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Algorithms

Lecture 7

Algorithms
• Deutsch’s algorithm: {0,1} → {0,1}

• Deutsch-Jozsa algorithm: {0,1}n→ {0,1}

• Simon’s periodicity algorithm: {0,1}n→ {0,1}n

• Grover’s search algorithm: unordered array of 
size n in √n time instead of n time

• Shor’s factoring algorithm: factor numbers in 
polynomial time.

Basic steps in a quantum algorithm

• All quantum algorithms:
– The system will start with the qubits in a 

particular classical state.
– The system is put into a superposition of 

many states.
– Acting on this superposition with several 

unitary operations.
– A measurement of the qubits

Deutsch’s algorithm
• Simplest quantum algorithm

• Concerned with functions from the set {0,1} to the set 
{0,1}

• A function f: {0,1} → {0,1} is balanced if f(0) ≠ f(1), i.e. 
it is one to one; in contrast it is constant if f(0) = f(1).

• Deutsch’s algorithm: given a function f: {0,1} → {0,1}  
as a black box, where one can evaluate an input, but 
cannot “look inside” and “see” how the function is 
defined, determine if the function is balanced or 
constant.
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Classical computer

With a classical computer f must be 
evaluate twice; can we do better on a 
quantum computer?

f(0) = 0 f(0) = 1

f(0) = 0

f(1) = 0

constant

f(0) = 0

f(1) = 1

balanced

f(0) = 1

f(1) = 0

balanced

f(0) = 1

f(1) = 1

constant

A quantum computer can be in a 
superposition of two basic states 
at the same time. 

Evaluation of a function

• Classical:

• Quantum system
– Unitary (reversible) 
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Quantum “trick”
• Rather than evaluating f twice, put the top input in superposition:

• This can be achieved by the Hadamard matrix:

• Following quantum circuit:

• In terms of matrices:
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Quantum “trick” (cont’d)
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The system starts in

Apply Hadamard matrix on top input 

Multiplying with Uf

If we measure the top qubit, there will be a 50-50% chance of 
finding it in state |0> and a 50-50% chance of finding it in state |1>. 

Similarly, there is no real information to be gotten by measuring 
the bottom qubit.

So the obvious algorithm does not work, we need a better trick!

0,0000 =⊗=ϕ

Better “trick”
• Put the bottom qubit in the superposition state        , notice the minus sign!

• Quantum circuit:

• In terms of matrices:

• Start with

• After the Hadamard matrix

• Applying Uf
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Better “trick” (cont’d)
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Evaluate top or bottom state?

No information: top qubit will be in 
state |x> and the bottom qubit either 
in state |0> or in state |1>……

Deutsch’s algorithm
• Combine both “tricks”:

– Both top and bottom qubits in superposition
– Result of top qubit through Hadamard matrix

• In terms of matrices:
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Deutsch’s algorithm (cont’d)

• Start with

• and

• We saw that with bottom qubit in superposition and then 
multiply by Uf

• with |x> in a superposition, we have

1,00 =ϕ
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Deutsch’s algorithm (cont’d)
• We have

• Let have a look at
– if f is constant
– if f is balanced

• So we have

• Hadamard matrix is its own reverse 
• Apply it to top qubit

• Measure top qubit: if |0> then f is constant, otherwise balanced. 
Only one evaluation of f.
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Deutsch’s algorithm (cont’d)
Remarks:

– The ±1 tells us which of the two balanced or constant functions 
we have, but can not be measured.

– Output of top qubit of Uf not the same as the input: inclusion of 
Hadamard matrices makes top and bottom qubits entangled.

– Trick? No changing around the information:
1. Is the function balanced or constant?
2. What is the value of the function on 0?

Deutsch-Jozsa algorithm
• Generalization:

– f : {0,1}n → {0,1}, which accepts a string of n 0’s and 1’s (natural 
numbers from 0 to 2n-1) and outputs a zero or one.

– f is called balanced if exactly half of the inputs go to 0 (and the 
other half go to 1).

– f is called constant if all the inputs go to 0 or all the inputs go to 1.

• Problem:
– Given a function of {0,1}n to {0,1}, which you can evaluate but 

cannot “see” the way it is defined.
– The function is either balanced or constant.
– Determine if the function is balanced or constant.
– n=1: Deutsch algorithm.

• Classically:
– Evaluate the function on different inputs.
– Best scenario: first two different inputs have different outputs →

balanced function.
– Worst scenario: 2n/2+1 = 2n-1+1 evaluations.

Solution: superposition
• In Deutsch’s algorithm we used the superposition of two possible input 

states. Now we enter a superposition of all 2n possible input states.
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Tensor product of 
Hadamard matrices

• Single qubit in superposition: single Hadamard matrix; 
n qubits in superposition: tensor product of n
Hadamard matrices:

• Hadamard matrix definition:

0 and 1 as Boolean values, and (-1)0=1 and (-1)1=-1. 
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Tensor product of 
Hadamard matrices (cont’d)

• We can calculate

• We are not interested in (-1)x+y, but in the parity of x and y (exclusive-or):
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Tensor product of 
Hadamard matrices (cont’d)

• Proved by induction that

• Useful operation

– Basically it gives the parity of the number of times that both bits are 1.

• If x and y are binary strings of length n, then x y is the pointwise
(bitwise) exclusive-or operation
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Tensor product of 
Hadamard matrices (cont’d)

• General formula

• What happens if we multiply a state with this matrix? Notice all
elements of the leftmost column of       are +1. So if we multiply 
with the state |0> = |00…0> = [1,0,…,0]T  this will be equal to the 
leftmost column of       :
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Deutsch-Jozsa algorithm
• Bottom control qubit in a superposition:

• In terms of matrices

• We start with

• After the bottom Hadamard matrix

• Applying Uf

• Useless!
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Deutsch-Jozsa algorithm (cont’d)

• Put |x> into a superposition in which all 2n possible strings have 
equal probability

• In terms of matrices ( ) ( ) 1,  0HHUIH n
f
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Deutsch-Jozsa algorithm (cont’d)
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Applying Uf
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Deutsch-Jozsa algorithm (cont’d)
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Measure top qubit of φ3; what is the probability that it will collapse to state |0>?

Answer: set z = 0 and realize that <z,x> = <0,x> = 0 for all x. Then
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Deutsch-Jozsa algorithm (cont’d)
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Probability of collapsing to |0> is 

totally dependent on f (x).

If f (x) is constant 1, the top qubits become

If f (x) is constant 0, the top qubits become

If f (x) is balanced, then half of the x’s will cancel the other half 
and the top qubits become
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We only get |0> if the function 
is constant. If anything else is 
measured, then the function is 
balanced.

Only one function evaluation instead 
of 2n-1: exponential speedup!

Simon’s periodicity algorithm
• Finding patterns in functions.

• Given a function f : {0,1}n → {0,1}n that we can evaluate, but is 
given as a black box.

• There is a secret (hidden) binary string c = c0c1c2…cn-1, such that 
for all strings x, y we have 

• In other words, the values of f repeat themselves in some pattern, 
and the pattern is determined by c, the period of f.

• Goal of Simon’s algorithm is to determine c.
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Example
• Let n = 3. Consider c = 101. Then we have the following 

requirements on f:

• Notice that if c = 0n, then the function is one to one; otherwise it is 
two to one.
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Classically
• Evaluate f on different binary strings.

• After each evaluation, check if the output has already been found.

• If for two input x1 and x2 holds f(x1) = f(x2) then

• and can c be obtained by

• If the function is two-to-one, we do not have to evaluate more than 
half the inputs before we get a repeat. If we have to evaluate more, 
we know c = 0n. So, the worst case is 2n/2 + 1 = 2n-1 + 1.

• Can we do better?

cxx 21 ⊕=

cxcxxx 2221 =⊕⊕=⊕

Quantum version
• Performing the following operations several times:

• We start with

• Put the input in a superposition of all possible inputs

• Evaluation of f on all these possibilities

• Apply n Hadamard tensor product
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Quantum version (cont’d)
• For each input x and for each z, we know that the following kets are equal

• The coefficient for this ket is

• <–,–> is an inner product, so

• If <z,c> = 1, the terms will cancel each out and we would get 0/2n. In 
contrast, if <z,c> = 0, the sum will be ±2/2n = ±1/2n-1.

• So we will only find those binary strings such that <z,c> = 0.

)(,   and   )(, cxzxz ⊕ff
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nn
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Quantum version (cont’d)
• Some concrete examples in the book! Pages 190-195.

• In conclusion, for given periodic f, we can find the period c
in n function evaluations. This in contrast to the 2n-1 + 1 
needed classically.

???

Reading

• This lecture: Ch 6.1-6.3

• Next lecture: Ch 6.4-6.5


