Associations and Frequent Item **Analysis**

Outline

- Transactions
- Frequent itemsets
- Subset Property
- Association rules
- Applications

Transactions Example

TID Produce

- MILK, BREAD, EGGS 1
- BREAD, SUGAR 2 BREAD, CEREAL
- 3 4 MILK, BREAD, SUGAR
- MILK, CEREAL 5
- 6 BREAD, CEREAL
- 7 MILK, CEREAL

- MILK, BREAD, CEREAL, EGGS 8
- MILK, BREAD, CEREAL 9

Transaction database: Example

2

TID	Products
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

ITEMS: A = milk

B= bread C= cereal D= sugar E= eggs

Instances = Transactions

Transaction database: Example

3

Attributes converted to binary flags

TID	Products	TID	Α	в	С	D	Е
1	A, B, E	1	1	1	0	0	1
2	B, D	2	0	1	0	1	0
3	B, C	3	0	1	1	0	0
4	A, B, D	4	1	1	0	1	0
5	A, C	5	1	0	1	0	0
6	B, C	6	0	1	1	0	0
7	A, C	7	1	0	1	0	0
8	A, B, C, E	8	1	1	1	0	1
9	A, B, C	9	1	1	1	0	0

5

Definitions

Item: attribute=value pair or simply value

4

- usually attributes are converted to binary *flags* for each value, e.g. **product="A"** is written as "A"
- Itemset I : a subset of possible items

- Example: I = {A,B,E} (order unimportant)
- Transaction: (TID, itemset)
 - TID is transaction ID

Support and Frequent Itemsets

- Support of an itemset
 - sup(I) = no. of transactions t that support (i.e. contain) I
- In example database:
 - sup ({A,B,E}) = 2, sup ({B,C}) = 4
- Frequent itemset *I* is one with at least the minimum support count

7

sup(I) >= minsup

SUBSET PROPERTY

- Every subset of a frequent set is frequent!
- Q: Why is it so?
- A: Example: Suppose {A,B} is frequent. Since each occurrence of A,B includes both A and B, then both A and B must also be frequent
- Similar argument for larger itemsets

8

 Almost all association rule algorithms are based on this subset property

Association Rules

- Association rule *R* : *Itemset1* => *Itemset2*
 - *Itemset1, 2* are disjoint and *Itemset2* is non-empty
 - meaning: if transaction includes *Itemset1* then it also has *Itemset2*
- Examples
 - A,B => E,C
 - A => B,C

From Frequent Itemsets to Association Rules

- *Q: Given frequent set {A,B,E}, what are possible association rules?*
 - A => B, E
 - A, B => E
 - A, E => B
 - B => A, E
 - B, E => A
 - E => A, B
 - = __ => A,B,E (empty rule), or true => A,B,E

10

Classification vs Association Rules

11

Classification Rules

- Focus on one target field
- Specify class in all cases
- Measures: Accuracy
- Association RulesMany target fields
- Annlianhla in anna ana
- Applicable in some cases
- Measures: Support, Confidence, Lift

Rule Support and Confidence

- Suppose R : I => J is an association rule
 - sup (R) = sup (I ∪ J) is the support count
 support of itemset I ∪ J (I or J)
 - conf (R) = sup(J) / sup(R) is the *confidence* of R
 fraction of transactions with I ∪ J that have J
- Association rules with minimum support and count are sometimes called "*strong*" rules

Association Rules Example:

items

• O: Given frequent set (A B E) what		List of item
- Q : Given frequent set $\{A, B, E\}$, what	1	A, B, E
association rules have minsup = 2 and minsup = 2 and	2	B, D
mincont= 50% ?	3	B, C
A, B => E : $conf=2/4 = 50\%$	4	A, B, D
A E . D	5	A, C
A, $E => B$: conf=2/2 = 100%	6	B, C
B. $F => A$: conf=2/2 = 100%	7	A, C
	8	A, B, C, E
E => A, B : conf=2/2 = 100%	9	A, B, C
Don't qualify		
A =>B, E : conf=2/6 =33%< 50%		
B => A, E : conf=2/7 = 28% < 50%		
=> A,B,E : conf: 2/9 = 22% < 50%		
13		

Find Strong Association Rules

- A rule has the parameters *minsup* and *minconf*:
 - sup(R) >= minsup and conf (R) >= minconf
- Problem:
 - Find all association rules with given minsup and minconf
- First, find all frequent itemsets

Finding Frequent Itemsets

- Start by finding one-item sets (easy)
- Q: How?
- A: Simply count the frequencies of all items

15

Finding itemsets: next level

14

- Apriori algorithm (Agrawal & Srikant)
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - If (A B) is a frequent item set, then (A) and (B) have to be frequent item sets as well!
 - In general: if X is frequent k-item set, then all (k-1)item subsets of X are also frequent
 - \Rightarrow Compute *k*-item set by merging (*k*-1)-item sets

16

An example

- Given: five three-item sets
 - (A B C), (A B D), (A C D), (A C E), (B C D)

Q: OK?

17

- Lexicographic order improves efficiency
- Candidate four-item sets:

(A B C D)

A: yes, because all 3-item subsets are frequent

(A C D E) Q: OK?

A: No, because (C D E) is not frequent

Generating Association Rules

- Two stage process:
 - Determine frequent itemsets e.g. with the Apriori algorithm.
 - For each frequent item set I
 - for each subset J of I
 - determine all association rules of the form: I-J => J
- Main idea used in both stages : subset property

Example: Generating Rules from an Itemset

Frequent itemset from golf data:

Humidity = Normal, Windy = False, Play = Yes (4)

Seven potential rules:

If	Humidity = Normal and Windy = False then Play = Yes	4/4
If	Humidity = Normal and Play = Yes then Windy = False	4/6
If	Windy = False and Play = Yes then Humidity = Normal	4/6
If	Humidity = Normal then Windy = False and Play = Yes	4/7
If	Windy = False then Humidity = Normal and Play = Yes	4/8
If	Play = Yes then Humidity = Normal and Windy = False	4/9
If	True then Humidity = Normal and Windy = False and Play = Yes	4/12

19

Rules for the weather data

• Rules with support > 1 and confidence = 100%:

	Association rule		Sup.	Conf.
1	Humidity=Normal Windy=False	⇒Play=Yes	4	100%
2	Temperature=Cool	⇒Humidity=Normal	4	100%
3	Outlook=Overcast	⇒Play=Yes	4	100%
4	Temperature=Cold Play=Yes	\Rightarrow Humidity=Normal	3	100%
58	Outlook=Sunny Temperature=Hot	⇒Humidity=High	2	100%

 In total: 3 rules with support four, 5 with support three, and 50 with support two

Weka associations

File: weather.nominal.arff MinSupport: 0.2

exa.associations.Aprior	1
Finds association rules.	More
metricType	Confidence
iowerBoundMinSupport	0.2
minMetric	0.9
upperBoundMinSupport	1.0
removeAllMissingCols	False 💌
significanceLevel	-1.0
delta	0.05
numRules	10

Weka associations: output

20

Preprocess	Classify	Cluster	Associate	Select attributes	Visualize	
Associator						
Apriori -N 10	-T 0 -C 0.	9 -D 0.05	-U 1.0 -M 0.2	-8 -1.0		
Start	Stop	Assoc	iator output-			
Save Ou	rtput	Size	of set of	large itensets	L(2): 26	
Result list		Size	of set of	large itensets	L(3): 4	
22:29:06 - Ap	riori	1				
22:29:53 - Ap	riori	Best	rules four	id:		
		1. h 2. t 3. o 4. t 5. o 6. o 7. o 8. o	umidity-ne emperature utlook=ove emperature utlook=ra: utlook=ra: utlook=sus utlook=sus	<pre>prnal windy-FAL: ==cool 4 ==> hu rrcast 4 ==> pl. ==cool play=yes iny windy=FALSE iny play=yes 3 = uny humidity=hi uny play=no 3 ==</pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
10g			ces tenor			
22:29:06: 5ta 22:29:06: Fin	ished wek	associat a.associa	ations Aprior			
22:29:53: Sta	rted weka	associat	ions.Apriori			
22:29:53: Fin	ished wek	a.associa	ations Aprior			
Status						

Filtering Association Rules

21

- Problem: any large dataset can lead to very large number of association rules, even with reasonable Min Confidence and Support
- Confidence by itself is not sufficient
 - e.g. if all transactions include Z, then
 - any rule I => Z will have confidence 100%.
- Other measures to filter rules

Association Rule LIFT

- The *lift* of an association rule *I* => *J* is defined as:
 - lift = P(J|I) / P(J)
 - Note, P(I) = (support of I) / (no. of transactions)
 - ratio of confidence to expected confidence
- Interpretation:
 - if lift > 1, then I and J are positively correlated lift < 1, then I are J are negatively correlated.
 lift = 1, then I and J are independent.

Other issues

- ARFF format very inefficient for typical market basket data
 - Attributes represent items in a basket and most items are usually missing
- Interestingness of associations
 - find unusual associations: Milk usually goes with bread, but soy milk does not.

Beyond Binary Data

Hierarchies

...

- drink → milk → low-fat milk → Stop&Shop low-fat milk
- find associations on any level
- Sequences over time
- ... •

Sampling

- Large databases
- Sample the database and apply Apriori to the sample.
- Potentially Large Itemsets (PL): Large itemsets from sample
- Negative Border (BD⁻):
 - Generalization of Apriori-Gen applied to itemsets of varying sizes.
 - Minimal set of itemsets which are not in PL, but whose subsets are all in PL.

Negative Border Example

Sampling Algorithm

- 1. $D_s = sample of Database D;$
- 2. PL = Large itemsets in D_s using smalls;

27

- 3. $C = PL \cup BD^{-}(PL);$
- 4. Count C in Database using s;
- ML = large itemsets in BD⁻(PL);
- 6. If $ML = \emptyset$ then done
- 7. else C = repeated application of BD^{-1}

29

8. Count C in Database;

Sampling Example

- Find AR assuming s = 20%
- D_s = { t₁,t₂}
- Smalls = 10%
- PL = {{Bread}, {Jelly}, {PeanutButter}, {Bread,Jelly}, {Bread,PeanutButter}, {Jelly, PeanutButter}, {Bread,Jelly,PeanutButter}}

- BD⁻(PL)={{Beer},{Milk}}
- ML = {{Beer}, {Milk}}
- Repeated application of BD⁻ generates all remaining itemsets

Sampling Adv/Disadv

- Advantages:
 - Reduces number of database scans to one in the best case and two in worst.
 - Scales better.
- Disadvantages:
 - Potentially large number of candidates in second pass

Partitioning

Divide database into partitions D¹, D²,..., D^p

32

- Apply Apriori to each partition
- Any large itemset must be large in at least one partition.

Partitioning Algorithm

1. Divide D into partitions D¹,D²,...,D^{p;}

33

31

- 2. For I = 1 to p do
- Lⁱ = Apriori(Dⁱ);
- 4. $C = L^1 \cup ... \cup L^p;$
- 5. Count C on D to generate L;

Partitioning Example

	Transaction	Items
D1	t ₁	Bread,Jelly,PeanutButter
	t ₂	Bread,PeanutButter
	ta	Bread,Milk,PeanutButter
D ²	t_4	Beer,Bread
	t_5	Beer,Milk

L¹ ={{Bread}, {Jelly}, {PeanutButter}, {Bread,Jelly}, {Bread,PeanutButter}, {Jelly, PeanutButter}, {Bread,Jelly,PeanutButter}}

L² ={{Bread}, {Milk}, {PeanutButter}, {Bread,Milk}, {Bread,PeanutButter}, {Milk, PeanutButter}, {Bread,Milk,PeanutButter}, {Beer}, {Beer,Bread}, {Beer,Milk}}

S=10%

Partitioning Adv/Disadv

- Advantages:
 - Adapts to available main memory
 - Easily parallelized
 - Maximum number of database scans is two.

35

- Disadvantages:
 - May have many candidates during second scan.

Count Distribution Algorithm(CDA)

- 1. Place data partition at each site.
- 2. In Parallel at each site do
- 3. C_1 = Itemsets of size one in I;
- 4. Count C_{1;}
- 5. Broadcast counts to all sites;
- 6. Determine global large itemsets of size 1, L₁;
- 7. i = 1;
- 8. Repeat
- 9. i = i + 1;10. $C_i = \text{Apriori-Gen}(L_{i-1});$
- 11. Count $C_i = Apriori$
- 12. Broadcast counts to all sites;
- Determine global large itemsets of size i, L_i;
- 14. until no more large itemsets found;

CDA Example

37

Data Distribution Algorithm(DDA)

- 1. Place data partition at each site.
- 2. In Parallel at each site do
- Determine local candidates of size 1 to count;
- 4. Broadcast local transactions to other sites;
- 5. Count local candidates of size 1 on all data;
- 6. Determine large itemsets of size 1 for local candidates;
- 7. Broadcast large itemsets to all sites;
- 8. Determine L₁;
- 9. i = 1;
- 10. Repeat
- i = i + 1;
 C_i = Aprior
- C_i = Apriori-Gen(L_{i-1});
 Determine local candid
 - Determine local candidates of size i to count;
- 14. Count, broadcast, and find L_i;
- 15. until no more large itemsets found;

DDA Example

39

Applications

- Market basket analysis
 - Store layout, client offers
- …

Application Difficulties

- Wal-Mart knows that customers who buy Barbie dolls have a 60% likelihood of buying one of three types of candy bars.
- What does Wal-Mart do with information like that? 'I don't have a clue,' says Wal-Mart's chief of merchandising, Lee Scott
- See KDnuggets 98:01 for many ideas www.kdnuggets.com/news/98/n01.html
- Diapers and beer urban legend

Summary

- Frequent itemsets
- Association rules
- Subset property
- Apriori algorithm
- Application difficulties