling Numeric Attributes

!!Finding Best Split(s)

!!Dealing with Missing Values

!!Pruning

!!Pre-pruning, Post-pruning, Error Estimates

!!From Trees to Rules

Industrial-strength algorithms

!! For an algorithm to be useful in a wide range of real-
world applications it must:

!! Permit numeric attributes

!! Allow missing values

!! Be robust in the presence of noise

!! Be able to approximate arbitrary concept descriptions (at least
in principle)

!! Basic schemes need to be extended to fulfill these
requirements

witten & eibe

C4.5 History

!! ID3, CHAID – 1960s

!! C4.5 innovations (Quinlan):

!! permit numeric attributes

!! deal sensibly with missing values

!! pruning to deal with for noisy data

!! C4.5 - one of best-known and most widely-used learning
algorithms

!! Last research version: C4.8, implemented in Weka as J4.8 (Java)

!! Commercial successor: C5.0 (available from Rulequest)

Numeric attributes

!! Standard method: binary splits

!! E.g. temp < 45

!! Unlike nominal attributes,
every attribute has many possible split points

!! Solution is straightforward extension:

!! Evaluate info gain (or other measure)
for every possible split point of attribute

!! Choose “best” split point

!! Info gain for best split point is info gain for attribute

!! Computationally more demanding

witten & eibe

Weather data – nominal values
Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild Normal False Yes

… … … … …

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes

witten & eibe

Weather data - numeric
Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 75 80 False Yes

… … … … …

If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes

Example

!! Split on temperature attribute:

!! E.g. temperature < 71.5: yes/4, no/2
 temperature ! 71.5: yes/5, no/3

!! Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3])
= 0.939 bits

!! Place split points halfway between values

!! Can evaluate all split points in one pass!

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

witten & eibe

Avoid repeated sorting!

!! Sort instances by the values of the numeric attribute

!! Time complexity for sorting: O (n log n)

!! Q. Does this have to be repeated at each node of
the tree?

!! A: No! Sort order for children can be derived from sort
order for parent

!! Time complexity of derivation: O (n)

!! Drawback: need to create and store an array of sorted indices
for each numeric attribute

witten & eibe

More speeding up

!!Entropy only needs to be evaluated between points
of different classes (Fayyad & Irani, 1992)

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

Potential optimal breakpoints

Breakpoints between values of the same class cannot
be optimal

value

class

X

Binary vs. multi-way splits

!! Splitting (multi-way) on a nominal attribute
exhausts all information in that attribute

!! Nominal attribute is tested (at most) once on any path
in the tree

!! Not so for binary splits on numeric attributes!

!! Numeric attribute may be tested several times along a
path in the tree

!! Disadvantage: tree is hard to read

!! Remedy:

!! pre-discretize numeric attributes, or

!! use multi-way splits instead of binary ones

witten & eibe

Missing as a separate value

!!Missing value denoted “?” in C4.X

!!Simple idea: treat missing as a separate value

!!Q: When this is not appropriate?

!!A: When values are missing due to different
reasons

!!Example 1: gene expression could be missing when it is
very high or very low

!!Example 2: field IsPregnant=missing for a male
patient should be treated differently (no) than for a
female patient of age 25 (unknown)

Missing values - advanced

Split instances with missing values into pieces

!! A piece going down a branch receives a weight
proportional to the popularity of the branch

!! weights sum to 1

!! Info gain works with fractional instances

!! use sums of weights instead of counts

!! During classification, split the instance into pieces
in the same way

!! Merge probability distribution using weights

witten & eibe

Pruning

!! Goal: Prevent overfitting to noise in the

data

!! Two strategies for “pruning” the decision

tree:

"! Postpruning - take a fully-grown decision tree
and discard unreliable parts

"! Prepruning - stop growing a branch when
information becomes unreliable

!! Postpruning preferred in practice—

prepruning can “stop too early”

Prepruning

!! Based on statistical significance test

!! Stop growing the tree when there is no statistically significant
association between any attribute and the class at a particular
node

!! Most popular test: chi-squared test

!! ID3 used chi-squared test in addition to information gain

!! Only statistically significant attributes were allowed to be
selected by information gain procedure

witten & eibe

Early stopping

!! Pre-pruning may stop the growth process
prematurely: early stopping

!! Classic example: XOR/Parity-problem

!! No individual attribute exhibits any significant
association to the class

!! Structure is only visible in fully expanded tree

!! Pre-pruning won’t expand the root node

!! But: XOR-type problems rare in practice

!! And: pre-pruning faster than post-pruning

a b class

1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

witten & eibe

Post-pruning
!! First, build full tree

!! Then, prune it

!! Fully-grown tree shows all attribute interactions

!! Problem: some subtrees might be due to chance effects

!! Two pruning operations:

1.! Subtree replacement

2.! Subtree raising

!! Possible strategies:

!! error estimation

!! significance testing

!! MDL principle

witten & eibe

Subtree replacement
!! Bottom-up

!! Consider replacing a tree
only after considering all
its subtrees

!! Ex: labor negotiations

witten & eibe

Subtree
replacement

!! Bottom-up

!! Consider replacing a tree
only after considering all
its subtrees

witten & eibe

*Subtree raising
!! Delete node

!! Redistribute instances

!! Slower than subtree
replacement

 (Worthwhile?)

witten & eibe

X

Estimating error rates

!! Prune only if it reduces the estimated error

!! Error on the training data is NOT a useful
estimator
Q: Why it would result in very little pruning?

!! Use hold-out set for pruning
(“reduced-error pruning”)

!! C4.5’s method

!! Derive confidence interval from training data

!! Use a heuristic limit, derived from this, for pruning

!! Standard Bernoulli-process-based method

!! Shaky statistical assumptions (based on training data)

witten & eibe

*Mean and variance

!! Mean and variance for a Bernoulli trial:
p, p (1–p)

!! Expected success rate f=S/N

!! Mean and variance for f : p, p (1–p)/N

!! For large enough N, f follows a Normal
distribution

!! c% confidence interval [–z " X " z] for random
variable with 0 mean is given by:

!! With a symmetric distribution:

witten & eibe

*Confidence limits
!! Confidence limits for the normal distribution with 0 mean and

a variance of 1:

!! Thus:

!! To use this we have to reduce our random variable f to have
0 mean and unit variance

Pr[X ! z] z

0.1% 3.09

0.5% 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

25% 0.69

40% 0.25
–1 0 1 1.65

witten & eibe

*Transforming f

!! Transformed value for f :

(i.e. subtract the mean and divide by the standard deviation)

!! Resulting equation:

!! Solving for p:

witten & eibe

C4.5’s method

!! Error estimate for subtree is weighted sum of error
estimates for all its leaves

!! Error estimate for a node (upper bound):

!! If c = 25% then z = 0.69 (from normal distribution)

!! f is the error on the training data

!! N is the number of instances covered by the leaf

witten & eibe

Example

f=0.33

e=0.47

f=0.5

e=0.72

f=0.33

e=0.47

f = 5/14

e = 0.46

e < 0.51

so prune!

Combined using ratios 6:2:6 gives 0.51
witten & eibe

*Complexity of tree induction
!! Assume

!! m attributes

!! n training instances

!! tree depth O (log n)

!! Building a tree O (m n log n)

!! Subtree replacement O (n)

!! Subtree raising O (n (log n)2)

!! Every instance may have to be redistributed at every node
between its leaf and the root

!! Cost for redistribution (on average): O (log n)

!! Total cost: O (m n log n) + O (n (log n)2)

witten & eibe

From trees to rules
!! Simple way: one rule for each leaf

!! C4.5rules: greedily prune conditions from each rule
if this reduces its estimated error

!! Can produce duplicate rules

!! Check for this at the end

!! Then

!! look at each class in turn

!! consider the rules for that class

!! find a “good” subset (guided by MDL)

!! Then rank the subsets to avoid conflicts

!! Finally, remove rules (greedily) if this decreases
error on the training data

witten & eibe

C4.5rules: choices and options

!! C4.5rules slow for large and noisy datasets

!! Commercial version C5.0rules uses a different technique

!! Much faster and a bit more accurate

!! C4.5 has two parameters

!! Confidence value (default 25%):
lower values incur heavier pruning

!! Minimum number of instances in the two most popular
branches (default 2)

witten & eibe

*Classification rules

!! Common procedure: separate-and-conquer

!! Differences:

!! Search method (e.g. greedy, beam search, ...)

!! Test selection criteria (e.g. accuracy, ...)

!! Pruning method (e.g. MDL, hold-out set, ...)

!! Stopping criterion (e.g. minimum accuracy)

!! Post-processing step

!! Also: Decision list
 vs. one rule set for each class

witten & eibe

*Test selection criteria
!! Basic covering algorithm:

!! keep adding conditions to a rule to improve its accuracy

!! Add the condition that improves accuracy the most

!! Measure 1: p/t

!! t total instances covered by rule
p number of these that are positive

!! Produce rules that don’t cover negative instances,
as quickly as possible

!! May produce rules with very small coverage
—special cases or noise?

!! Measure 2: Information gain p (log(p/t) – log(P/T))

!! P and T the positive and total numbers before the new condition
was added

!! Information gain emphasizes positive rather than negative
instances

!! These interact with the pruning mechanism used
witten & eibe

*Missing values,
numeric attributes

!! Common treatment of missing values:
for any test, they fail

!! Algorithm must either

!! use other tests to separate out positive instances

!! leave them uncovered until later in the process

!! In some cases it’s better to treat “missing” as a separate

value

!! Numeric attributes are treated just like they are in

decision trees

witten & eibe

*Pruning rules

!! Two main strategies:

!! Incremental pruning

!! Global pruning

!! Other difference: pruning criterion

!! Error on hold-out set (reduced-error pruning)

!! Statistical significance

!! MDL principle

!! Also: post-pruning vs. pre-pruning

witten & eibe

Summary

!! Decision Trees

!! splits – binary, multi-way

!! split criteria – entropy, gini, …

!! missing value treatment

!! pruning

!! rule extraction from trees

!! No method is always superior –
experiment!

witten & eibe

