Algorithms

Lecture 7

Algorithms

» Deutsch’s algorithm: {0,1} — {0,1}

.

Deutsch-Jozsa algorithm: {0,1}" — {0,1}
» Simon’s periodicity algorithm: {0,1}" — {0,1}"

» Grover's search algorithm: unordered array of
size n in \n time instead of n time

» Shor’s factoring algorithm: factor numbers in
polynomial time.

Basic steps in a quantum algorithm

 All quantum algorithms:

— The system will start with the qubits in a
particular classical state.

— The system is put into a superposition of
many states.

— Acting on this superposition with several
unitary operations.

— A measurement of the qubits

Deutsch’s algorithm

« Simplest quantum algorithm

« Concerned with functions from the set {0,1} to the set
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< A function f. {0,1} — {0,1} is balanced if f(0) # (1), i.e.
it is one to one; in contrast it is constant if f(0) = f(1).

» Deutsch’s algorithm: given a function f. {0,1} — {0,1}
as a black box, where one can evaluate an input, but
cannot “look inside” and “see” how the function is
defined, determine if the function is balanced or
constant.

Classical computer
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A quantum computer can be in a
superposition of two basic states
at the same time.

With a classical computer f must be
evaluate twice; can we do better on a
quantum computer?

Evaluation of a function
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Quantum “trick”

Rather than evaluating f twice, put the top input in superposition: \0)}2\9

This can be achieved by the Hadamard matrix:

1% #1110 [#] 19+p
wo-% AL

]

Following quantum circuit:

In terms of matrices:
U,(H®1)(0)®|0)=U,(H®1)(00)

Quantum “trick” (cont’d)
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The system starts in |¢,) =|0)®|0)=]0,0)

Apply Hadamard matrix on top input \(p,):[

0, f(0))+[1 f (1
Multiplying with U, \%)zw

If we measure the top qubit, there will be a 50-50% chance of
finding it in state |0> and a 50-50% chance of finding it in state |1>.

Similarly, there is no real information to be gotten by measuring
the bottom qubit.

So the obvious algorithm does not work, we need a better trick!

Better “trick”

Put the bottom qubit in the superposition state w notice the minus sign!
5} R
Quantum circuit: ) | .
LI S | i —
ft ] fr
] ) Ie)

In terms of matrices: U, (1 ®H)(|x1)

Start with |g,) =

After the Hadamard matrix [#,) =X

Applying U;
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Better “trick” (cont’'d)

" >:{\x>\®#ﬁif f(x)=0

|2t f(x)=1

with (a—b)=(1)(b—a)

[0.) =3 x{%}

Evaluate top or bottom state?

No information: top qubit will be in
state |x> and the bottom qubit either
in state |0> or in state [1>......

Deutsch’s algorithm

Combine both “tricks”:
— Both top and bottom qubits in superposition
— Result of top qubit through Hadamard matrix
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In terms of matrices:
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(H®I)U, (H®H)01) or (H®|)U,(H®H)10 o
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Deutsch’s algorithm (cont'd)
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We saw that with bottom qubit in superposition and then
multiply by U, 0)-[1)
ply by Uy (_1).(x)‘x>[\ >\/§‘ >]

with |x> in a superposition, we have
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Deutsch’s algorithm (cont'd)
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Apply it to top qubit
P3 :{

D] Q{22 it f isconstant
@D}t t isbalanced

Only one evaluation of f.

Measure top qubit: if |0> then fis constant, otherwise balanced.

Deutsch’s algorithm (cont’d)

Remarks:

—  The %1 tells us which of the two balanced or constant functions

we have, but can not be measured.

—  Output of top qubit of U;not the same as the input: inclusion of

Hadamard matrices makes top and bottom qubits entangled.

—  Trick? No changing around the information:

1. Is the function balanced or constant?
2. What is the value of the function on 0?

Deutsch-Jozsa algorithm

» Generalization:
— f:{0,1}" — {0,1}, which accepts a string of n 0’s and 1’s (natural
numbers from 0 to 2') and outputs a zero or one.
— fis called balanced if exactly half of the inputs go to 0 (and the
other half go to 1).
— fis called constant if all the inputs go to 0 or all the inputs go to 1.

* Problem:
— Given a function of {0,1}" to {0,1}, which you can evaluate but
cannot “see” the way it is defined.
— The function is either balanced or constant.
— Determine if the function is balanced or constant.
— n=1: Deutsch algorithm.

» Classically:
— Evaluate the function on different inputs.
— Best scenario: first two different inputs have different outputs —
balanced function.
— Worst scenario: 27/2+1 = 271+1 evaluations.

Solution: superposition

In Deutsch’s algorithm we used the superposition of two possible input
states. Now we enter a superposition of all 2" possible input states.
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Tensor product of
Hadamard matrices
« Single qubit in superposition: single Hadamard matrix;

n qubits in superposition: tensor product of n
Hadamard matrices:

HHOH=H® HO®H®H =H®, . H®"
» Hadamard matrix definition:

111 e
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0 and 1 as Boolean values, and (-1)°=1 and (-1)'=-1.
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Tensor product of
Hadamard matrices (cont’'d)
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We are not interested in (-1)**, but in the parity of x and y (exclusive-or):
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Tensor product of
Hadamard matrices (cont’'d)
+ Proved by induction that thescalar coefficient of H®" is —— = 2%
>
+ Useful operation (. ):{01}"x{01}" — {01}
Definition : given two binary stringsof lengthn, X = X, XX, ... X, , and
Y =Yo¥1Yz - Vo1, Wehave
(Y) = (XXX - Xt YoYa¥a - Yo
=X AY) (X AY)® @ (X g AYia)

— Basically it gives the parity of the number of times that both bits are 1.

« Ifx and y are binary strings of length n, then x @y is the pointwise
(bitwise) exclusive-or operation

XOY=X%® Yo, X ®Y.s X1 @Y,y
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Tensor product of
Hadamard matrices (cont’'d)

» General formula

He[i,j]= %(—1}” ,wherei and j are the row and column numbersin binary.
o
+  What happens if we multiply a state with this matrix? Notice all
elements of the leftmost column of H®"are +1. So if we multiply
with the state |0> =]00...0> = [1,0,...,0]" this will be equal to the
leftmost column of H®"

00000000[ 1
00000001 1
1 00000010|1| 1
H®"0) = H®"[-,0]= . L= X
1% N o
111111101
11111111(1

Deutsch-Jozsa algorithm

Bottom control qubit in a superposition:

In terms of matrices U, (I ® H)x.1)
We start with |¢,) =|x.1)

After the bottom Hadamard matrix |¢,) =X
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Deutsch-Jozsa algorithm (cont’'d)

« Put x> into a superposition in which all 2" possible strings have
equal probability
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Deutsch-Jozsa algorithm (cont’'d)

(He"®1)u, (H*> ®H)|oL) =y i

We start with \%> = ‘°~1>
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Make a superposition of a superposition on the top qubits
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Deutsch-Jozsa algorithm (cont’d)
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Measure top qubit of ¢,; what is the probability that it will collapse to state [0>?

Answer: set z = 0 and realize that <z,x> = <0,x> = 0 for all x. Then

Deutsch-Jozsa algorithm (cont’'d)
[ X CD'10) |9)-[2) Probability of collapsing to [0> is
‘%> 7{ . 2 }{ V2 } totally dependent on f (x).

If £ (x) is constant 1, the top qubits become
ZXE(G,J)" (-Dj0) _- (2"}0> -10)
2" 2"
We only get |0> if the function
is constant. If anything else is

116915 constant 0, the top qu?myﬁ, measured, then the function is
w:w:”@ balanced.
2" 2"

If f (x) is balanced, then half of the x’s/will cancel the other half
and the top qubits become

)0
M = OL(? =00) Only one function evaluation instead
2 2 of 21: exponential speedup!

Simon’s periodicity algorithm
» Finding patterns in functions.

« Given a function f: {0,1}" — {0,1}" that we can evaluate, but is
given as a black box.

» There is a secret (hidden) binary string ¢ = ¢y¢,c,...c, 4, such that
for all strings x, y we have

f(x)= f(y) if andonlyif x=y®c

* In other words, the values of f repeat themselves in some pattern,
and the pattern is determined by c, the period of f.

* Goal of Simon’s algorithm is to determine c.

Example

Let n = 3. Consider ¢ = 101. Then we have the following
requirements on f:

000101 =101, hence, f (000) = f (101).

001®101 =100; hence, f (001) = f (100).

0109101 =111; hence, f (010) = f (111).

011©101=110; hence, f (011) = f (110).

100®101 = 001; hence, f (100) = f (001).

1016101 = 000; hence, f (101) = f (000).

110®101 = 011; hence, f (110) = f (011).

111@101= 010; hence, f (111) = f (010).

Notice that if ¢ = 07, then the function is one to one; otherwise it is
two to one.
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Classically

» Evaluate fon different binary strings.
» After each evaluation, check if the output has already been found.

« If for two input x, and x, holds f(x,) = f(x,) then
X, =X, ®cC

« and can c be obtained by
X, ®X, =X, dcdX, =cC
« If the function is two-to-one, we do not have to evaluate more than

half the inputs before we get a repeat. If we have to evaluate more,
we know ¢ = 0". So, the worst case is 27/2 + 1 =21+ 1,

» Can we do better?

Quantum version

Performing the following operations several times:
o
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Put the input in a superposition of all possible inputs Z oar x,0>
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Evaluation of fon all these possibilities
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Quantum version (cont’d)

For each input x and for each z, we know that the following kets are equal
z,f(x)) and |z, f(x®c))

The coefficient for this ketis (~1)* + (~1)**

on
<—,—> is an inner product, so ) + () _ () + (e
2" 2"
G el
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If <z,c> = 1, the terms will cancel each out and we would get 0/2". In
contrast, if <z,c> = 0, the sum will be +2/2" = +1/21,

So we will only find those binary strings such that <z,c> = 0.

Quantum version (cont’d)

* Some concrete examples in the book! Pages 190-195.

Reader Tip. Warning: admittedly, working out 2 e gory details of an example can
be a bit scary. We recommend that the less meticulous reader move on to the next
section for now. Return to this example on a calm sunny day, prepare a good cup of

your favorite tea or coffee, and go through the details: the effort will pay off. Ll

In conclusion, for given periodic f, we can find the period ¢
in n function evaluations. This in contrast to the 27" + 1

neeﬁid classically.

???

Reading

e This lecture: Ch 6.1-6.3

* Next lecture: Ch 6.4-6.5




