= Handling Numeric Attributes

MaChIne Lea rn I ng In = Finding Best Split(s)
Real World . = Dealing with Missing Values

= Pruning
C4 . 5 = Pre-pruning, Post-pruning, Error Estimates
= From Trees to Rules

= For an algorithm to be useful in a wide range of real- = ID3, CHAID - 1960s

world applications it must: = (4.5 innovations (Quinlan):

= permit numeric attributes

= Permit numeric attributes

= Allow missing values . . -
= deal sensibly with missing values
= Be robust in the presence of noise
robustt pr ! = pruning to deal with for noisy data

= Be able to approximate arbitrary concept descriptions (at least . .

in principle) = C4.5 - one of best-known and most widely-used learning
.) algorithms
Basic schemes need to be extended to fulfill these g
requirements = Last research version: C4.8, implemented in Weka as J4.8 (Java)

= Commercial successor: C5.0 (available from Rulequest)

witten & eibe 3 ¢
Outlook Temperature Humidity Windy Play
Sunny Hot High False No
. H H Sunny Hot High True No

= Standard method: binary splits i g
Overcast Hot High False Yes
= E.g.temp < 45 Rainy Mild Normal False Yes

= Unlike nominal attributes,
every attribute has many possible split points

= Solution is straightforward extension:

« Evaluate info gain (or other measure) If outlook = rainy and windy = true then play = no
for every possible split point of attribute IE outlook = overcast then play = yes

If outlook = sunny and humidity = high then play = no

If humidity = normal then play = yes

= Choose “best” split point If none of the above then play = yes

= Info gain for best split point is info gain for attribute

= Computationally more demanding

witten & eibe 5 witten & eibe 6

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

St 80 90 T N H H .

o ° = Split on temperature attribute:

Overcast 83 86 False Yes

Rainy 75 80 False Yes 64 65 68 69 70 71|72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No| No Yes Yes Yes No Yes Yes No

= E.g. temperature < 71.5: yes/4, no/2
temperature = 71.5: yes/5, no/3

If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes = Info([4,2],[5,3])
If humidity < 85 then play = yes = 6/14 info([4,2]) + 8/14 info([5,3])

If none of the above then play = yes 0.939 bi
=0. its

= Place split points halfway between values

= Can evaluate all split points in one pass!

B witten & eibe 8

Sort instances by the values of the numeric attribute = Entropy only needs to be evaluated between points

- Time complexity for sorting: O (1 log 1) of different classes (Fayyad & Irani, 1992)

Q. Does this have to be repeated at each node of

value 64 65 68 69 70 |71 72| 72| 75 7580 | 81 83 |85
the tree?

class Yes No Yes Yes Yes No No Yes|Yes Yes No Yes Yes No
A: No! Sort order for children can be derived from sort
order for parent Potential optimal breakpoints

= Time complexity of derivation: O (n)
= Drawback: need to create and store an array of sorted indices Breakpoints between values of the same class cannot

for each numeric attribute be optimal

witten & eibe 9 10

= Splitting (multi-way) on a nominal attribute

exhausts all information in that attribute = Missing value denoted “?” in C4.X
= Nominal attribute is tested (at most) once on any path H H . ieci
in the troa = Simple idea: treat missing as a separate value
= Not so for binary splits on numeric attributes! * Q: When this is not appropriate?
= Numeric attribute may be tested several times along a = A: When values are missing due to different
path in the tree reasons
* Disadvantage: tree is hard to read = Example 1: gene expression could be missing when it is
= Remedy: very high or very low
« pre-discretize numeric attributes, or = Example 2: field IsPregnant=missing for a male

patient should be treated differently (no) than for a

= use multi-way splits instead of binary ones female patient of age 25 (unknown)

witten & eibe 11 12

Split instances with missing values into pieces = Goal: Prevent overfitting to noise in the

A piece going down a branch receives a weight data

proportional to the popularity of the branch . " . L.
= Two strategies for “pruning” the decision

weights sum to 1
9 tree:

= Info gain works with fractional instances

]) Postpruning - take a fully-grown decision tree
use sums of weights instead of counts

and discard unreliable parts
= During classification, split the instance into pieces

in the same way Prepruning - stop growing a branch when

information becomes unreliable
Merge probability distribution using weights . . .
= Postpruning preferred in practice—

prepruning can “stop too early”

witten & eibe 13 14

class

B ik ooy

b
0
1
0
1

AW N R
o|r|k

= Based on statistical significance test

Stop growing the tree when there is no statistically significant * Pre-pruning may stop the growth process

association between any attribute and the class at a particular prematurely: early stopping
node = Classic example: XOR/Parity-problem
= Most popular test: chi-squared test No individual attribute exhibits any significant

= ID3 used chi-squared test in addition to information gain association to the class

Only statistically significant attributes were allowed to be
selected by information gain procedure Pre-pruning won't expand the root node

Structure is only visible in fully expanded tree

= But: XOR-type problems rare in practice

= And: pre-pruning faster than post-pruning

witten & eibe 15 witten & eibe 16

= First, build full tree = Bottom-up

= Then, prune it = Consider replacing a tree
I h Il attribute i) only after considering all
Fully-grown tree shows all attribute interactions its subtrees

= Problem: some subtrees might be due to chance effects « Ex: labor negotiations

= Two pruning operations:

Subtree replacement
Subtree raising

= Possible strategies:
error estimation
significance testing
MDL principle

witten & eibe 17 witten & eibe 18

= Bottom-up

= Consider replacing a tree
only after considering all
its subtrees

bad

wage increase Ist year
>4

iTen & eibe I

= Prune only if it reduces the estimated error

= Error on the training data is NOT a useful
estimator
Q: Why it would result in very little pruning?

= Use hold-out set for pruning
(“reduced-error pruning”)

= (C4.5’s method
= Derive confidence interval from training data
= Use a heuristic limit, derived from this, for pruning
= Standard Bernoulli-process-based method
= Shaky statistical assumptions (based on training data)

witten & eibe 2

= Confidence limits for the normal distribution with 0 mean and

a variance of 1: P 5
0.1% 3.09

0.5% 2.58

1% 233

5% 1.65

10% 1.28

20% 0.84

25% 0.69

-1 0 1 165 40% 0.25

= Thus:
Pr[-1.65 < X =1.65]=90%

= To use this we have to reduce our random variable f to have
0 mean and unit variance

witten & eibe £

= Delete node

° = Redistribute instances

= Slower than subtree

replacement
° (Worthwhile?)

witten & eibe 20

= Mean and variance for a Bernoulli trial:
p, p(1-p)

= Expected success rate f=S/N
= Mean and variance for f: p, p (1-p)/N

= For large enough N, f follows a Normal
distribution

= ¢% confidence interval [-z < X < Z] for random
variable with 0 mean is given by:

Prl-z= X =z]=c

= With a symmetric distribution:
Prl-z= X =z]=1-2xPr[X = z]

witten & eibe 22

= Transformed value for f: _Jf-r

\p(-p)/N
(i.e. subtract the mean and divide by the standard deviation)

= Resulting equation:

Pr{—zsﬁsz} =c
N p(=p)/N

Y (PRSP T SN z
p_[f+2jv‘ N N+4Nz)/(1+N)

witten & eibe u

= Solving for p:

= Error estimate for subtree is weighted sum of error
estimates for all its leaves

= Error estimate for a node (upper bound):

e=[f+i+z L—ﬁ+ 222]/(1+22)
2N N 4N N

= If ¢ = 25% then z = 0.69 (from normal distribution)

= f is the error on the training data

= N is the number of instances covered by the leaf

witten & eibe b

= Assume
m attributes
n training instances
tree depth O (log n)

= Building a tree O(mnlog n)
= Subtree replacement O (n)
= Subtree raising O (n (log n)?)

Every instance may have to be redistributed at every node
between its leaf and the root

Cost for redistribution (on average): O (log n)
= Total cost: O (m nlog n) + O (n(log n)?)

witten & eibe 7

= (C4.5rules slow for large and noisy datasets

= Commercial version C5.0rules uses a different technique

Much faster and a bit more accurate

= (4.5 has two parameters

Confidence value (default 25%):
lower values incur heavier pruning

Minimum number of instances in the two most popular
branches (default 2)

witten & eibe £

wage increase Ist year

\f= 514

e=10.46
<
4bad 1 bad 4bad e<0.51
2 good 1 good 2 good so prune!

pal t

]
=0.33 =05
e=0.47 e=0.72

Combined ysing ratios 6:2:6 gives 0.51

witten & eibe

= Simple way: one rule for each leaf
= C4.5rules: greedily prune conditions from each rule
if this reduces its estimated error
Can produce duplicate rules
Check for this at the end
= Then
look at each class in turn
consider the rules for that class
find a “good” subset (guided by MDL)
= Then rank the subsets to avoid conflicts

= Finally, remove rules (greedily) if this decreases
error on the training data

witten & eibe

= Common procedure: separate-and-conquer

Differences:
Search method (e.g. greedy, beam search, ...)
Test selection criteria (e.g. accuracy, ...)
Pruning method (e.g. MDL, hold-out set, ...)
Stopping criterion (e.g. minimum accuracy)
Post-processing step

= Also: Decision list
vs. one rule set for each class

witten & eibe 30

= Basic covering algorithm:

keep adding conditions to a rule to improve its accuracy L.
= Common treatment of missing values:

for any test, they fail

Add the condition that improves accuracy the most
= Measure 1: p/t

t total instances covered by rule Algorithm must either
p number of these that are positive = use other tests to separate out positive instances
Produce rules that don't cover negative instances,
as quickly as possible

May produce rules with very small coverage = In some cases it's better to treat “missing” as a separate
—special cases or noise? value

= leave them uncovered until later in the process

= Measure 2: Information gain p (log(p/t) — log(P/T)) . .)]]
Pand T the positive and total numbers before the new condition = Numeric attributes are treated JUSt like they are in

was added decision trees

Information gain emphasizes positive rather than negative
instances

= These interact with the pruning mechanism used

witten & eibe 31 witten & eibe 32

= Two main strategies: = Decision Trees
Incremental pruning splits — binary, multi-way
Global pruning split criteria — entropy, gini, ...
missing value treatment

= Other difference: pruning criterion

Error on hold-out set (reduced-error pruning) pruning

Statistical significance rule extraction from trees

MDL principle = No method is always superior —

. . experiment!
= Also: post-pruning vs. pre-pruning

witten & eibe 33 witten & eibe 34

