
Software Engineering
Spring 2008

Michel Chaudron

Ariadi Nugroho

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 2

Outline

- Introduction

- Course logistics

- Introductory lecture Software Engineering

- What is SE?

- What does a SE do?

- What does a SE process look like?

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 3

Introduction

Michel Chaudron

- Associate Professor in Leiden (1d) & Eindhoven (4d)

- Ph.D. students: Ariadi Nugroho (assistant) & Werner Heijstek

- M.Sc. & Ph.D. from Leiden, some time abroad

- some years with IT company

- research in software engineering:

- software architecture and component-based sw engineering

- quality, measurement in SE – esp. UML

- Collaborations with companies: Philips, Oce, CapGemini,

LogicaCMG, KLM, Nokia, …

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 4

What you will learn?

Engineering = skill + knowledge

This course 80% knowledge and 20% skills

Basic concepts, vocabulary of Software Engineering

Main activities in SE projects

Main methods and techniques (excluding: programming)

Guest Lectures by professionals

SE as an academic research area

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 5

Book: Object-Oriented Software Engineering,

Timothy C. Lethbridge, Robert Laganière (2nd Ed.)

Ch 1: introduction to the subject

Ch 2: OO-basics

Ch 4: Requirements

Ch 5 & Ch 8: Modeling using UML

Ch 6: Design patterns

Ch 9: Architecture & Designing

Ch 10: Testing / Quality Assurance

Ch 11: Management (Estimation, Risk)

Websites: www.mhhe.com/lethbridge en www.llsoeng.com

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 6

Assignment

Car Navigation System

- Requirements

- Architecture & Design

- Analysis

- Implementation (mock-up)

- Test

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 7

Lectures Schedule

Vragen-uurChaudron8 mei1319

Hemelvaart--1 mei18

24 april1217

Rijn Buve?17 april1116

Gastspreker (KLM ? / TomTom?)Rijn Buve?10 april1015

LL Ch. 10Testing & Quality Assurance
(Requirements, Design, Code)

Bart Knaack3 april914

onderzoeksmethoden empirisch
onderzoek in software engineering

Chaudron27 maart813

LL Ch 6Design Patterns / RefactoringBart Kienhuis20 maart712

LL Ch 10 & 11Software MetricsChaudron13 maart611

LL Ch 11Cost Estimation, Planning & ControlPeter Bink6 maart510

LL Ch 5Modeling with UMLChaudron28 feb49

LL Ch. 9Software Architecting Chaudron21 feb38

LL Ch.4.Requirements EngineeringChaudron14 feb27

LL Ch 1, 2Introduction Software EngineeringChaudron7 feb16

Huiswerk/leeswe
rk

onderwerplecturerDatumWk-
nr

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 8

Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 1: Software and Software Engineering

What is Software Engineering?

What is SW quality?

What is a software development process?

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 9

1.1 The Nature of Software...

Software is intangible

• Hard to understand development effort

Software is easy to reproduce

• Cost is in its development

—in other engineering products, manufacturing is the costly

stage

The industry is labor-intensive

• Hard to automate

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 10

The Nature of Software ...

Untrained people can hack something together

• Quality problems are hard to notice

Software is easy to modify

• People make changes without fully understanding it

Software does not ‘wear out’

• It deteriorates by having its design changed:

—erroneously, or

—in ways that were not anticipated, thus making it complex

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 11

The Nature of Software

Conclusions

• Much software has poor design and is getting worse

• Demand for software is high and rising

• We are in a perpetual ‘software crisis’

• We have to learn to ‘engineer’ software

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 12

Types of Software...

Custom

• For a specific customer

Generic

• Sold on open market

• Often called

—COTS (Commercial Off The Shelf)

—Shrink-wrapped

Embedded

• Built into hardware

• Hard to change

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 13

Types of Software

Custom Generic Embedded

Number of copies in use low medium high

Total processing power

devoted to running this type

of software

low high medium

Worldwide annual

development effort

high low high

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 14

Types of Software

Real time software

• E.g. control and monitoring systems

• Must react immediately

• Safety often a concern

Business Information Systems (Data processing)

• Used to run businesses

• Accuracy and security of data
are key

Some software has both aspects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 15

1.2 What is Software Engineering?...

The process of solving customers’ problems by the systematic
development and evolution of large, high-quality software
systems within cost, time and other constraints

Solving customers’ problems

• This is the goal of software engineering

• Sometimes the solution is to buy, not build

• Adding unnecessary features does not help solve the problem

• Software engineers must communicate effectively to identify
and understand the problem

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 16

What is Software Engineering?…

Systematic development and evolution

• An engineering process involves applying well understood techniques in a
organized and disciplined way

• Many well-accepted practices have been formally standardized

—e.g. by the IEEE or ISO

Large, high quality software systems

• Software engineering techniques are needed because large systems cannot
be completely understood by one person

• Teamwork and co-ordination are required

• Key challenge: Dividing up the work and ensuring that the parts of the
system work properly together

• The end-product that is produced must be of sufficient quality

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 17

What is Software Engineering?...

Other definitions:

• IEEE: (1) the application of a systematic, disciplined, quantifiable approach to the

development, operation, maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1)

• The Canadian Standards Association: The systematic activities involved in the

design, implementation and testing of software to optimize its production and

support.

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 18

What is Software Engineering?

Cost, time and other constraints

• Finite resources

• The benefit must outweigh the cost

• Others are competing to do the job cheaper and faster

• Inaccurate estimates of cost and time have caused many

project failures

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 19

What is the Science of Software Engineering?

The scientific study of

methods, techniques, processes

for creating software

Effect of techniques on quality, productivity

Object Oriented programming languages are better.

Agile development processes lead to faster development.

Often studied empirically

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 20

1.4 Stakeholders in Software Engineering

1. Users

• Those who use the software

2. Customers

• Those who pay for the software

3. Software developers

• Those who make the software

4. Development Managers

All four roles can be fulfilled by the same person

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 21

What does a Software Engineer do?

programming

presenting

reporting

documenting

individually

listening

interacting

with clients

in team

explaining
feedbackplanning

reviewing

Specializing in different roles

- designing, programming, testing …

brainstorming

discussing

planning

selling

Microsoft 1978

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 22

1.5 Software Quality...

Usability

• Users can learn it and fast and get their job done easily

Efficiency

• It doesn’t waste resources such as CPU time and memory

Reliability

• It does what it is required to do without failing

Maintainability

• It can be easily changed

Reusability

• Its parts can be used in other projects, so reprogramming is not

needed

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 23

Software Quality...

QUALITY

SOFTWARE

Developer:

easy to design;

easy to maintain;

easy to reuse its parts

User:

easy to learn;

efficient to use;

helps get work done

Customer:

solves problems at

an acceptable cost in

terms of money paid and

resources used

Development manager:

sells more and

pleases customers

while costing less

to develop and maintain

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 24

Software Quality

The different qualities can conflict

• Increasing efficiency can reduce maintainability or reusability

• Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering activity

• You then design to meet the objectives

• Avoids ‘over-engineering’ which wastes money

Optimizing is also sometimes necessary

• E.g. obtain the highest possible reliability using a fixed budget

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 25

Internal Quality Criteria

These:

• Characterize aspects of the design of the software

• Have an effect on the external quality attributes

• E.g.

—The amount of commenting of the code

—The complexity of the code

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 26

Short Term Vs. Long Term Quality

Short term:

• Does the software meet the customer’s immediate needs?

• Is it sufficiently efficient for the volume of data we have

today?

Long term:

• Maintainability

• Customer’s future needs

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 27

1.6 Software Engineering Projects

Most projects are evolutionary or maintenance projects,

involving work on legacy systems

• Corrective projects: fixing defects

• Adaptive projects: changing the system in response to changes

in

—Operating system

—Database

—Rules and regulations

• Enhancement projects: adding new features for users

• Reengineering or perfective projects: changing the system

internally so it is more maintainable

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 28

Software Engineering Projects

‘Green field’ projects

• New development

• The minority of projects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 29

Software Engineering Projects

Projects that involve building on a framework or a set of
existing components.

• The framework is an application that is missing some
important details.

—E.g. Specific rules of this organization.

• Such projects:

—Involve plugging together components that are:
- Already developed.

- Provide significant functionality.

—Benefit from reusing reliable software.

—Provide much of the same freedom to innovate found in
green field development.

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 30

1.7 Activities Common to Software Projects...

Requirements and specification

• Includes

—Domain analysis

—Defining the problem

—Requirements gathering

- Obtaining input from as many sources as possible

—Requirements analysis

- Organizing the information

—Requirements specification

- Writing detailed instructions about how the software should

behave

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 31

Activities Common to Software Projects...

Design

• Deciding how the requirements should be implemented, using
the available technology

• Includes:

—Systems engineering: Deciding what should be in
hardware and what in software

—Software architecture: Dividing the system into
subsystems and deciding how the subsystems will interact

—Detailed design of the internals of a subsystem

—User interface design

—Design of databases

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 32

Activities Common to Software Projects

Modeling

• Creating representations of the domain or the software

—Use case modeling

—Structural modeling

—Dynamic and behavioural modeling

Programming

Quality assurance

• Reviews and inspections

• Testing

Deployment

Managing the process

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 33

1.8 The Eight Themes of the Book

1. Understanding the customer and the user

2. Basing development on solid principles and reusable

technology

3. Object orientation

4. Visual modeling using UML

5. Evaluation of alternatives

6. Iterative development

7. Communicating effectively using documentation

8. Risk management in all SE activities

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 34

Difficulties and Risks in Software Engineering

• Complexity and large numbers of details

• Uncertainty about technology

• Uncertainty about requirements

• Uncertainty about software engineering skills

• Constant change

• Deterioration of software design

• Political risks

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 35

Software Development Process Models

•Waterfall

•Iterative

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 36

SDP Models (1)
T
im
e

WaterfallWaterfallWaterfallWaterfall ModelModelModelModel (Mid 70ies)

Test

Specification

Design

Implementation

Requ. Eng. &
Architecting

→ No iterations

→ Big bang scenario

→ First-time right

milestone 1

milestone 2

milestone 3

milestone 4

milestone 5

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 37

Feasibility studyFeasibility study

The waterfall model

User RequirementsUser Requirements

System DesignSystem Design

CodingCoding

OperationOperation

TestingTesting

AnalysisAnalysis

Program DesignProgram Design

DecomissionDecomission

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 38

Requirements Requirements Requirements Requirements Vision & first idea

AnalysisAnalysisAnalysisAnalysis Requirements Document (WHAT)

Context model & Requirements Spec.

Architectural Model Architectural Model Architectural Model Architectural Model (HOW)

Feasibility Study (can product be made?)

Risk Assessment (project threats and risks?)

Design & SpecificationDesign & SpecificationDesign & SpecificationDesign & Specification

System Spec. (WHAT):

Design (HOW)

ImplementationImplementationImplementationImplementation Coding & Testing (HOW):

TestTestTestTest Integration and acceptance Test

The Classical Waterfall Model (Example)
e
x
e
c
u
te
 in
 s
tric

t
s
e
q
u
e
n
tia
l o
rd
e
r

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 39

Feasibility studyFeasibility study

The V-process model

User requirementsUser requirements

System designSystem design

Program designProgram design Program testingProgram testing

CodingCoding

System testSystem test

User acceptanceUser acceptance

ReviewReview

C
o

rr
e
c
ti
o

n
s

Another way of looking at the waterfall model

Validation process

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 40

The milestones did not fit in many project situations, leading to:

• GoldGoldGoldGold----platingplatingplatingplating

Extensive written requirements spec's cause overemphasis

on "complete" requirements and invite "just-in-case" additions

• Inflexible point solutionsInflexible point solutionsInflexible point solutionsInflexible point solutions

- Fixed requirements spec's produce inflexible solutions optimized

around the initial problem statement

- Forced early design decisions

• Bad usabilityBad usabilityBad usabilityBad usability

Written req. spec's are not nearly as effective as a prototype

Requirements often emerge only after demonstration and feedback

Problems of the Waterfall Process (1)

→ Iterative development

→ A prototype is worth a 100.000 words

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 41

The waterfall model (cont‘d)

Pros:

Imposes structure on complex

projects

Every stage needs to be checked and

signed off:

• Elimination of midstream changes

Good when quality requirements

dominate cost and schedule

requirements

Pros:

Imposes structure on complex

projects

Every stage needs to be checked and

signed off:

• Elimination of midstream changes

Good when quality requirements

dominate cost and schedule

requirements

Cons:

Limited scope for flexibility /

iterations

Full requirements specification at

the beginning:

• User specifications

No tangible product until the end

Cons:

Limited scope for flexibility /

iterations

Full requirements specification at

the beginning:

• User specifications

No tangible product until the end

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 42

Problems of the Waterfall Process (2)

Business Modeling

Requirements & Architecting

Specification & Design

Implementation

Testing

Consultants

Architect(s)

IT-Specialists

IT-Engineers

IT-Engineers

Communication becomes highly critical

Different phases are handled by different people

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 43

SDP Models (2)

WaterfallWaterfallWaterfallWaterfall
ModelModelModelModel

(Mid 70ies)

Test

Specification

Design

Implementation

Requ. Eng. &
Architecting

Scope

T
im
e

EvolutionaryEvolutionaryEvolutionaryEvolutionary
ModelModelModelModelssss
(80ies)

Increments
(Spiral cycles)

Iteration

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 44

Rational Unified Process (RUP)

PhasesPhases

IterationsIterations

DisciplinesDisciplines

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 45

• Inflexible point solutionsInflexible point solutionsInflexible point solutionsInflexible point solutions

The initial release is optimized for demonstration,

consequently the architecture is difficult to extend

• HighHighHighHigh----risk downstream capabilitiesrisk downstream capabilitiesrisk downstream capabilitiesrisk downstream capabilities

The initial release often defers quality attributes

(dependability, scalability, etc.) in favor of early

functionality

Problems of Evolutionary Models

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 46

Reflect & L
earn

3. Reconcile win conditions
Establish next-increment
objectives, constraints &
alternatives

2. Identify stakeholders
objectives and win
conditions / values

7. Verify & commit

6. Implement product
& process definitions

5. Define next-increment
of product & process,
inclusive partitions

4. Evaluate product and
process alternatives
Resolve risks

1. Identify
next-increment
stakeholders

Emphasizes continuous
stakeholder alignment

Win-Win Spiral Model (Boehm, 1998)

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 47

increment

1

increment

2

increment

3

delivered
system

Incremental delivery

first incremental delivery

designdesign buildbuild installinstall evaluateevaluate

second incremental delivery

designdesign buildbuild installinstall evaluateevaluate

third incremental delivery

designdesign buildbuild installinstall evaluateevaluate

Each component delivered must give some
benefit to the stakeholders

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 48

ExamplesExamplesExamplesExamples:

• Risk-, reuse-, legacy- and demo-driven

• Various variants of evolutionary development

• Hybrids

SW organizations had difficulties
to establish a common reference

Proliferation of Alternative Models

Early 1990’s

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 49

The plan

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 50

Reality

The output of a project needs to be
Understood
Maintained
Reused

Fake a rational design process
� Document in a orderly and

systematic manner

The output of a project needs to be
Understood
Maintained
Reused

Fake a rational design process
� Document in a orderly and

systematic manner

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 51

Questions?

Homework:

- Read

- Chapter 1 Introduction Software Engineering

- Chapter 2 Review Object Orientation

