
1

Algorithms

Lecture 7

Algorithms
• Deutsch’s algorithm: {0,1} → {0,1}

• Deutsch-Jozsa algorithm: {0,1}n→ {0,1}

• Simon’s periodicity algorithm: {0,1}n→ {0,1}n

• Grover’s search algorithm: unordered array of 
size n in √n time instead of n time

• Shor’s factoring algorithm: factor numbers in 
polynomial time.

Basic steps in a quantum algorithm

• All quantum algorithms:
– The system will start with the qubits in a 

particular classical state.
– The system is put into a superposition of 

many states.
– Acting on this superposition with several 

unitary operations.
– A measurement of the qubits

Deutsch’s algorithm
• Simplest quantum algorithm

• Concerned with functions from the set {0,1} to the set 
{0,1}

• A function f: {0,1} → {0,1} is balanced if f(0) ≠ f(1), i.e. 
it is one to one; in contrast it is constant if f(0) = f(1).

• Deutsch’s algorithm: given a function f: {0,1} → {0,1}  
as a black box, where one can evaluate an input, but 
cannot “look inside” and “see” how the function is 
defined, determine if the function is balanced or 
constant.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Classical computer

With a classical computer f must be 
evaluate twice; can we do better on a 
quantum computer?

f(0) = 0 f(0) = 1

f(0) = 0

f(1) = 0

constant

f(0) = 0

f(1) = 1

balanced

f(0) = 1

f(1) = 0

balanced

f(0) = 1

f(1) = 1

constant

A quantum computer can be in a 
superposition of two basic states 
at the same time. 

Evaluation of a function

• Classical:

• Quantum system
– Unitary (reversible) 

⎥
⎦

⎤
⎢
⎣

⎡
01
10

1
0

10

fx f(x)
0

1

0

1
↔

XOR

to be evaluated

UUf

|x>|x>

|y> |y    f(x)>
controls the output

Uf is its own reverse: 

( ) ( ) yxyxxfxfyxxfxfyx

xfyxyx

,0,)()(,)()(,         

)(,,

=⊕=⊕⊕=⊕⊕

⊕

a

a

)(,)(0,0, xfxxfxx =⊕a

0

1

0

1
↔

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0001
0010

11
10
01
00

11100100

    fU



2

Quantum “trick”
• Rather than evaluating f twice, put the top input in superposition:

• This can be achieved by the Hadamard matrix:

• Following quantum circuit:

• In terms of matrices:

2
10 +

2
10

0
1

0
2

1
2

1

2
1

2
1

2
1

2
1 +

=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=H

( )( ) ( )( )0,000 IHUIHU ff ⊗=⊗⊗

Quantum “trick” (cont’d)

2

0,10,0
0

2

10
1

+
=⎥

⎦

⎤
⎢
⎣

⎡ +
=ϕ

2
)1(,1)0(,0

2

ff +
=ϕ

The system starts in

Apply Hadamard matrix on top input 

Multiplying with Uf

If we measure the top qubit, there will be a 50-50% chance of 
finding it in state |0> and a 50-50% chance of finding it in state |1>. 

Similarly, there is no real information to be gotten by measuring 
the bottom qubit.

So the obvious algorithm does not work, we need a better trick!

0,0000 =⊗=ϕ

Better “trick”
• Put the bottom qubit in the superposition state        , notice the minus sign!

• Quantum circuit:

• In terms of matrices:

• Start with

• After the Hadamard matrix

• Applying Uf

( )( )1,xHIU f ⊗

1,0 x=ϕ

2
1,0,

2
10

1

xx
x

−
=⎥

⎦

⎤
⎢
⎣

⎡ −
=ϕ

[ ]
[ ]⎪⎩

⎪
⎨
⎧

=

=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ ⊕−⊕
= −

−

1)( if ,

0)( if ,

2
)()(

2
)(1)(0

2

01
2

10

2 xfx
xfxxfxf

x
xfxf

xϕ

2
10 −

Better “trick” (cont’d)

[ ]
[ ]⎪⎩

⎪
⎨
⎧

=

=
= −

−

1)( if ,

0)( if ,

2
01

2
10

2 xfx
xfx

ϕ

with (a–b)=(–1)(b–a)

⎥
⎦

⎤
⎢
⎣

⎡ −
−=

2
10

)1( )(
2 xxfϕ

Evaluate top or bottom state?

No information: top qubit will be in 
state |x> and the bottom qubit either 
in state |0> or in state |1>……

Deutsch’s algorithm
• Combine both “tricks”:

– Both top and bottom qubits in superposition
– Result of top qubit through Hadamard matrix

• In terms of matrices:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗⊗⊗⊗

0
0
1
0

11
10
01
00

)()(or      1,0)()( HHUIHHHUIH ff

Deutsch’s algorithm (cont’d)

• Start with

• and

• We saw that with bottom qubit in superposition and then 
multiply by Uf

• with |x> in a superposition, we have

1,00 =ϕ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+
−
+

=
−+−+

=⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡ +
=

2
1
2
1
2
1
2
1

1

11
10
01
00

2
1,10,11,00,0

2
10

2
10

ϕ

⎥
⎦

⎤
⎢
⎣

⎡ −
−

2
10

)1( )( xxf

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+−
=

2
10

2
1)1(0)1( )1()0(

2

ff

ϕ



3

Deutsch’s algorithm (cont’d)
• We have

• Let have a look at
– if f is constant
– if f is balanced

• So we have

• Hadamard matrix is its own reverse 
• Apply it to top qubit

• Measure top qubit: if |0> then f is constant, otherwise balanced. 
Only one evaluation of f.

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+−
=

2
10

2
1)1(0)1( )1()0(

2

ff

ϕ

1)1(0)1( )1()0( ff −+−
( ) ( ) resp.) 1,or  0y (constantl    101or      101 +−++

( ) ( )101or      101 −−−+

[ ][ ]
[ ][ ]⎪⎩

⎪
⎨
⎧

±

±
= −−

−+

balanced is  if , )1(

constant is  if , )1(

2
01

2
10

2
10

2
10

2 f
f

ϕ

1   and   0
2

10
2

10
aa

−+

[ ]
[ ]⎪⎩

⎪
⎨
⎧

±

±
= −

−

balanced is  if ,1)1(

constant is  if ,0)1(

2
01
2

10

3 f
f

ϕ

Deutsch’s algorithm (cont’d)
Remarks:

– The ±1 tells us which of the two balanced or constant functions 
we have, but can not be measured.

– Output of top qubit of Uf not the same as the input: inclusion of 
Hadamard matrices makes top and bottom qubits entangled.

– Trick? No changing around the information:
1. Is the function balanced or constant?
2. What is the value of the function on 0?

Deutsch-Jozsa algorithm
• Generalization:

– f : {0,1}n → {0,1}, which accepts a string of n 0’s and 1’s (natural 
numbers from 0 to 2n-1) and outputs a zero or one.

– f is called balanced if exactly half of the inputs go to 0 (and the 
other half go to 1).

– f is called constant if all the inputs go to 0 or all the inputs go to 1.

• Problem:
– Given a function of {0,1}n to {0,1}, which you can evaluate but 

cannot “see” the way it is defined.
– The function is either balanced or constant.
– Determine if the function is balanced or constant.
– n=1: Deutsch algorithm.

• Classically:
– Evaluate the function on different inputs.
– Best scenario: first two different inputs have different outputs →

balanced function.
– Worst scenario: 2n/2+1 = 2n-1+1 evaluations.

Solution: superposition
• In Deutsch’s algorithm we used the superposition of two possible input 

states. Now we enter a superposition of all 2n possible input states.

yf ⊕)(xy

x x

fU
n/ n/

110 −nxxx K

qubit  control

qubits n fUby   changednot 

Tensor product of 
Hadamard matrices

• Single qubit in superposition: single Hadamard matrix; 
n qubits in superposition: tensor product of n
Hadamard matrices:

• Hadamard matrix definition:

0 and 1 as Boolean values, and (-1)0=1 and (-1)1=-1. 

nHHHHHHHHH ⊗⊗⊗ =⊗⊗=⊗  ,, , , 32 K

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

=−=⎥
⎦

⎤
⎢
⎣

⎡
−

=
∧∧

∧∧
∧

1101

1000

2
1

)1()1(
)1()1(

2
1   :)1(,or      

11
11

2
1 HjiHH ji

Tensor product of 
Hadamard matrices (cont’d)

• We can calculate

• We are not interested in (-1)x+y, but in the parity of x and y (exclusive-or):
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−∗−−∗−−∗−−∗−
−∗−−∗−−∗−−∗−
−∗−−∗−−∗−−∗−
−∗−−∗−−∗−−∗−

∗=

⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

⊗⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

=⊗=

∧∧∧∧∧∧∧∧

∧∧∧∧∧∧∧∧

∧∧∧∧∧∧∧∧

∧∧∧∧∧∧∧∧

∧∧

∧∧

∧∧

∧∧
⊗

1111011111010101

1011001110010001

1110011011000100

1010001010000000

1101

1000

1101

1000
2

)1()1()1()1()1()1()1()1(
)1()1()1()1()1()1()1()1(
)1()1()1()1()1()1()1()1(
)1()1()1()1()1()1()1()1(

2
1

2
1

)1()1(
)1()1(

2
1

)1()1(
)1()1(

2
1HHH

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−
−−−−
−−−−

=

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

⊗

1111
1111
1111

1111

2
1

)1()1()1()1(
)1()1()1()1(
)1()1()1()1(
)1()1()1()1(

2
1

1111011111010101

1011001110010001

1110011011000100

1010001010000000

2H



4

Tensor product of 
Hadamard matrices (cont’d)

• Proved by induction that

• Useful operation

– Basically it gives the parity of the number of times that both bits are 1.

• If x and y are binary strings of length n, then x y is the pointwise
(bitwise) exclusive-or operation

22
2
1  is  oft coefficienscalar  the

n

n

nH −⊗ =

{ } { } { }1,01,01,0: , →× nn

)()()(         
,

 have  we,                 
 and  ,length  of stringsbinary  given two :Definition

111100

12101210

1210

1210

−−

−−

−

−

∧⊕⊕∧⊕∧=
=

=
=

nn

nn

n

n

yxyxyx
yyyyxxxx

yyyy
xxxxn

L

KK

K

K

yx,
y

x

⊕

111100 ,,, −− ⊕⊕⊕=⊕ nn yxyxyx Kyx

3⊗H

Tensor product of 
Hadamard matrices (cont’d)

• General formula

• What happens if we multiply a state with this matrix? Notice all
elements of the leftmost column of       are +1. So if we multiply 
with the state |0> = |00…0> = [1,0,…,0]T  this will be equal to the 
leftmost column of       :

[ ] ( ) binary.in  numberscolumn  and row  theare  and   where,1
2
1, , jiji ji−=⊗

n

nH

[ ]
{ }
∑

∈

⊗⊗ =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−=
nnn

nn HH
1,02

1

1
1

1
1
1

11111111
11111110

00000010
00000001
00000000

2
1,

x

x00
MM

nH ⊗

nH ⊗

Deutsch-Jozsa algorithm
• Bottom control qubit in a superposition:

• In terms of matrices

• We start with

• After the bottom Hadamard matrix

• Applying Uf

• Useless!

( ) 1,xHIU f ⊗

1,0 x=ϕ

[ ]
[ ] ⎥

⎦

⎤
⎢
⎣

⎡ −
−=

⎪⎩

⎪
⎨
⎧

=

=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ ⊕−⊕
=

−

−

2
10

)1(
1)( if ,

0)( if ,

2
)()(

2
1)(0)(

)(

2
01

2
10

2

x
xx
xx

xx
x

xx
x

xf

f
f

ffff
ϕ

2
1,0,

2
10

1

xx
x

−
=⎥

⎦

⎤
⎢
⎣

⎡ −
=ϕ

Deutsch-Jozsa algorithm (cont’d)

• Put |x> into a superposition in which all 2n possible strings have 
equal probability

• In terms of matrices ( ) ( ) 1,  0HHUIH n
f

n ⊗⊗ ⊗⊗

Deutsch-Jozsa algorithm (cont’d)

{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
∑ ∈

2
10

2
1,0

1 n

nx
x

ϕ

1,0 0=ϕ

{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=
∑ ∈

2

10

2

)1(
1,0

)(

2 n

f
nx

x x
ϕ

( ) ( ) 1,  0HHUIH n
f

n ⊗⊗ ⊗⊗

We start with

Then

Applying Uf

{ }{ }
⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−
=
∑ ∑∈ ∈

2
10

2

)1()1(
1,0 1,0

,)(

3 n

f
n nx z

xzx z
ϕ

Make a superposition of a superposition on the top qubits



5

Deutsch-Jozsa algorithm (cont’d)
{ }{ }

{ }{ }

{ }{ }
⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
=

⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−
=

⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−
=

∑ ∑

∑ ∑

∑ ∑

∈ ∈
⊗

∈ ∈

∈ ∈

2
10

2

)1(

2
10

2

)1()1(

2
10

2

)1()1(

1,0 1,0
,)(

1,0 1,0
,)(

1,0 1,0
,)(

3

n

f

n

f

n

f

n n

n n

n n

x z
xzx

x z
xzx

x z
xzx

z

z

z
ϕ

Measure top qubit of φ3; what is the probability that it will collapse to state |0>?

Answer: set z = 0 and realize that <z,x> = <0,x> = 0 for all x. Then

{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=
∑ ∈

2
10

2

)1(
1,0

)(

3 n

f
nx

x 0
ϕ

Deutsch-Jozsa algorithm (cont’d)
{ }

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=
∑ ∈

2
10

2

)1(
1,0

)(

3 n

f
nx

x 0
ϕ

{ } ( )
0

00
x 1

2
2

2

)1(
1,0 −=

−
=

−∑ ∈
n

n

n

n

{ } 0
00

x 1
2

2
2

1
1,0 +==

∑ ∈
n

n

n

n

Probability of collapsing to |0> is 

totally dependent on f (x).

If f (x) is constant 1, the top qubits become

If f (x) is constant 0, the top qubits become

If f (x) is balanced, then half of the x’s will cancel the other half 
and the top qubits become

{ } 0
00

x
x

0
2

0
2

)1(
1,0

)(

==
−∑ ∈

nn

f
n

We only get |0> if the function 
is constant. If anything else is 
measured, then the function is 
balanced.

Only one function evaluation instead 
of 2n-1: exponential speedup!

Simon’s periodicity algorithm
• Finding patterns in functions.

• Given a function f : {0,1}n → {0,1}n that we can evaluate, but is 
given as a black box.

• There is a secret (hidden) binary string c = c0c1c2…cn-1, such that 
for all strings x, y we have 

• In other words, the values of f repeat themselves in some pattern, 
and the pattern is determined by c, the period of f.

• Goal of Simon’s algorithm is to determine c.

( ) ( ) cyxyx ⊕==    ifonly  and if   ff

Example
• Let n = 3. Consider c = 101. Then we have the following 

requirements on f:

• Notice that if c = 0n, then the function is one to one; otherwise it is 
two to one.

).010()111( hence, ;010101111
).011()110( hence, ;011101110
).000()101( hence, ;000101101
).001()100( hence, ;001101100
).110()011( hence, ;110101011
).111()010( hence, ;111101010
).100()001( hence, ;100101001
).101()000( hence, ;101101000

ff
ff
ff
ff
ff
ff
ff
ff

==⊕
==⊕
==⊕
==⊕
==⊕
==⊕
==⊕
==⊕

)(xy f⊕y

x x

fU
n/ n/

n/n/

Classically
• Evaluate f on different binary strings.

• After each evaluation, check if the output has already been found.

• If for two input x1 and x2 holds f(x1) = f(x2) then

• and can c be obtained by

• If the function is two-to-one, we do not have to evaluate more than 
half the inputs before we get a repeat. If we have to evaluate more, 
we know c = 0n. So, the worst case is 2n/2 + 1 = 2n-1 + 1.

• Can we do better?

cxx 21 ⊕=

cxcxxx 2221 =⊕⊕=⊕

Quantum version
• Performing the following operations several times:

• We start with

• Put the input in a superposition of all possible inputs

• Evaluation of f on all these possibilities

• Apply n Hadamard tensor product

00,0 =ϕ

{ }

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
∑ ∈

n

n

2

,
1,0

1
x

0x
ϕ

{ }

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
∑ ∈

n

n f

2

)(,
1,0

2
x

xx
ϕ

{ }{ }
n

n n f

2

)(,)1(
1,0 1,0

,

3
∑ ∑∈ ∈

−
= x z

xz xz
ϕ



6

Quantum version (cont’d)
• For each input x and for each z, we know that the following kets are equal

• The coefficient for this ket is

• <–,–> is an inner product, so

• If <z,c> = 1, the terms will cancel each out and we would get 0/2n. In 
contrast, if <z,c> = 0, the sum will be ±2/2n = ±1/2n-1.

• So we will only find those binary strings such that <z,c> = 0.

)(,   and   )(, cxzxz ⊕ff

n2
)1()1( cxz,xz, ⊕−+−

n

nn

2
)1()1()1(

2
)1()1(

2
)1()1(

cz,xz,xz,

cz,xz,xz,cxz,xz,

−−+−=

−+−=−+− ⊕⊕

Quantum version (cont’d)
• Some concrete examples in the book! Pages 190-195.

• In conclusion, for given periodic f, we can find the period c
in n function evaluations. This in contrast to the 2n-1 + 1 
needed classically.

???

Reading

• This lecture: Ch 6.1-6.3

• Next lecture: Ch 6.4-6.5


