
Requirements Engineering

by

Luuk Groenewegen

fall 2004

Leiden University, Liacs

course for

Bachelor students in Computer Science

- < 1978: mathematics, operational research

behaviour modelling and analysis

- >1978: computer science

software engineering

information systems

modelling: statics & dynamics

aka structure & behaviour

communication:

modelling

better understanding in terms

of its behavioural effects

consistency and integration,

particularly wrt dynamics:

(behavioural) views

protocols

to achieve cooperation / collaboration

resulting in

coordination specification language

Paradigm

object-orientation

combination OMT - Paradigm:

Socca

architecture / integration of

software components

systems: software & organizations

evolution / change of systems,

possibly on-the-fly

mobility and other aspects,

particularly wrt dynamics

Requirements Engineering, 2004, Luuk Groenewegen 4

particular relevance for RE:

- RE is part of software engineering (SE)

process models of RE

- RE is about software system-to-be:

specified: modelled from the outside

typically a declarative model

fitting in organization:

business process modelling,

consistency, integration, coordination

here lies relation with my research

Requirements Engineering, 2004, Luuk Groenewegen 5

books:

1. Requirements Engineering, Processes and

Techniques; Kotonya, Sommerville;

Wiley 98; 0471 97208 8

2. The Unified Modeling Language, User Guide

Booch, Rumbaugh, Jacobson

Addison-Wesley 99; 0201 57168 8

or www.omg.org/docs/ptc/03-09-15.pdf

& www.omg.org/docs/ptc/03-08-02.pdf

OMG (03): UML 2.0 Infrastructure and

Superstructure Specification

3. Fundamentals of Software Engineering

Ghezzi, Jazayeri, Mandrioli;

Prentice-Hall 03; 013 099183 X

1: must

2: this or something similar

3: interesting, for general background

Requirements Engineering, 2004, Luuk Groenewegen 6

set-up book 1:

1. introduction

2. RE process

3. R elicitation and analysis

4. R validation

5. R management

---- process until here

----technique from here

6. methods for RE

7. viewpoint-oriented R methods

8. non-functional R

9. interactive system specification

10. case study (library)

Note: correspondence title & book structure

Note: UML is not very prominent

Requirements Engineering, 2004, Luuk Groenewegen 7

course set-up (~ book 1)

1. introduction

global course structure

FAQs

(general) system engineering

R document

2. RE: requirements engineering

process models

actors

process

process support

process improvement

large interlude

UML 2.0 (in relation to UML 1.4)

(business) architecture and patterns

management paradigm

integration-orientation,

business process modelling

Requirements Engineering, 2004, Luuk Groenewegen 8

3. R elicitation and analysis

processes

techniques

prototyping

model recognition

simulation

4. R validation

reviews

prototyping

R testing

model recognition

simulation

5. R management

stable & volatile R

identification and storage

change management

traceability

evolution

Requirements Engineering, 2004, Luuk Groenewegen 9

7. viewpoint orientation

VOSE

VORD

model views

consistency

8. non-functional Rs

classification

principles

qualities

viewpoints

alignment of business and Rs

what software system should be built

what is the problem?

too many software projects fail

in the sense that

- remain unfinished

- finished but not doing what it should

- finished and doing what it should

but it still doesn’t fit in the organization

why is it a problem?

- costs of the effort

- missing benefits of well-aligned software

- software is a technical product but

merely technical specs are insufficient as

-- people don’t know what they want

-- people change their mind and wishes

- if you ask them, they don’t tell you

- even more misleading,

they might tell you (the) wrong things

moreover, requirements are moving target

as organization changes

- from outside

- from inside

- because of the new software

unhappy consequences

 “hard” computer science people complain:

this is too “soft” for us

similarly, RE course is

too soft for computer science students

because of the costs / profits at stake

industry is very keen on improvement

ie better RE

client industry: they really want it

so they are willing to pay

provider industry: they really offer

(small) improvements

as they are willing to sell

Requirements Engineering, 2004, Luuk Groenewegen 13

what is the / a solution - so far

- software engineering (process), > 1968

separation of concerns in the process

- what?: feasibility, requirements

- how?: architecture, design

- construct: build components, integrate

- deliver

- maintain

+ omnipresent

reviewing, verifying, testing

: quality assurance,

both of product and of process

Requirements Engineering, 2004, Luuk Groenewegen 14

what is the / a solution - so far

- object-orientation

from 1969 on

programming languages

Simula, Smalltalk, C++,

Eiffel, Java, ...

from 1985 on

modelling languages

ROOM, OMT, UML, ...

connecting / “integrating”

structure - behaviour - communication

and (hopefully) other aspects too

mainly during how?-construction phases

even during what?-phase

by means of “declarative modelling”

Requirements Engineering, 2004, Luuk Groenewegen 15

why does it help?

postponing technical how?-question

gives more room for

nearly non-technical what?-question

this is why separation of concerns works

integrating features of OO enable

smooth software engineering trajectory

(from less technical to very technical)

why doesn’t it help sufficiently?

question remains:

will it fit in organization?

apparently not

unless something extra will be done

Requirements Engineering, 2004, Luuk Groenewegen 16

tentative solution

make operational (technical)

OO model of business

make declarative (non-technical)

OO model of software system-to-be

study together during RE

why should that help?

question of fitting is being studied

before software system will be made

having eye for flexibility

of both business architecture

and software architecture

probably helps for coping with

later evolution more easily

Requirements Engineering, 2004, Luuk Groenewegen 17

note

standard objections Computer Sc. community

- people are no software

so OO doesn’t apply to

modelling people, business, teams

- one should never use

technical / operational modelling in RE

as RE has a purely declarative character

it addresses “what”

instead of the operational “how”

BUT

- (OO) simulation makes sense

so OO modelling makes similar sense

- the above restriction during RE to

declarative (postponing operational)

makes sense for the software-to-be,

not for the business-as-is

Requirements Engineering, 2004, Luuk Groenewegen 18

back to problem situation

RE is about:

what software system should be built

compare to SE (software engineering):

how do we produce (concrete) good software

in a good way

ie good product and good production process

in particular RE addresses:

- what should that software do (declarative)

external static specs of product

- how could that software fit (operational)

external dynamic specs of product

- how do we produce these specs (Rs)

static and dynamic specs of

production process of Rs

- feasibility: global idea

- RE: precise specs

- design: how does the product work

- implementation: building the product

- testing: (final) check

- deliverance: introduction, (final) tuning

- maintenance: debugging, extending, changing

study feasibility of product

study feasibility of process

plan production phases

characterize product from outside, in parts

model product, in parts

program product, in parts

integrate characterization parts

integrate model parts

integrate program parts

observe, control, improve characterization

observe, control, improve model

observe, control, improve product

observe, control, improve phases

deliver (in - other - parts)

support

do follow-up

- the above listing does not impose

any ordering between the phases

so, this is not a process model yet

- role of decomposition / composition is

in line with separation of concerns, by

first concentrating on less:

simplification but in all detail

integrating afterwards:

remaining complexity but more global

- possibility for growth via parts

- possibility for theory and exactness via model

and its (partial) analysis

- observing, controlling and improving covers

both testing (reviewing, analysing)

and managing

Requirements Engineering, 2004, Luuk Groenewegen 22

furthermore, combining

observing, controlling and improving of

characterization / model / product

with phases of

deliver / support / do follow-up

possibly from well-chosen viewpoints

can result in

welcome, additional insight into

the use of the system

as it - then - is

as it should be

as it could be

here we see how the software system

both statically and dynamically

influences the surrounding business

this is relevant for

external static and dynamic specs

of software (product of RE)

Requirements Engineering, 2004, Luuk Groenewegen 23

1.1. FAQs: frequently asked questions

requirements: refer to product

properties, ranging from needed to optional;

conditions, circumstances;

services, functionality;

classification into

functional

general usage

system management / administration

embedding / environment

requirements engineering: refers to process

one or more processes, resulting in the Rs;

performing: how to determine

what the software-to-be is supposed to do

and what the role is of that software-to-be

Requirements Engineering, 2004, Luuk Groenewegen 24

costs: refer to product as well as to process

15% of SE, so 15% of the final software

RE process (model): refers to process

structured set of activities for RE

description / specification comprising:

schedule, roles / responsibilities,

steps to be taken and their I/O,

tool support

ideal RE process?: refers to process

there is no ideal RE process, but

R document: refers to product

document, mainly textual, containing

approved definition or the Rs: the specs

Requirements Engineering, 2004, Luuk Groenewegen 25

stakeholder: refers to product

all humans relevant for the software-to-be

not only (end) users

but also managers, system administrators,

auditors, specialists

relation Rs - design: refers to process

overlapping, so there is interaction between

the phases of RE and design

dependency relation, traceability:

mainly cause - consequence

Rs management: refers to process

managing changes of Rs

Requirements Engineering, 2004, Luuk Groenewegen 26

1.2. Systems Engineering

probably better terminology is

Business (Re)Engineering

covers:

- specs for software ie. normal Rs

- specs for hardware

- specs for operations; procedures and processes

in the business, ie. the software environment

wrt the last specs NOTE:

not only for command&control systems

(as the book tells us)

but also for information systems

embedded systems

(so: Business Reengineering indeed)

Requirements Engineering, 2004, Luuk Groenewegen 27

system engineering is of two types:

(1) so-called

off-the-shelf

component-based

user-configured

ie user does embedding in organization

all specs play their roles,

matching is less deep

(2) so-called

custom system

bespoke system

tailored

ie specialists from SE industry create it

here we see full RE

specs really are engineered

have an open eye for so-called

emergent / overall Rs

vs actual, so-called emergent properties

the system apparently has

those properties only appear (emerge) after

integration of

the software parts

or even later, after

full integration of

software and business

so emergent Rs have a strong tendency to

become clear (too) late too

mostly these Rs belong to so-called

non-functional Rs

adapted version of Fig 1.,

edges correspond to activities:

Business/
Organization

Business Model

Bus. main
process models

Software Rs
for each process

ReEngineer Business (statics)

ReEngineer Business (dynamics)

Engineer Rs (this is RE)

Do remaining SE

validation
&

iteration

contains at least

- services / functions

- operational restrictions

- “emergent” Rs as tentative restrictions for the

real emergent properties

- other systems; also business systems

- application domain

- restrictions wrt SE process

there no such thing as a fixed standard

for the R document structure

but guidelines do exist

Requirements Engineering, 2004, Luuk Groenewegen 31

eg: IEEE guideline for R Doc

1. Introduction

1.1. purpose R doc

1.2. scope product

1.3. definitions, acronyms, abbreviations

1.4. references

1.5. overview R doc

2. General Description

2.1. product perspective (role)

2.2. product functions

2.3. user characteristics / categories

2.4. general restrictions

2.5. assumptions and dependencies

note

application domain in 1.2, 2.1 mainly

Requirements Engineering, 2004, Luuk Groenewegen 32

3. Specific Rs

3.1. functional

3.2. non-functional

3.3. interfaces

3.4. performance

3.5. DB Rs

3.6. design Rs

3.7. system characteristics

3.8. quality characteristics

4. Appendices

5. Index

note

- 3.5 without Web access is rather old-fashioned

so: leave room for emerging technologies

- some architecture could be good idea

- required specific dynamic effect on business

should be addressed

Requirements Engineering, 2004, Luuk Groenewegen 33

categories of R doc users

- R Engineers

- users of software system

many further categories

- (business) managers “above” these users

- managers of SE process (and of RE process)

- software engineers (wrt this system)

- quality assurance engineers

- software maintenance engineers

and in addition

- auditors / controllers / domain specialists

participating as such within the

relevant business processes

Requirements Engineering, 2004, Luuk Groenewegen 34

writing Rs and R doc:

- understandable for all possible readers

of relevant document part

- dominant role for natural language

drawbacks:

vague; ambiguous; cumbersome

eg.

- complex situations: nesting of

if ... then ... with extra conditions

- sloppy or inconsistent terminology

- default knowledge of

problem domain / technology used

so wrt R doc:

- invest in readability

- take reader’s viewpoint (with less knowledge)

- invest in review and improvement iteration

