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Complex Numbers

Lecture 1

Number systems
• Positive numbers,
• Natural numbers, 
• Integers (or whole numbers),

• Rational numbers,

• Real numbers,

• New system: complex numbers
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Imaginary numbers
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Complex numbers

Rbabiaibac ∈+=×+= ,  where,

real part imaginary part
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Algebra of complex numbers
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Algebra (cont’d)

• Addition and multiplication are commutative:

• They are also associative:

• Multiplication distributes over addition:
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Algebra (cont’d)
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Algebra (cont’d)

• Absolute value for real numbers:

• Generalization for complex numbers:

2aa +=

modulus of a complex number
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Algebra (cont’d)

2121 cccc =

identity additive is )0,0(      )0,0()0,0( ⇒=+=+ ccc
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Algebra (cont’d)
• Summarizing, defined a set of numbers C with 4 

operations and following properties:
1) Addition is commutative and associative
2) Multiplication is commutative and associative
3) Addition has identity: (0,0)
4) Multiplication has identity: (1,0)
5) Multiplication distributes with respect to addition
6) Subtraction (i.e., inverse of addition) is defined everywhere
7) Division (i.e., inverse of multiplication) is defined everywhere

except when the divisor is zero.

• → C is a 
– field
– algebraically complete: contains all solutions for any of its 

polynominal equations (R is not)

Algebra (cont’d)

• Unary operation ‘changing sign’:
1) change the sign of the real part
2) change the sign of the imaginary part
3) change both

• 3) is obtained by multiplication with (-1,0)
• What about 2) and 1)?

Algebra (cont’d)

• Conjugation

• Properties:

• Changing the sign of the real part has no 
particular name.
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Geometry of complex numbers

Complex or Argand plane Vector 3 + 4i

Modulus is the length of the vector

Geometry (cont’d)

Addition: Parallelogram rule

Subtraction

Geometry (cont’d)

• Cartesian representation (a,b)
• Polar representation (ρ,θ), where ρ represents 

the modulus/magnitude, and θ is called the 
angle/phase

Points with same ρ

0≥ρ

Points with same θ

πθ 20 <≤

Geometry (cont’d)
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Geometry (cont’d)

( ) ( ) ( )21212211 ,,, :tionMultiplica θθρρθρθρ +=×

Errata chapter 1
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Reading

• This lecture: chapter 1, p 7-20

• Next lecture (next week?):                
chapter 2    Complex Vector Spaces


