
1

Architecture

Reversible Gates

Quantum Gates

Lecture 6

Reversible Gates
• In quantum world all operations that are not 

measurements:
– reversible
– represented by unitary matrices
– e.g., AND gate are not reversible

NOT gate and identity gate are reversible

• Today’s computers lose energy and generate 
heat. In 1960s Rolf Landauer showed:
– Erasing information causes energy loss and heat
– Writing information not                                         

Landauer’s principle

Landauer’s principle (I)
Intuition (not completely correct): tub of water

No state

In state |0> and in state |1>

State |0> dissipating 
and creating energy

Landauer’s principle (II)

Reversibility of writing

Irreversibility of erasing

Landauer’s principle (III)
• Intuition with two people, Alice and Bob

• Writing
– Alice writes letter on empty blackboard
– Bob walks into the room
– Bob erases the letter
– Blackboard in its original state
– Writing is reversible

• Erasing
– Blackboard with writing on it
– Alice erases the board
– Bob walks into the room
– Bob cannot write what was on the board
– Erasing not reversible

Landauer’s principle (IV)

• Erasing information is an irreversible, 
energy-dissipating operation.

• Charles H. Bennett in 1970s: if erasing 
information is the only operation that uses 
energy, then a computer that is reversible 
and does not erase would not use any 
energy → reversible circuits and 
programs.
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Reversible gates: controlled-NOT gate
• Identity gate

• NOT gate

• Controlled-NOT gate:

y yx ⊕

xx

Top input is control bit:

• if |x›=0 then bottom output of |y› will be the same as the input

• if |x› =1 then the bottom output will be the opposite

Controlled-NOT gate can be reversed by itself
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Reversible gates: Toffoli gate

( )yxz ∧⊕z
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Similar to the controlled-NOT gate, but with two controlling bits:

• the bottom bit flips only when both of the two top bits are in state |1›.

• can be written as ( )yxz ∧⊕
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Toffoli gate (cont’d)
• Toffoli gate is universal: with copies one can make any logical gate.

• You can make a reversible computer using only Toffoli gates.

• In theory this computer will neither use any energy nor give off any 
heat.
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Fredkin gate
• Fredkin gate is also universal:

– the top input is the control input

– |0, y, z › → |0, y, z › and |1, y, z › → |1, z, y›
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Fredkin gate (cont’d)
Universal:

( ) zx ∧¬z

zx∧0
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AND gate

x0

x¬1

xx

NOT gate

Both the Toffoli and the Fredkin gates are universal. 
Not only are both reversible gates, their matrices 
are also unitary.

Quantum gates
• A quantum gate is an operator that acts on qubits. Such operators 

will be represented by unitary matrices.

• Examples: identity operator I, the Hadamard gate H          , the NOT 
gate, the controlled-NOT gate, the Toffoli gate, and the Fredkin gate.

• Pauli matrices:

• Other important matrices:

• Several relations between these operators (see book)
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Square root of NOT gate
• Matrix representation:

• Not its own inverse: √NOT ≠ √NOT†

• Reason for name: 
– Put qubits |0> and |1> through √NOT gate twice:

– Performs same operation as the NOT gate.
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Measurement operation
• Not unitary

• Not reversible

• Usually performed at the end of a computation

• Denoted as

Geometric representation of 
qubit states and operations

Complex numbers c with |c|2 = 1, 
only identified by one number, the 
angle θ between vector and x-axis

x

Qubits |ψ>=c0|0>+c1|1>, where 
|c0|2+|c1|2=1 can be identified by 
two numbers, the latitude θ and 
the longitude φ on a three-
dimensional sphere of radius1, 
known as the Bloch sphere.

Bloch sphere
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Qubit:

Standard parametrization of the unit sphere:
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Bloch sphere (cont’d)
• North pole corresponds to state |0>and south pole 

to |1>.

• Angle φ is the angle that |ψ> makes from x along 
the equator (longitude) and θ is half the angle that 
|ψ> makes with the z axis (latitude).

• When a qubit is measured in the standard basis, it 
collapses to the north or south pole of the Bloch 
sphere. The probability depends on the latitude, 
so on θ.

• Rotation around the z axis, changing the 
longitude: does not affect the probability to which 
classical state it will collapse. It is called a phase 
change, altering the phase parameter eiφ.

2θ Bloch sphere: dynamics
• Every unitary 2-by-2 matrix will ‘manipulate’ the sphere.

• The X, Y, and Z Pauli matrices “flip” the Bloch sphere 
180o about the x, y, and z axes, resp.:
– X is a NOT gate taking |0> to |1> and vice versa, and even more: 

it takes everything above the equator to below the equator. 
Similar for the other Pauli matrices: e.g., Y operation
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Bloch sphere: dynamics/rotations

• Phase shift gates:

• Following operation on an arbitrary qubit:

Leaves the latitude alone and just changes 
the longitude. New state will remain 
unchanged, only the phase will change.
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Bloch sphere: dynamics/rotations
• Rotation of θ degrees around x, y, or z axis:

• General rotation around vector D=(Dx,Dy,Dz) with size 1 
from the origin:
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Bloch sphere: higher dimensions

• Valuable tool for understanding qubits and one-
qubit operations.

• For n-qubits there is a higher-dimensional 
analog of the sphere.

• Research challenge: visualizing what happens 
when we manipulate several bits at once.

• Entanglement lies beyond the scope of the 
Bloch sphere.

controlled-U or CU
This operation will 
perform the U operation if 
the top |x> is a |1> and 
will perform the identity 
operation if |x> is |0>. 
Equivalent to an IF-THEN 
statement.
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Universal quantum gates
• Universal logical gates can simulate every 

logical circuit: 
– {AND, NOT} gates
– NAND gate

• Universal reversible gates:
– Toffoli gate
– Fredkin gate

• Universal quantum gates:
– {H, CNOT, R(cos-1(3/5))}

Universal quantum gates (cont’d)

• Deutsch gate D(θ)
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R(θ)

If the inputs |x> and |y> 
are both |1>, then the 
phase shift operation R(θ) 
will act on the |z> input. 
Otherwise, |z’> will be the 
same as |z>.
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No-Cloning Theorem
• It is impossible to clone an exact quantum state.

• In other words, it is impossible to make a copy of an 
arbitrary quantum state without first destroying the 
original.

• We can “cut” and “paste” a quantum state, we cannot 
“copy” and “paste”.

• Move is possible, copy is impossible.

• Transporting arbitrary quantum states from one system 
to another is no problem.

• See book for “proofs”.

No-Cloning Theorem (cont’d)
• What about the fanout gate? The Toffoli and 

Fredkin quantum gates can mimic the fanout
gate.

• Fredkin gate:                                  Cloning?

• Assume x input is superposition           , while 
leaving y = 1 and z = 0.

• This corresponds to the state
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No-Cloning Theorem (cont’d)
Multiply with Fredkin state:

Resulting state:
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So for a classical bit x 
the Fredkin gate 
performs the fanout
operation, but for a 
superposition:
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Not a fanout operation, 
no-cloning theorem 
safely stands.

Reading

• This lecture: Ch 5.3-5.4.

• Next lecture: Ch 6.1-??.


