
RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.1

7. Coherent Descriptions

the idea is to discuss in this section

descriptions of (software) systems

that actually improve the insight into

the coherency

between all (software) system parts

in so doing, we mostly concentrate on

software systems

but once in a while we take into account

the (business) environment too

in view of integration-orientation,

discrimination between software and business

is quite irrelevant, however

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.2

we actually cover 2 topics

arcitecture: components and connectors

patterns: classes/objects in collaboration

note: both topics are relevant across systems

the notion of architecture

illustrates the relevance of the SE principle

abstraction

as an architectural description really aims

at being global, giving essence,

omitting everything else

the notion of pattern

illustrates the relevance of the SE principle

generalisation

as a pattern description really aims

at catching reoccurring essence,

by extracting / combining essential ingredients,

and putting them in place where needed

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.3

architecture, software architecture mainly:

components and connectors

architecture has to do with mastering a system’s

(large) size and (high) complexity

architecture does this by

- globally structuring the system into

a manageable number of parts

- globally gluing, connecting these parts

in the context of architecture,

parts are called components or elements

: composition

glue is called a connector or a relation

: connectivity

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.4

choosing suitable components

as well as suitable connectors has to do with

SEprinciples of

abstraction mainly (already mentioned),

furthermore grouping and viewing

in addition, components have “interfaces”

regulating their mutual visibility

this is viewing again: how a component

is to be viewed by another component

(interface as view provided / requested)

very important:

usually there is

not just one architecture of a system

but there are “many”,

each one geared to some aspect(s) or to some

point(s) of view or the essence chosen

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.5

material is partly based on

the stimulating book

P.Clements, F.Bachmann, L.Bass, D.Garlan,

J.Ivers, R.Little, R.Nord, J.Stafford:

Documenting Software Architectures

Views and Beyond

Addison Wesley, 2003

ISBN 0-201-70372-6

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.6

with respect to software systems

one often discriminates between

3 types of architecture

- wrt what it does: main functionality

this type of architecture gives

structure of logical design corresponding to

the (classical) use case diagram

- wrt how / when it does it: main execution

this type of architecture gives

structure of runnable parts:

the classical components (plug-ins, COTS)

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.7

the third type of architecture

may seem somewhat ill-focused

as it covers two rather unrelated ways for

globally describing a software system

- wrt where it does it: allocation

this type of architecture gives

: the machine(s) where each part is running

or is stored

as well as

: the SE people responsible for each part

one might argue, responsibility is so different

from physical presence

that they could be considered as two different

types of architecture

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.8

architecture of the functionality

components are modules;

in UML: class/object, package, component

such a module is seen as

a bundling of functionality

a module in principle offers its functionality

not only to itself

but also to the other modules

via the connectivity it is specified

whether / how such functionality

can be used by the other modules

relevant relations between modules are:

- is-part-of

- is-dependent-on

- is-a

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.9

the aim of the functionality architecture is:

understanding the logical design

this is important for

- construction: modules serve as blueprint for

the design as well as for the code

- analysis: in particular with respect to the func-

tional requirements

: traceability: from high level requirements

to the detailed invocation sequences

: impact analysis: on the basis of high level

problem report or change request,

insight in the detailed consequences

(in terms of functionality)

- communication: conveying insight into the

system’s functionality to someone else

module (de)composition supports both

top-down and bottom-up presentation

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.10

functionality architecture can be presented

on the basis of various styles

recurring elements of a style: not unlike pattern

4 styles:

- decomposition style:

- uses style

- generalization style:

- layered style / tier style:

<<uses>>

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.11

for the layered style there is

no specific UML notation

but one often sees diagrams like

only the 4th (layered) is referred to as a pattern

or

or

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.12

interesting example of layered style is

ArchiMate

being an architectural framework language for

business, software and hardware architecture

a layer in ArchiMate is a grouping

(package-like)

above 3 different architectures

- business, software and hardware -

are put into 3 different, hierarchical layers:

- business layer (top)

- application layer (middle)

- infrastructure layer (bottom)

comprising real and virtual machines,

and (lower level) system software

in between top-middle and middle-bottom

there are two additional layers

containing the services provided

by middle to top and by bottom to middle

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.13

characteristic structure of an ArchiMate model:

Business Layer

ClaimHandlingProcess

Ext.Appl.Services

ClaimEntering

Application Layer

Ext.Infrst.Services

ClaimsFile

Infastructure Layer

DB2SunServer

ClaimAdministration

(use)

(realization)

InsurerRole(assignment)

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.14

the ArchiMate layering can be extended with

Environment Layer (and ExtBusServices)

containing eg. Clients, other organisations

and their processes

so ArchiMate’s layering

indeed has the 3 tiers:

Business, Application, Infrastructure

but (commonly) the layer structure

is bipartite

regulating the strictly hierarchical

use of / via the externally offered services

via separate layers in between

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.15

(back to general functional architectures)

what the styles are for

decomposition style:

- understanding, learning

- distributing development among a team

uses style:

- incremental development

- testing, debugging (of functionality mainly)

generalization style:

- extension, evolution

- local change, variation

- reuse

layered style:

based on information hiding, support for virtual

machine, so

- modifyability

- portability

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.16

architecture of the system in execution

often referred to as components and connectors

C&C,

but substantially more restricted than

the components and connectors from composi-

tion and connectivity as in general architecture

(called elements and relations for this reason!)

a component is a type description of

a runtime entity

a connector is a type description of

a physical link between components at run time

interfaces are referred to as ports

via a port a component sends to / receives from

unknown elsewhere signals

(triggers, messages, data; no calls)

the signals are transmitted via a connector, link-

ing ports of components

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.17

the aim of the C&C architecture is:

understanding the execution of the system

this is important for runtime requirements like

performance, reliability, availability

leads to insight into

- (main) running components, their interaction

- shared data stores

- shared applications

- replication

- protocols

- sequentialization, true concurrency

- flow of data

- flow of control

- tuning of runtime configuration

insight is sometimes based on formal analysis,

more often based on experience, heuristics

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.18

for this type of architecture the styles are

very often referred to as architectural patterns

6 styles:

- pipe and filter

- shared data

- publish subscribe

- client server

- peer to peer

- communicating processes

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.19

what the styles are for,

together with some common representation

pipe and filter:

- (subsequent) data transformation and their

scheduling

- latency between input and eventual output

- buffer capacity and speed at pipes

note: this is not a very UML-like notation

filter:

pipe:

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.20

it is interesting to remark how ArchiMate

integrates features

from different architectural types:

1 (business/application /infrastructure) process

via different roles (or collaborations) assigned

the execution (filtering) result is being pumped

further

(choices are common, loops not common)

trigger:

ClaimHandlingProcess

Registering Accepting Valuating Paying

can be refined into smaller process steps:

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.21

shared data:

- decoupling of data production and consump-

tion (not necessarily destroying)

- bottle-neck analysis

- security, privacy, authorization

- coupling storage and access: mapping data

and computation

- data persistence

DB

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.22

publish subscribe:

- decoupling sending and receiving: set of re-

ceivers is unknown

- modifyability of number of receivers,

even on the fly

blackboard architecture is even more specific:

also (number of) sender(s) is unknown

EventDistrbtr
/ BlackBoard

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.23

client server:

- decoupling applications from services used

- deploying of often used services on specific

hardware

- interoperability

- integration with legacy systems

- scalability

- reliability

- quality of service: both functional and non

functional requirements

- quality of service usage

Server Server

Client
Client

Client
Client

Client

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.24

again

ArchiMate integrates not only features from

different architectural types

but also features from

different architectural styles

apart from the pipe and filter style

for its processes

it has the service layers to connect

business, application, infrastructure layers

so ArchiMate has the flavour of a SOA

(Service-Oriented Architecture)

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.25

peer to peer:

- collaboration, allowing for all kinds of roles

- flexibility in distributing the separate collabo-

rations

- local sharing of data, resources within set of

collaborating peers

eg. CORBA (Common Object Request Broker

Architecture) is peer-to-peer

the connectors are of the type:

invoke procedure

in accordance to the interface specifications

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.26

communicating processes:

- true concurrency versus bundling of threads of

control (interleaving)

- detailed performance and reliability issues

- protocol conformity

a visualization would be equal to

the peer to peer picture

but now the connectors can be of

any type of communication,

be it that most often for any connector the type

of communication is fixed

note:

pre-emption / explicit interruption,

actually hidden in the other C&C styles,

can be addressed straightforwardly

as can every gradation of asynchronity

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.27

ArchiMate has also collaborations:

a grouping of roles

together being responsible for process (step)

it leaves unspecified which role does which part

of the process (step)

neither is there communication between roles

indicated:

only the collaborative result counts

(a typically managerial view)

such an ArchiMate collaboration then is

an underspecified peer-to-peer or even

communicating processes style - yet another!

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.28

architecture of the allocation

elements are

software units allocated to “physical unit”

the software units are

either (sets of) modules or (sets of) components

the physical units depend on the style:

deployment style:

piece of hardware: processor, storage, router

implementation style:

configuration item: file, directory

work assignment style:

human: person, team, subcontractor

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.29

note

3rd style in particular is rather divergent

but for this ArchiMate’s eclecticism

is quite clarifying:

(eclecticism: combining everything useful)

- roles are assigned to teams, people

- application(step)s are coupled to platforms

(be it via services, e.g. provided

by the right application server)

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.30

what the styles are for

deployment:

- performance: tuning by adapting

- reliability, security: keeping copies elsewhere,

migration at runtime

- cost estimation: of deploying the system

implementation:

- configuration management, both during de-

velopment and production

- version management and specification of dif-

ferences

- highlighting, isolating an item for special pur-

poses, eg. testing, refactoring

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.31

work assignment:

- team resource management: responsibility,

skills, experience

- understanding project structure, internally and

externally

- project planning: work break down, cost esti-

mation, scheduling

note

different architectures can “coincide”:

modules or components can serve as unit for

work assignment

eg hiding of internal details, as in modules or in

components, can be similar to how team mem-

bers are to integrate their software elements

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.32

recapitulating the above 3 architectures

main functionality covers

structuring what the system does

main execution covers

structuring how the system acts

allocation covers

where the system resides

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.33

beginning awareness of fourth architecture:

“impact”

again it makes sense to discriminate between

what in the organisation / environment

how in the organisation / environment

where in the organisation / environment

(also for this see ArchiMate)

so it seems:

not only modelling can be extended to

the domains of organisation / environment

but also the architectural views and styles

analogous to the what-how-where division

this reinforces ideas about

integration-orientation

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.34

on the other hand,

one can also start from architectural concepts in

the org/env domain

and extend these to the software domain,

possibly via systematic translation to eg UML

(approach as in ArchiMate)

this could be a topic of study in

(process) integration, alignment

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.35

discussion about role of objects in architecture

some authors state:

OO is absolutely unfit for architectural specifi-

cations

as OO paradigm has been built on

calling a method of a certain object, and to that

aim the object must be known at runtime at the

moment of calling

this then is considered to be

fundamentally different from the C&C idea

where signals are sent and received via ports,

without knowing which component or object

for that matter is out there

but:

the protocols and their local interpretations

guarantee equivalent behavioural reaction

moreover, UML 2.0 has ports etc

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.36

the above type-style combinations

of an architecture

are examples of

often used or often recognized

global structures

of software systems as a whole

however, on a smaller scale too

ie. within models / software

one uses / recognizes again and again

particular structures with particular behaviour

and communication

as eg. wrt. UML’s collaborations

such often occurring structures are called

patterns

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.37

well-known book about patterns:

E.Gamma, R.Helm, R.Johnson, J.Vlissides:

Design Patterns

Elements of Reusable Object-Oriented Soft-

ware

Addison Wesley, 1995

ISBN 0-201-63361-2

discusses 23 patterns in 3 categories:

5 creational patterns

7 structural patterns

11 behavioural patterns

remember:

often occurring --> generalization principle

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.38

some design pattern examples follow here

(very superficially only)

creational patterns:

Singleton:

restricts number of instances of a class to 1,

offers a global access point for it

upon instantiating (construction) a specific

counter is checked

same idea (pattern!) works for a different fixed

maximum of instances

also allows for subclasses of the singleton class

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.39

Factory Method:

provides an interface on a general level for in-

stantiating an object, by letting subclasses de-

termine which class the object is an instance of;

so it delegates a class instantiation to subclasses

Machine

MakeProduct()
NewProduct()

ConcreteMachine

MakeProduct()

Product

Manipulate()

ConcreteProduct

Manipulate()

<<creates>>

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.40

structural patterns:

Adapter

changes an interface into another, such that the

new form corresponds to what is expected else-

where

AKA (also known as) Wrapper or Envelope

Often by renaming,

but also by rearranging functionality

Decorator (AKA Wrapper !!)

Extending functionality of an object dynamical-

ly (eg instead of subclassing)

Combining Adapter and Decorator can result in

a completely different functionality look-and-

feel

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.41

Proxy

offers a substitute, placeholder for an object to

hide the actual access

Thing

Operate()

Proxy

Operate()

RealThing

Operate()

knows

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.42

behavioural patterns:

Observer

AKA Publish-Subscribe !!, Dependent

assures a one-to-many dependency between ob-

jects such that

the (many) dependents of the (one) object

are kept informed and adjusted as soon as the

one is undergoing / performing a state change

Mediator

AKA Broker

arranges the interaction between objects such

that the objects can remain unknown to each

other

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.43

since the GangOfFour (GOF: Gamma et al)

patterns “always” have a fixed structure:

- name: to facilitate discussion and usage

- synonyms (AKA)

- intent: very short characterization

- motivation: reasons and rough idea

- applicability: conditions, criteria, situations

- structure

- participants

- collaborations

the 3 together constitute the pattern’s model

a bit obsolete: should be more complete

- consequences: analysis, discussion, variants

- implementation: discussion about it

- sample code: usually in well-known language

- known uses: real examples,

from different domains

- related patterns: comparison,

complementarity, successful combinations

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.44

(remarks on) examples of a business pattern:

often there is

some architectural pattern for organizations

workflow: pipe and filter pattern

for any business activity

examples:

all waterfall-like process descriptions, e.g.

- complete lifecycle process

of software engineering

- complete RE process as in chapter 2

- complete elicitation&analysis process

as in beginning of this chapter

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.45

for general, managed organizations:

embedded feedback loop pattern

(Dutch: besturingsparadigma)

Environment

input output

primary / production

process

standards external
data

(intern)

information

control

Management
(Managem)
InfoSystem

data

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.46

some remarks:

- this is not a UML diagram

rather it is a data flow process diagram

- information and control are both data too

- standards and external data are optional

- pattern is recursive: it can re-occur

inside primary process

inside information system (IS)

inside management

or inside a combination of these

- ICT can have overlap with Management and

with primary process (not only with IS)

of the above 13 structural requirements

only “sample code” is not easily fulfilled

unless

any business implementation counts too

RE-ArchPatt Luuk Groenewegen, 2007, BachCS ArchPatt.47

roughly summarizing:

architectures:

reflect macrostructure and macrodynamics

patterns:

reflect microstructure and microdynamics

both are intended for improving

recognition, identification, discussion, analysis,

application of

essence

- global essence (macro)

- recurring essential features (micro)

