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Computer Architecture

2007-2008

Organization (www.liacs.nl/ca)

People
– Lecturer: Lex Wolters

– Assignment leader: Harmen van der Spek

– Assistant: Van Thieu Vu

– Student assistants: Eyal Halm & Joris Huizer

Lectures (3 EC)
– Wednesday 11.15-13.00h till Dec 5th (except Oct 3rd)

– Book: Hennessy & Patterson, fourth edition!

– Exam: date unknown yet

Assignment (4 EC)
– Parts 1 (10%), 2a (30%), 2b (30%), 3 (30%): strict deadlines

– Assistance (room 306): 

» Wed 13.45-15.30h (scheduled): this afternoon Intro part 1

» Mon, Tue, Thu 15.30-16.30h

Lecture 1 - Introduction

Slides were used during lectures by 

David Patterson, Berkeley, spring 2006

Outline

• Computer Science at a Crossroads

• Computer Architecture v. Instruction Set Arch.

• What Computer Architecture brings to table

Break

• Old Conventional Wisdom: Power is free, Transistors expensive

• New Conventional Wisdom: “Power wall” Power expensive, Xtors free 
(can put more on chip than can afford to turn on)

• Old CW: Sufficiently increasing Instruction Level Parallelism via 
compilers, innovation (Out-of-order, speculation, VLIW, …)

• New CW: “ILP wall” law of diminishing returns on more HW for ILP 

• Old CW: Multiplies are slow, Memory access is fast

• New CW: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

• Old CW: Uniprocessor performance 2X / 1.5 yrs

• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall
– Uniprocessor performance now 2X / 5(?) yrs

Sea change in chip design: multiple “cores” 
(2X processors per chip / ~ 2 years)

» More simpler processors are more power efficient

Crossroads: Conventional Wisdom in Comp. Arch
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Crossroads: Uniprocessor Performance

• VAX : 25% / year 1978 to 1986
• RISC + x86: 52% / year 1986 to 2002
• RISC + x86: ??% / year 2002 to present

From Hennessy and Patterson, Computer 
Architecture: A Quantitative Approach, 4th 
edition, October, 2006
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Sea Change in Chip Design

• Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz, 
10 micron PMOS, 11 mm2 chip 

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage 
pipeline, 40,760 transistors, 3 MHz, 
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS 
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm

– Caches via DRAM or 1 transistor SRAM?

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …

• “… today’s processors … are nearing an impasse as 
technologies approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature 
µ Custom multiprocessors strove to lead uniprocessors
µ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to 
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004) 

• Difference is all microprocessor companies switch to 
multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs) 
µ Procrastination penalized: 2X sequential perf. / 5 yrs
µ Biggest programming challenge: 1 to 2 CPUs

Problems with Sea Change 

• Algorithms, Programming Languages, Compilers, 
Operating Systems, Architectures, Libraries, … not 
ready to supply Thread Level Parallelism or Data 
Level Parallelism for 1000 CPUs / chip

• Architectures not ready for 1000 CPUs / chip
Unlike Instruction Level Parallelism, cannot be solved by just by 
computer architects and compiler writers alone, but also cannot 
be solved without participation of computer architects

• The 4th edition of the textbook ‘Computer 
Architecture: A Quantitative Approach’ explores 
shift from Instruction Level Parallelism to Thread 
Level Parallelism / Data Level Parallelism

Outline

• Computer Science at a Crossroads

• Computer Architecture v. Instruction Set Arch.

• What Computer Architecture brings to table

Instruction Set Architecture: Critical Interface

instruction set

software

hardware

• Properties of a good abstraction
– Lasts through many generations (portability)

– Used in many different ways (generality)

– Provides convenient functionality to higher levels

– Permits an efficient implementation at lower levels

Example: MIPS
0r0

r1
°
°
°
r31

PC
lo
hi

Programmable storage

232 x bytes

31 x 32-bit GPRs (R0=0)

32 x 32-bit FP regs (paired DP)

HI, LO, PC

Data types ?

Format ?

Addressing Modes?

Arithmetic logical 

Add,  AddU,  Sub,   SubU, And,  Or,  Xor, Nor, SLT, SLTU, 

AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI

SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access

LB, LBU, LH, LHU, LW, LWL,LWR

SB, SH, SW, SWL, SWR

Control

J, JAL, JR, JALR

BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary
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Instruction Set Architecture

“... the attributes of a [computing] system as seen by 
the programmer, i.e.  the conceptual structure and 
functional behavior, as distinct from the organization 
of the data flows and controls the logic design, and 
the physical implementation.”    

– Amdahl, Blaauw, and Brooks,  1964

SOFTWARESOFTWARE
-- Organization of Programmable 

Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

ISA vs. Computer Architecture

• Old definition of computer architecture 
= instruction set design 

– Other aspects of computer design called implementation  

– Insinuates implementation is uninteresting or less challenging

• Our view is computer architecture >> ISA

• Architect’s job much more than instruction set 
design; technical hurdles today more challenging 
than those in instruction set design

• Since instruction set design not where action is, 
some conclude computer architecture (using old 
definition) is not where action is

– We disagree on conclusion

– Agree that ISA not where action is (ISA in appendix B)

Comp. Arch. is an Integrated Approach 

• What really matters is the functioning of the complete 
system 

– hardware, runtime system, compiler, operating system, and 
application

– In networking, this is called the “End to End argument”

• Computer architecture is not just about transistors, 
individual instructions, or particular implementations

– E.g., Original RISC projects replaced complex instructions with a 
compiler + simple instructions

Computer Architecture is Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space  of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas

Mediocre Ideas
Bad Ideas

Cost /
Performance
Analysis

Outline

• Computer Science at a Crossroads

• Computer Architecture v. Instruction Set Arch.

• What Computer Architecture brings to table

What Computer Architecture brings to Table

• Other fields often borrow ideas from architecture

• Quantitative Principles of Design
1. Take Advantage of Parallelism

2. Principle of Locality

3. Focus on the Common Case

4. Amdahl’s Law

5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance

– Define and quantity relative cost

– Define and quantity dependability

– Define and quantity power

• Culture of anticipating and exploiting advances in 
technology

• Culture of well-defined interfaces that are carefully 
implemented and thoroughly checked
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1) Take Advantage of Parallelism

• Increasing throughput of server computer via 
multiple processors or multiple disks

• Detailed HW design
– Carry lookahead adders uses parallelism to speed up computing 

sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative 
caches

• Pipelining: overlap instruction execution to reduce 
the total time to complete an instruction sequence.

– Not every instruction depends on immediate predecessor 
executing instructions completely/partially in parallel possible

– Classic 5-stage pipeline: 
1) Instruction Fetch (Ifetch), 
2) Register Read (Reg), 
3) Execute (ALU), 
4) Data Memory Access (Dmem), 
5) Register Write (Reg)

Pipelined Instruction Execution

I
n
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r.

O
r
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e
r

Time (clock cycles)

Reg

A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Limits to pipelining

• Hazards prevent next instruction from executing 
during its designated clock cycle

– Structural hazards: attempt to use the same hardware to do 
two different things at once

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow 
(branches and jumps).
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Time (clock cycles)

Reg

A
LU DMemIfetch Reg

Reg
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LU DMemIfetch Reg

Reg

A
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Reg

A
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2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items 
whose addresses are close by tend to be referenced soon 
(e.g., straight-line code, array access)

• Last 30 years, HW  relied on locality for memory perf.

P MEM$

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks

3) Focus on the Common Case

• Common sense guides computer design
– Since its engineering, common sense is valuable

• In making a design trade-off, favor the frequent 
case over the infrequent case

– E.g., Instruction fetch and decode unit used more frequently 
than multiplier, so optimize it 1st

– E.g., If database server has 50 disks / processor, storage 
dependability dominates system dependability, so optimize it 1st

• Frequent case is often simpler and can be done 
faster than the infrequent case

– E.g., overflow is rare when adding 2 numbers, so improve 
performance by optimizing more common case of no overflow 

– May slow down overflow, but overall performance improved by 
optimizing for the normal case

• What is frequent case and how much performance 
improved by making case faster => Amdahl’s Law
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4) Amdahl’s Law

enhanced

enhanced
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overall

Speedup
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  Speedup
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enhanced
enhancedoldnew Speedup
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Amdahl’s Law example

• New CPU 10X faster

• I/O bound server, so 60% time waiting for I/O

( )
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• Apparently, its human nature to be attracted by 10X 
faster, vs. keeping in perspective its just 1.6X faster

5) Processor performance equation

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

Program Program          Instruction       Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

What is a Clock Cycle?

• Old days: 10 levels of gates

• Today: determined by numerous time-of-flight 
issues + gate delays

– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

Break

Outline

• Technology Trends: Culture of tracking, 
anticipating and exploiting advances in 
technology

• Careful, quantitative comparisons:
1. Define, quantity, and summarize relative performance

2. Define and quantity relative cost

3. Define and quantity dependability

4. Define and quantity power
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Moore’s Law: 2X transistors / “year”

• “Cramming More Components onto Integrated Circuits”
– Gordon Moore, Electronics, 1965

• # on transistors / cost-effective integrated circuit double every N months (12 ø N ø 24)

Tracking Technology Performance Trends

• Drill down into 4 technologies:
– Disks 

– Memory 

– Network 

– Processors

• Compare   ~1980 Archaic  vs.   ~2000 Modern
– Performance Milestones in each technology

• Compare for Bandwidth vs. Latency improvements 
in performance over time

• Bandwidth: number of events per unit time
– E.g., Mbits / second over network, Mbytes / second from disk

• Latency: elapsed time for a single event
– E.g., one-way network delay in microseconds, 

average disk access time in milliseconds

Disks
Archaic                                Modern

• Seagate 373453, 2003

• 15000 RPM (4X)

• 73.4 GBytes (2500X)

• Tracks/Inch: 64000 (80X)

• Bits/Inch: 533,000 (60X)

• Four 2.5” platters 
(in 3.5” form factor)

• Bandwidth: 
86 MBytes/sec (140X)

• Latency:  5.7 ms (8X)

• Cache: 8 MBytes

• CDC Wren I, 1983

• 3600 RPM

• 0.03 GBytes capacity

• Tracks/Inch: 800

• Bits/Inch: 9550

• Three 5.25” platters

• Bandwidth: 
0.6 MBytes/sec

• Latency: 48.3 ms

• Cache: none

Latency Lags Bandwidth (for last ~20 years)

• Performance Milestones

• Disk: 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 

BW 

Improve

ment   

Disk 

(Latency improvement 
= Bandwidth improvement)

Memory
Archaic                                Modern

• 1980 DRAM
(asynchronous)

• 0.06 Mbits/chip

• 64,000 xtors, 35 mm2

• 16-bit data bus per 
module, 16 pins/chip

• 13 Mbytes/sec

• Latency: 225 ns

• (no block transfer)

• 2000 Double Data Rate Synchr. 
(clocked) DRAM

• 256.00 Mbits/chip (4000X)

• 256,000,000 xtors, 204 mm2

• 64-bit data bus per 
DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)

• Latency: 52 ns (4X)

• Block transfers (page mode)

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 32b, 
64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 

BW 

Improve

ment   

Memory
Disk 

(Latency improvement 
= Bandwidth improvement)



7

LANs
Archaic                                 Modern

• Ethernet 802.3

• Year of Standard: 1978

• 10 Mbits/s 
link speed 

• Latency: 3000 sec

• Shared media

• Coaxial cable

• Ethernet 802.3ae

• Year of Standard: 2003

• 10,000 Mbits/s (1000X)
link speed 

• Latency: 190 sec (15X)

• Switched media

• Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick, 
twisted to avoid antenna effect

Twisted Pair:
"Cat 5" is 4 twisted pairs in bundle

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones

• Ethernet: 10Mb, 100Mb, 
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 32b, 
64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1
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10000

1 10 100

Relative Latency Improvement 

Relative 

BW 

Improve

ment   

Memory

Network

Disk 

(Latency improvement 
= Bandwidth improvement)

CPUs
Archaic                                      Modern

• 1982 Intel 80286 

• 12.5 MHz

• 2 MIPS (peak)

• Latency 320 ns

• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins

• Microcode interpreter, 
separate FPU chip

• (no caches)

• 2001 Intel Pentium 4

• 1500 MHz (120X)

• 4500 MIPS (peak) (2250X)

• Latency 15 ns (20X)

• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins

• 3-way superscalar,
Dynamic translate to RISC, 
Superpipelined (22 stage),
Out-of-Order execution

• On-chip 8KB Data caches, 
96KB Instr. Trace  cache, 
256KB L2 cache

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones

• Processor: ‘286, ‘386, ‘486, 
Pentium, Pentium Pro, 
Pentium 4 (21x,2250x)

• Ethernet: 10Mb, 100Mb, 
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 32b, 
64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 

BW 

Improve

ment   

Processor

Memory

Network

Disk 

(Latency improvement 
= Bandwidth improvement)

CPU high, 
Memory low
(“Memory 
Wall”)

Rule of Thumb for Latency Lagging BW

• In the time that bandwidth doubles, latency 
improves by no more than a factor of 1.2 to 1.4

(and capacity improves faster than bandwidth)

• Stated alternatively: 
Bandwidth improves by more than the square 
of the improvement in Latency

6 Reasons Latency Lags Bandwidth

1. Moore’s Law helps BW more than latency 
• Faster transistors, more transistors, 

more pins help Bandwidth

» MPU Transistors: 0.130 vs.   42 M xtors (300X)

» DRAM Transistors: 0.064 vs. 256 M xtors (4000X)

» MPU Pins: 68  vs. 423 pins (6X) 

» DRAM Pins: 16  vs.   66 pins (4X) 

• Smaller, faster transistors but communicate 
over (relatively) longer lines: limits latency

» Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X) 

» MPU Die Size: 35  vs. 204 mm2 (ratio sqrt µ 2X) 

» DRAM Die Size: 47  vs. 217 mm2 (ratio sqrt µ 2X) 
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6 Reasons Latency Lags Bandwidth (cont’d)

2. Distance limits latency
• Size of DRAM block µ long bit and word lines 

µ most of DRAM access time

• Speed of light and computers on network

• 1. & 2. explains linear latency vs. square BW?

3. Bandwidth easier to sell (“bigger=better”)
• E.g., 10 Gbits/s Ethernet (“10 Gig”) vs. 

10 sec latency Ethernet

• 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency

• Even if just marketing, customers now trained

• Since bandwidth sells, more resources thrown at bandwidth, 
which further tips the balance

4. Latency helps BW, but not vice versa
• Spinning disk faster improves both bandwidth and 

rotational latency

» 3600 RPM µ 15000 RPM = 4.2X

» Average rotational latency: 8.3 ms µ 2.0 ms

» Things being equal, also helps BW by 4.2X

• Lower DRAM latency µ
More access/second (higher bandwidth)

• Higher linear density helps disk BW 
(and capacity), but not disk Latency

» 9,550 BPI µ 533,000 BPI µ 60X in BW

6 Reasons Latency Lags Bandwidth (cont’d)

5. Bandwidth hurts latency
• Queues help Bandwidth, hurt Latency (Queuing Theory)

• Adding chips to widen a memory module increases 
Bandwidth but higher fan-out on address lines may 
increase Latency 

6. Operating System overhead hurts 
Latency more than Bandwidth

• Long messages amortize overhead; 
overhead bigger part of short messages

6 Reasons Latency Lags Bandwidth (cont’d) Summary of Technology Trends

• For disk, LAN, memory, and microprocessor, 
bandwidth improves by square of latency 
improvement

– In the time that bandwidth doubles, latency improves by no more 
than 1.2X to 1.4X

• Lag probably even larger in real systems, as 
bandwidth gains multiplied by replicated components

– Multiple processors in a cluster or even  in a chip

– Multiple disks in a disk array

– Multiple memory modules in a large memory 

– Simultaneous communication in switched LAN 

• HW and SW developers should innovate assuming 
Latency Lags Bandwidth

– If everything improves at the same rate, then nothing really changes 

– When rates vary, require real innovation

Outline

• Technology Trends: Culture of tracking, 
anticipating and exploiting advances in 
technology

• Careful, quantitative comparisons:
1. Define and quantity cost

2. Define and quantity power

3. Define and quantity dependability

4. Define, quantity, and summarize relative performance

Define and quantify cost (1/3)

Three factors lower cost:

1. Learning curve – manufacturing costs decrease 
over time, measured by change in yield
– % manufactured devices that survives the testing procedure

2. Volume – doubling volume cuts cost 10%
– Decrease time to get down the learning curve

– Increases purchasing and manufacturing efficiency

– Amortizes development costs over more devices

3. Commodities reduce costs by reducing margins
– Products sold by multiple vendors in large volumes that 

essentially identical

– E.g. keyboards, monitors, DRAMs, disks, PCs

Most of computer cost in Integrated Circuits (ICs)
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30cm wafer containing 
117 AMD Opteron chips

Define and quantify cost: ICs (2/3)

yiels test Final

cost Packagingcost  Testingcost Die
cost IC

++
=

yield Dieper wafer  Dies

costWafer 
cost Die

×
=

( )

area Die2

diameterWafer 

area Die

2/diameterWafer 
per wafer Dies

2

×

×
−

×
=

ππ

α

α

−

Õ
Ö
Ô

Ä
Å
Ã ×

+×=
area DiedensityDefect 

1yieldWafer yield Die

For cost effective dies:

cost Ã f(die_area2)

In 2006: g = 4.0
Defect density = 0.4/cm2

30cm wafer Ã $5k–$6k

Define and quantify cost: cost vs. price (3/3)

• Margin = price product sells – cost to manufacture

• Margins pay for a research and development (R&D), 
marketing, sales, manufacturing equipment 
maintenance, building rental, cost of financing, 
pretax profits, and taxes.

• Most companies spend 4% (commodity PC 
business) to 12% (high-end server business) of 
income on R&D, which includes all engineering.

Outline

• Technology Trends: Culture of tracking, 
anticipating and exploiting advances in 
technology

• Careful, quantitative comparisons:
1. Define and quantity cost

2. Define and quantity power

3. Define and quantity dependability

4. Define, quantity, and summarize relative performance

Define and quantity power (1/2)

• For CMOS chips, traditional dominant energy 
consumption has been in switching transistors, 
called dynamic power

witchedFrequencySVoltageLoadCapacitivePower 2
2

1
×××=dynamic

• For mobile devices, energy better metric
VoltageLoadCapacitiveEnergy 2

×=dynamic

• For a fixed task, slowing clock rate (frequency 
switched) reduces power, but not energy

• Capacitive load a function of number of transistors 
connected to output and technology, which 
determines capacitance of wires and transistors

• Dropping voltage helps both, so went from 5V to 1V

• To save energy & dynamic power, most CPUs now 
turn off clock of inactive modules (e.g. Fl. Pt. Unit)

Example of  quantifying power 

• Suppose 15% reduction in voltage results in a 15% 
reduction in frequency. What is impact on dynamic 
power?

dynamic

dynamic

dynamic

OldPower6.0

OldPower)85(.

witchedFrequencyS)Voltage85(.LoadCapacitive85.2/1

witchedFrequencySVoltageLoadCapacitive2/1Power

3

2

2

×

×

××××

×××

≈

=

×=

=
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Define and quantity power (2/2)

• Because leakage current flows even when a 
transistor is off, now static power important too

• Leakage current increases in processors with 
smaller transistor sizes

• Increasing the number of transistors increases 
power even if they are turned off

• In 2006, goal for leakage is 25% of total power 
consumption; high performance designs at 40%

• Very low power systems even gate voltage to 
inactive modules to control loss due to leakage

VoltageCurrentPower ×= staticstatic

Outline

• Review

• Technology Trends: Culture of tracking, 
anticipating and exploiting advances in 
technology

• Careful, quantitative comparisons:
1. Define and quantity relative cost

2. Define and quantity power

3. Define and quantity dependability

4. Define, quantity, and summarize relative performance

Define and quantity dependability (1/3)

• How decide when a system is operating properly? 

• Infrastructure providers now offer Service Level 
Agreements (SLA) to guarantee that their 
networking or power service would be dependable

• Systems alternate between 2 states of service 
with respect to an SLA:
1. Service accomplishment, where the service is delivered as 

specified in SLA

2. Service interruption, where the delivered service is different 
from the SLA

• Failure = transition from state 1 to state 2

• Restoration = transition from state 2 to state 1

Define and quantity dependability (2/3)

• Module reliability = measure of continuous service 
accomplishment (or time to failure).
Two metrics:
1. Mean Time To Failure (MTTF) measures Reliability

2. Failures In Time (FIT) = 1/MTTF, the rate of failures 

• Mean Time To Repair (MTTR) measures Service 
Interruption
– Mean Time Between Failures (MTBF) = MTTF+MTTR

• Module availability measures service as alternate 
between the 2 states of accomplishment and 
interruption (number between 0 and 1, e.g. 0.9)
– Module availability = MTTF / ( MTTF + MTTR)

Example calculating reliability

• If modules have exponentially distributed 
lifetimes (age of  module does not affect 
probability of failure), overall failure rate is the 
sum of failure rates of the modules

• Calculate FIT and MTTF for 10 disks (1M hour 
MTTF per disk), 1 disk controller (0.5M hour 
MTTF), and 1 power supply (0.2M hour MTTF):

hours 59,000

000,17/000,000,000,1MTTF

FIT 17,000

000,000,1/17

000,000,1/)5210(

000,200/1000,500/1)000,000,1/1(10eFailureRat

≈

=

=

=

++=

++×=

And in conclusion …

• Computer Architecture >> instruction sets

• Computer Architecture skill sets are different 
– 5 Quantitative principles of design

– Quantitative approach to design

– Solid interfaces that really work

– Technology tracking and anticipation

• Computer Science at the crossroads from sequential to parallel 
computing

– Salvation requires innovation in many fields, including computer architecture

• Tracking and extrapolating technology part of architect’s responsibility

• Expect Bandwidth in disks, DRAM, network, and processors to improve 
by at least as much as the square of the improvement in Latency

• Quantify dynamic and static power
– Capacitance x Voltage2 x frequency, Energy vs. power

• Quantify dependability
– Reliability (MTTF, FIT), Availability (99.9…)

•
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Reading

• This lecture: chapter 1

• Next lecture: appendix A

• Assignment 1: appendix B
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Lecture 2 – Performance & 
Pipelining

Slides were used during lectures by 

David Patterson, Berkeley, spring 2006

Review from last lecture

• Tracking and extrapolating technology part of 
architect’s responsibility

• Expect Bandwidth in disks, DRAM, network, and 
processors to improve by at least as much as the 
square of the improvement in Latency

• Quantify Cost (vs. Price)
– IC f(Area2) + Learning curve, volume, commodity, margins

• Quantify dynamic and static power
– Capacitance x Voltage2 x frequency, Energy vs. power

• Quantify dependability
– Reliability (MTTF vs. FIT), Availability (MTTF/(MTTF+MTTR)

Outline

• Quantify and summarize performance
– Ratios, Geometric Mean, Multiplicative Standard Deviation

– Fallacies & Pitfalls: Benchmarks age, disks fail, 1 point fail danger

• Pipelining
– MIPS: an ISA for Pipelining

– 5 stage pipelining

– Structural and Data Hazards

– Forwarding

– Branch Schemes

– Exceptions and Interrupts

• Conclusion   

Definition: Performance

( )
( )XimeExecutionT

  XePerformanc 1
=

• Performance is in units of things per sec
– bigger is better

• If we are primarily concerned with response time

" X is n times faster than Y"  means

( )
( )

( )
( )XimeExecutionT
YimeExecutionT

YePerformanc
XePerformanc n ==

Performance: What to measure?

• Usually rely on benchmarks vs. real workloads

• To increase predictability, collections of benchmark 

applications, called benchmark suites , are popular

• SPECCPU: popular desktop benchmark suite
– CPU only, split between integer and floating point programs

– SPECCPU2006:

» Motto: “An ounce of honest data is  worth a pound of marketing hype”
» 12 integer and 17 floating point programs

– SPECSFS (NFS file server) and SPECWeb (WebServer) added as server 
benchmarks

• Transaction Processing Council measures server performance 
and cost-performance for databases

– TPC-C Complex query for Online Transaction Processing

– TPC-H models ad hoc decision support

– TPC-W  a transactional web benchmark

– TPC-App application server and web services benchmark

How Summarize Suite Performance (1/5)

• Arithmetic average of execution time of all programs?

– But they vary by 4X in speed, so some would be more important  than others 
in arithmetic average

• Could add a weight per program, but how pick a weight? 

– Different companies want different weights for their products

• SPECRatio: Normalize execution times to reference computer, 
yielding a ratio proportional to

ratedcomputer on  time
computer referenceon time  ePerformanc=
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How Summarize Suite Performance (2/5)

• If program SPECRatio on Computer A is 1.25 times 
bigger than Computer B, then

• Note that when comparing 2 computers as a ratio, 
execution times on the reference computer drop 
out, so choice of reference computer is irrelevant 

B

A

A

B

B

reference

A

reference

B

A

ePerformanc

ePerformanc

imeExecutionT

imeExecutionT
 

imeExecutionT
imeExecutionT

imeExecutionT
imeExecutionT

SPECRatio
SPECRatio.

==

==

ÕÕ
Õ

Ö

Ô

ÄÄ
Ä

Å

Ã

ÕÕ
Õ

Ö

Ô

ÄÄ
Ä

Å

Ã
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How Summarize Suite Performance (3/5)

• Since ratios, proper mean is geometric mean 
(SPECRatio unitless, so arithmetic mean 
meaningless)

1. Geometric mean of the ratios is the same as the ratio of the 
geometric means

2. Ratio of geometric means 
= Geometric mean of performance ratios 

choice of reference computer is irrelevant!

These two points make geometric mean of ratios 
attractive to summarize performance

n

n

i
iSPECRatioeanGeometricM ∏

=

=
1

How Summarize Suite Performance (4/5)

• Does a single mean well summarize performance of 
programs in benchmark suite?

• Can decide if mean a good predictor by characterizing 
variability of distribution using standard deviation

• Like geometric mean, geometric standard deviation is 
multiplicative rather than arithmetic

• Can simply take the logarithm of SPECRatios, compute 
the standard mean and standard deviation, and then 
take the exponent to convert back:

( )

( )( )( )i

n

i

i

SPECRatioStDevtDevGeometricS

SPECRatio
n

eanGeometricM

lnexp

ln
1

exp
1

=

Õ
Ö

Ô
Ä
Å

Ã
×= Â

=

How Summarize Suite Performance (5/5)

• Standard deviation is more informative if know 
distribution has a standard form

– bell-shaped normal distribution , whose data are symmetric 
around mean 

– lognormal distribution , where logarithms of data – not data 
itself – are normally distributed (symmetric) on a logarithmic 
scale

• For a lognormal distribution, we expect that 

68% of samples fall in range 

95% of samples fall in range 

[ ]gstdevmeangstdevmean ×,/

[ ]22,/ gstdevmeangstdevmean ×
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Example Standard Deviation (1/3)

• GM and multiplicative StDev of SPECfp2000 for Itanium 2

Outside 1 StDev

Itanium 2 = 

2712/100 x Sun Ultra 5 (GM)

range within 1 StDev is 

[13.72, 53.62] 

Example Standard Deviation (2/3)

• GM and multiplicative StDev of SPECfp2000 for AMD Athlon
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2086/100 x Sun Ultra 5 (GM)

range within 1 StDev is 

[14.94, 29.11] 
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Example Standard Deviation (3/3)

• GM and StDev Itanium 2 v Athlon

Ratio execution times (At/It) = 

Ratio of SPECratios (It/At)

Itanium 2 = 1.30X Athlon (GM), 
1 St.Dev. range [0.75,2.27]

Outside 1 StDev

ExTimeratioSPECratio

0.92         0.92       
1.77         1.77       
1.49         1.49       
1.85         1.85       
0.60         0.60       
2.16         2.16       
4.40         4.40       
2.00         2.00       
0.85         0.85       
1.03         1.03       
0.83         0.83       
0.92         0.92       
1.79         1.79       
0.65         0.65       

Comments on Itanium 2 and Athlon

• Standard deviation for SPECRatio of 1.98 for Itanium 2 is 
much higher –vs. 1.40– so results will differ more widely from 
the mean, and therefore are likely less predictable

• SPECRatios falling within one standard deviation: 

– 10 of 14 benchmarks (71%) for Itanium 2

– 11 of 14 benchmarks (78%) for Athlon

• Thus, results are quite compatible with a lognormal 
distribution (expect 68% for 1 StDev)

• Itanium 2 vs. Athlon St.Dev is 1.74, which is high, so less 
confidence in claim that Itanium 1.30 times as fast as Athlon 

– Indeed, Athlon faster on 6 of 14 programs

• Range is [0.75,2.27] with 11/14 inside 1 StDev (78%)

Fallacies and Pitfalls (1/2)

• Fallacies - commonly held misconceptions
– When discussing a fallacy, we try to give a counterexample. 

• Pitfalls - easily made mistakes. 
– Often generalizations of principles true in limited context

Show Fallacies and Pitfalls to help you avoid these errors

• Fallacy: Benchmarks remain valid indefinitely

– Once a benchmark becomes popular, tremendous pressure to 

improve performance by targeted optimizations or by aggressive 

interpretation of the rules for running the benchmark: 

“benchmarksmanship.”

– 70 benchmarks from the 5 SPEC releases. 70% were dropped 

from the next release since no longer useful

• Pitfall: A single point of failure

– Rule of thumb for fault tolerant systems: make sure that every 

component was redundant so that no single component failure 

could bring down the whole system (e.g, power supply)

Fallacies and Pitfalls (2/2)

• Fallacy - Rated MTTF of disks is 1,200,000 hours or
140 years, so disks practically never fail

• But disk lifetime is 5 years replace a disk every 5 years; on 
average, 28 replacements wouldn't fail

• A better unit: % that fail (1.2M MTTF = 833 FIT)

• Fail over lifetime: if had 1000 disks for 5 years
= 1000*(5*365*24)*833 /109 = 36,485,000 / 106 = 37 
= 3.7% (37/1000) fail over 5 yr lifetime (1.2M hr MTTF)

• But this is under pristine conditions

– little vibration, narrow temperature range no power failures

• Real world: 

– 3% to 6% of SCSI drives fail per year

» 3400 - 6800 FIT or 150,000 - 300,000 hour MTTF [Gray & van Ingen 05]

– 3% to 7% of ATA drives fail per year

» 3400 - 8000 FIT or 125,000 - 300,000 hour MTTF [Gray & van Ingen 05]

Outline

• Quantify and summarize performance
– Ratios, Geometric Mean, Multiplicative Standard Deviation

– Fallacies & Pitfalls: Benchmarks age, disks fail, 1 point fail danger

• Pipelining
– MIPS: an ISA for Pipelining

– 5 stage pipelining

– Structural and Data Hazards

– Forwarding

– Branch Schemes

– Exceptions and Interrupts

• Conclusion

A "Typical" RISC ISA

• 32-bit fixed format instruction (3 formats)

• 32 32-bit GPR (R0 contains zero, DP take pair)

• 3-address, reg-reg arithmetic instruction

• Single address mode for load/store: 
base + displacement

– no indirection

• Simple branch conditions

• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the desired 
functions

– Inputs are Control Points

– Outputs are signals

• Controller: State machine to orchestrate operation on the data path
– Based on desired function and signals

Datapath Controller

Control Points

signals

Approaching an ISA

• Instruction Set Architecture

– Defines set of operations, instruction format, hardware supported 
data types, named storage, addressing modes, sequencing

• Meaning of each instruction is described by the register 

transfer language (RTL) on architected registers and 
memory

• Given technology constraints assemble adequate datapath

– Architected storage mapped to actual storage

– Function units to do all the required operations

– Possible additional storage (eg. MAR, MBR, …)

– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs

• Collate sequences into symbolic controller state transition 
diagram (STD)

• Lower symbolic STD to control points

• Implement controller

5 Steps of MIPS Datapath
Figure A.2, Page A-8

Memory
Access

Write
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Instruction
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Reg. Fetch

Execute
Addr. Calc
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X
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ory

M
U

X

Sign
Extend

4

A
d
d
e
r Zero?

Next SEQ PC

A
d
d
re

ss

Next PC

WB Data

Inst

RD

RS1

RS2

ImmIR <= mem[PC];

PC <= PC + 4

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]

5 Steps of MIPS Datapath
Figure A.3, Page A-9

Memory
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Write
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Next SEQ PC Next SEQ PC

RD RD RD

W
B
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a

Next PC

A
d
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ss

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

Inst. Set Processor Controller

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IR
rs
];

B <= Reg[IR
rt
]

r <= A op
IRop

B

Reg[IR
rd
] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IR
jaddr

if bop(A,b)

PC <= PC+IR
im

br jmp
RR

r <= A op
IRop

IR
im

Reg[IR
rd
] <= WB

WB <= r

RI

r <= A + IR
im

WB <= Mem[r]

Reg[IR
rd
] <= WB

LD

ST
JSR

JR
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5 Steps of MIPS Datapath
Figure A.3, Page A-9
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Visualizing Pipelining
Figure A.3, Page A-9
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction 
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of 
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior instruction still 
in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow (branches 
and jumps).

One Memory Port/Structural Hazards
Figure A.4, Page A-14
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Instruction fetch

IR q Mem[PC];

NPC q PC + 4

Memory access

LMD q Mem[ALUOutput];

or

Mem[ALUOutput] q B

One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)
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Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?

Speed Up Equation for Pipelining

pipelined

dunpipeline

pipelined

dunpipeline

Time Cycle

Time Cycle
 

CPI

CPI
  

pipelined time ninstructio Average

dunpipeline time ninstructio Average
  Speedup ×==

pipelined

dunpipeline

Time Cycle

Time Cycle
  

CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal
  Speedup ×

+

×
=

pipelined

dunpipeline

Time Cycle

Time Cycle
  

CPI stall Pipeline  1

depth Pipeline
  Speedup ×

+
=

ninstructio per cycles stall Pipeline CPI IdealCPIpipelined +=

For simple RISC pipeline, Ideal CPI = 1:

depth Pipeline

dunpipelinecycleClock
  CPIpipelined =
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)

•
• Machine B: Single ported memory, but its pipelined implementation 

has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x  1.05

= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11
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Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3

J: sub r4,r1,r3

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Reads are always in stage 2, and 

– Writes are always in stage 5

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Three Generic Data Hazards

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 

– All instructions take 5 stages, and 

– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19
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HW Change for Forwarding
Figure A.23, Page A-37
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What circuit detects and resolves this hazard?

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-20
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Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)
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How is this detected?

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e 

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra 

SUB Rd,Re,Rf

SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
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Reg
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Reg A
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DMemIfetch Reg

Reg
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Reg
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DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

• If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or 0

• MIPS Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

I
F
/I

D

Pipelined MIPS Datapath
Figure A.24, page A-38

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g

F
ile

M
U

X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

RD RD RD

W
B

 D
at

a

Interplay of instruction set design and cycle time.

Next PC

A
d
d
re

ss

RS1

RS2

Imm

I
D
/E

X

A
d
d
e
r Zero?

Next 
SEQ PC

M
U

X

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction

sequential successor1
sequential successor2
........

sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n

Scheduling Branch Delay Slots (Fig A.14)

• A is the best choice, fills delay slot & reduces instruction count (IC)

• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful 
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to 
deeper pipelines and multiple issue, the branch 
delay grows and need more than one delay slot

– Delayed branching has lost popularity compared to more 
expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches 
relatively cheaper



9

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0

Predict taken 1 1.20 4.2 1.33

Predict not taken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty

Problems with Pipelining

• Exception:  An unusual event happens to an instruction 
during its execution  

– Examples: divide by zero, undefined opcode

• Interrupt:  Hardware signal to switch the processor to a 
new instruction stream  

– Example: a sound card interrupts when it needs more audio output
samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt 
must appear between 2 instructions (Ii and Ii+1)

– The effect of all instructions up to and including Ii is totalling
complete

– No effect of any instruction after Ii can take place 

• The interrupt (exception) handler either aborts program or 
restarts at instruction Ii+1

Precise Exceptions in Static Pipelines

Key observation: architected state only 

change in memory and register write stages.

And In Conclusion:

• Quantify and summarize performance
– Ratios, Geometric Mean, Multiplicative Standard Deviation

• F&P: Benchmarks age, disks fail,1 point fail danger

• Control via State Machines and Microprogramming

• Just overlap tasks; easy if tasks are independent

• Speed Up Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources

– Data (RAW,WAR,WAW): need forwarding, compiler scheduling

– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle

 TimeCycle
  

CPI stall Pipeline  1

depth Pipeline
  Speedup

Reading

• This lecture: appendix A Pipelining

• Next lecture: appendix C Memory Hierarchy
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Lecture 3 – Memory Hierarchy 

Slides were used during lectures by 

David Patterson, Berkeley, spring 2006

Review from last lecture

• Quantify and summarize performance
– Ratios, Geometric Mean, Multiplicative Standard Deviation

• F&P: Benchmarks age, disks fail,1 point fail danger

• Control VIA State Machines and Microprogramming

• Just overlap tasks; easy if tasks are independent

• Speed Up Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources

– Data (RAW,WAR,WAW): need forwarding, compiler scheduling

– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle

TimeCycle
  

CPI stall Pipeline  1

depthPipeline
  Speedup

Outline

• Review

• Memory hierarchy

• Locality

• Cache design

• Virtual address spaces

• Page table layout

• TLB design options

• Conclusion 

Since 1980, CPU has outpaced DRAM ...

CPU

60% per yr

2X in 1.5 yrs

DRAM

9% per yr

2X in 10 yrs

10

DRAM

CPU

Performance

(1/latency)

100

1000

19

80
20

00
19

90

Year

Gap grew 50% per 
year

Q. How do architects address this gap? 

A. Put smaller, faster “cache” memories 
between CPU and DRAM. 

Create a “memory hierarchy”.

1977: DRAM faster than microprocessors

Apple II (1977)

Steve 
WozniakSteve 

Jobs

CPU: 1000 ns

DRAM: 400 ns

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit

Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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Memory Hierarchy: Apple iMac G5

iMac G5

1.6 GHz

07 Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G

Latency

Cycles, 

Time

1,

0.6 ns

3,

1.9 ns

3,

1.9 ns

11,

6.9 ns

88,

55 ns

107,

12 ms

Let programs address a memory space that 

scales to the disk size, at a speed that is 

usually as fast as register access

Managed 

by compiler
Managed 

by hardware
Managed by OS,

hardware,

application

Goal: Illusion of large, fast, cheap memory

iMac’s PowerPC 970: All caches on-chip

(1K)

R

e

g

i

s

t

e

r

s

L2
512K

L1 (64K Instruction)

L1 (32K Data)

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at any 

instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will tend 

to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items 
whose addresses are close by tend to be referenced soon 
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.

Programs with locality cache well ...

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for 
Virtual Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
s

s
 (

o
n

e
 d

o
t 

p
e

r 
a

c
c

e
s

s
)

Spatial

Locality

Temporal

Locality

Bad locality behavior

Memory Hierarchy: Terminology

• Hit: data appears in some block in the upper level 
(example: Block X) 

– Hit Rate: the fraction of memory access found in the upper level

– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the 
lower level (Block Y)

– Miss Rate = 1 & (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

Cache Measures

• Hit rate : fraction found in that level

– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 

• Average memory-access time 
= Hit time + Miss rate x Miss penalty (ns or clocks)

• Miss penalty : time to replace a block from lower level, 
including time to replace in CPU

– access time : 

time to lower level = f(latency to lower level)

– transfer time : 

time to transfer block = f(bandwidth between upper & lower levels)
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4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level? 
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)

Q1: Where can a block be placed in 
the upper level? 

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, set associative

– S.A. Mapping = Block Number modulo #Sets

Cache

01234567

0 1 2 3

01234567

Memory

1111111111222222222233

01234567890123456789012345678901

Full Mapped
Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

01234567

q set number

q cache block/line

number

q memory block

number

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, 
expands tag

Q2: How is a block found if it is in the 
upper level?

Block
Offset

Block Address

IndexTag

Q3: Which block should be replaced 
on a miss?

• Easy for Direct Mapped

• Set Associative or Fully Associative:
– LRU (Least Recently Used); appealing, but hard to implement for high 

associativity

– Random; easy to implement, how well does it work?

Assoc:            2-way 4-way 8-way

Size LRU     Ran        LRU     Ran        LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q4: What happens on a write?

Write-Through Write-Back

Policy

Data written to cache 

block

also written to lower-

level memory

Write data only to the 
cache

Update lower level 
when a block falls out 

of the cache

Debug Easy Hard

Do read misses 
produce writes? No Yes

Do repeated writes 
make it to lower 

level?
Yes No

Additional option: let writes to an un-cached address allocate 

a new cache line (“write-allocate”). 

Write Buffers for Write-Through Caches

Q. Why a write buffer ?

Processor
Cache

Write Buffer

Lower 
Level 

Memory

Holds data awaiting write-through to 

lower level memory

A. So CPU doesn’t stall 

Q. Why a buffer, why not just 

one register ?
A. Bursts of writes are

common.

Q. Are Read After Write 

(RAW) hazards an issue for 

write buffer?

A. Yes! Drain buffer before next 

read, or send read first after check 

write buffers.
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Cache misses

Cache misses can be divided into three categories

Compulsory First access miss, cold start miss.

Capacity         Cache is full.

Conflict Two blocks are mapped to the 

same location.

6 Basic Cache Optimizations

Reducing Miss Rate
1. Larger Block size (compulsory misses)

2. Larger Cache size (capacity misses)

3. Higher Associativity (conflict misses)

Reducing Miss Penalty
4. Multilevel Caches

Reducing hit time
5. Giving Reads Priority over Writes 

E.g., Read complete before earlier writes in write buffer

6. Avoiding Address Translation during Indexing of the Cache

Outline

• Review

• Memory hierarchy

• Locality

• Cache design

• Virtual address spaces

• Page table layout

• TLB design options

• Conclusion 

The Limits of Physical Addressing

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations 

Data

• All programs share one address space: The physical
address space

• Machine language programs must be aware of the 
machine organization 

• No way to prevent a program from accessing any 
machine resource

Solution:  Add a Layer of Indirection

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

“Physical addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

• User programs run in a standardized virtual
address space

• Address Translation hardware managed by the 
operating system (OS) maps virtual address to 
physical memory

• Hardware supports “modern” OS features: 
Protection, Translation, Sharing

Three Advantages of Virtual Memory

• Translation:
– Program can be given consistent view of memory, even though 

physical memory is scrambled

– Makes multithreading reasonable (now used a lot!)

– Only the most important part of program (“Working Set”) must be in 
physical memory.

– Contiguous structures (like stacks) use only as much physical 
memory as necessary yet still grow later.

• Protection:
– Different threads (or processes) protected from each other.

– Different pages can be given special behavior

» (Read Only, Invisible to user programs, etc).

– Kernel data protected from User programs

– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users (“Shared memory”)
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Page tables encode virtual address spaces

A machine usually 

supports

pages of a few sizes

(MIPS R4000):

A virtual address space is divided into 

blocks of memory called pages

Valid page table entry codes physical 

memory “frame” address for the page

Physical 

Address Space

frame

frame

frame

frame

Page table is indexed by a virtual address

virtual 

address

Page table

OS manages the page table

• Page table maps virtual page numbers to physical 
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory ≈ cache for disk

Details of Page Table

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V
Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset

12

Physical Address

Physical

Memory Space

frame

frame

frame

frame

virtual 

address

Page Table

Page tables may not fit in memory!

A table for 4KB pages for a 32-bit address space has 1M entries 

Each process needs its own address space!

P1 index P2 index Page Offset

31 12 11 02122

32 bit virtual address

Top-level table wired in main memory

Subset of 1024 second-level tables in main 

memory; rest are on disk or unallocated 

Two-level Page Tables

VM and Disk: Page replacement policy

...

Page Table

1     0

useddirty

1     0
0     1

1     1

0     0
Set of all pages

in Memory Tail pointer:

Clear the used

bit in the 

page table
Head pointer

Place pages on free 

list if used bit

is still clear.

Schedule pages with 

dirty bit set to

be written to disk.

Freelist

Free Pages

Dirty bit: page written

Used bit: set to 1 on 

any reference

Architect’s role: 

support setting dirty 

and used bits

TLB Design Concepts

MIPS Address Translation: How does it work?

“Physical 

Addresses”

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

Virtual Physical

“Virtual Addresses”

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)
– A small fully-associative cache of mappings from virtual to physical 

addresses

– TLB also contains protection bits for virtual address

– Fast common case: Virtual address is in TLB, process has 
permission to read/write it.  
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V=0  pages either 

reside on disk or have 

not yet been allocated.

OS handles V=0

“Page fault”

Physical and virtual 

pages must be the 

same size!

The TLB caches page table entries

TLB

Page Table

2

0

1

3

virtual address

page off

2

frame page

2
50

physical address

page off

TLB caches 

page table 

entries

MIPS handles TLB misses in 

software (random replacement). 

Other machines use hardware.

Physical

frame

address

Can TLB and caching be overlapped?

Index Byte Select

Valid

Cache Block

Cache Block

Cache Tags Cache Data

Data out

Virtual Page Number Page Offset

=

Hit

Cache Tag

This works, but ...

Q. What is the downside?

A. Inflexibility. Size of cache

limited by page size.

Virtual

Physical

Translation
Look-Aside

Buffer
(TLB)

Problems With Overlapped TLB Access

Overlapped access only works as long as the address bits used to
index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example:  suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache 
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; 
or SW guarantee VA[13]=PA[13]

1K

4 4
10

2 way set assoc cache

Use virtual addresses for cache?

Only use TLB on a cache miss !

A. Synonym problem. If two address spaces share a 

physical frame, data may be in cache twice. 

Maintaining consistency is a nightmare. 

Main Memory

“Physical 

Addresses”

CPU

A0-A31 A0-A31

D0-D31 D0-D31

Translation
Look-Aside

Buffer
(TLB)

Virtual Physical

“Virtual Addresses”

Cache
Virtual

D0-D31

Downside: a subtle, fatal problem. What is it?

Summary #1/3: The Cache Design Space

• Several interacting dimensions
– cache size

– block size

– associativity

– replacement policy

– write-through vs write-back

– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload

» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Summary #2/3: Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at any 

instant of time.

» Temporal Locality: Locality in Time

» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.

– Capacity Misses: increase cache size

– Conflict Misses:  increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Write Policy: Write Through vs. Write Back

• Today CPU time is a function  of (ops, cache misses) vs. just f(ops): 
affects Compilers, Data structures, and Algorithms
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Summary #3/3: TLB, Virtual Memory

• Page tables map virtual address to physical address

• TLBs are important for fast translation

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache without TLB 

misses!

• Caches, TLBs, Virtual Memory all understood by examining how 
they deal with 4 questions:
1) Where can block be placed?

2) How is block found?

3) What block is replaced on miss?

4) How are writes handled?

• Today VM allows many processes to share single memory without 
having to swap all processes to disk; today VM protection is more 
important than memory hierarchy benefits, but computers insecure

Reading

• This lecture: appendix C Memory Hierarchy

• Next lecture: chapter 2 Instruction-Level Parallelism
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Lecture 4 –

Instruction Level Parallelism

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic 

Scheduling
• Tomasulo Algorithm
• Conclusion

Recall from Pipelining

Pipeline CPI = Ideal pipeline CPI + Structural 
Stalls + Data Hazard Stalls + Control Stalls

– Ideal pipeline CPI : measure of the maximum 
performance attainable by the implementation

– Structural hazards : HW cannot support this 
combination of instructions

– Data hazards : instruction depends on result of prior 
instruction still in the pipeline

– Control hazards : caused by delay between the fetching 
of instructions and decisions about changes in control 
flow (branches and jumps)

Instruction Level Parallelism

Instruction-Level Parallelism (ILP): overlap the 
execution of instructions to improve performance

Two approaches to exploit ILP:
1) Rely on hardware to help discover and exploit the parallelism 

dynamically (e.g., Pentium 4, AMD Opteron, IBM Power)
2) Rely on software technology to find parallelism, statically at 

compile-time (e.g., Itanium 2)

Instruction-Level Parallelism 
(ILP)

• Basic Block (BB) ILP is quite small
– BB: a straight-line code sequence with no branches in except to 

the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25% 
4 to 7 instructions execute between a pair of branches

– plus instructions in BB likely to depend on each other

• To obtain substantial performance enhancements, 
we must exploit ILP across multiple basic blocks

• Simplest: loop-level parallelism to exploit 
parallelism among iterations of a loop. E.g.,

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

Loop-Level Parallelism

• Exploit loop-level parallelism to parallelism by 
“unrolling loop” either by 
1. dynamic via branch prediction or 
2. static via loop unrolling by compiler

(Another way is vectors, to be covered later)

• Determining instruction dependence is critical to 
Loop Level Parallelism

• If 2 instructions are
– parallel , they can execute simultan eously in a pipeline of 

arbitrary depth without causing any stalls (assuming no 
structural hazards)

– dependent , they are not parallel and must be executed in 
order, although they may often be partially overlapped
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• Instr J is data dependent (aka true dependence ) on Instr I:
1. Instr J tries to read operand before Instr I writes it

2. or Instr J is data dependent on Instr K which is dependent on Instr I

• If two instructions are data dependent, they cannot 
execute simultaneously or be completely overlapped

• Data dependence in instruction sequence 
data dependence in source code effect of original 

data dependence must be preserved

• If data dependence caused a hazard in pipeline, 
called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

ILP and Data Dependencies, 
Hazards

• HW/SW must preserve program order : 
order instructions would execute in if executed 
sequentially as determined by original source program

– Dependences are a property of programs

• Presence of dependence indicates potential for a hazard, 
but actual hazard and length of any stall is property of 
the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much pa rallelism can possibly be exploited

• HW/SW goal: exploit parallelism by preserving program 
order only where it affects the outcome of the program

• Name dependence : when 2 instructions use same 
register or memory location, called a name, but no 
flow of data between the instructions associated 
with that name; two versions of name dependence

• Instr J writes operand before Instr I reads it

Called an “ anti-dependence ” by compiler writers.
This results from reuse of the name “ r1”

• If anti-dependence caused a hazard in the pipeline, 
called a Write After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1: Anti-
dependence

Name Dependence #2: Output 
dependence• Instr J writes operand before Instr I writes it.

• Called an “ output dependence ” by compiler writers
This also results from the reuse of name “ r1”

• If output-dependence caused a hazard in the 
pipeline, called a Write After Write (WAW) hazard

• Instructions involved in a name dependence can 
execute simultaneously if name used in instructions 
is changed so instructions do not conflict

– Register renaming resolves name dependence for regs
– Either by compiler or by HW

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Control Dependencies

Every instruction is control dependent on some 
set of branches, and, in general, these control 
dependencies must be preserved to preserve 
program order
if p1 {

S1;

};

if p2 {

S2;

}

S1 is control dependent on p1, and S2 is control 
dependent on p2 but not on p1.

Control Dependence Ignored

• Control dependence need not be 
preserved
– willing to execute instructions that should not have been 

executed, thereby violati ng the control dependences, if
can do so without affecting correctness of the program 

• Instead, two properties critical to program 
correctness are 
1) exception behavior and 
2) data flow
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Exception Behavior
• Preserving exception behavior 

any changes in instruction execution order 
must not change how exceptions are raised in 
program 
( no new exceptions)

• Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:
– (Assume branches not delayed)

• Problem with moving LW before BEQZ?

Data Flow

• Data flow : actual flow of data values among 
instructions that produce results and those that 
consume them

– branches make flow dynamic, determine which instruction is 
supplier of data

• Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

• OR depends on DADDU or DSUBU? 
Must preserve data flow on execution

Software Techniques -
Example

• This code, add a scalar to a vector:
for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

• Assume following latencies for all examples
– Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result in cycles in cycles
FP ALU op Another FP ALU op 4 3
FP ALU op Store double 3 2 
Load double FP ALU op 1 1
Load double Store double 1 0
Integer op Integer op 1 0

FP Loop: Where are the Hazards?

Loop: L.D F0,0(R1);F0=vector element
ADD.D F4,F0,F2;add scalar from F2
S.D 0(R1),F4;store result
DADDUI R1,R1,-8;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!=zero

First translate into MIPS code: 
-To simplify, assume 8 is lowest address

FP Loop Showing Stalls

9 clock cycles: Rewrite c ode to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: L.D F0,0(R1) ;F0=vector element

2 stall

3 ADD.D F4,F0,F2 ;add scalar in F2

4 stall

5 stall

6 S.D 0(R1),F4 ;store result

7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)

8 stall ;assumes can’t forward to branch

9 BNEZ R1,Loop ;branch R1!=zero

Revised FP Loop Minimizing 
Stalls

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for 
loop overhead; How make  faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: L.D F0,0(R1)

2 DADDUI R1,R1,-8

3 ADD.D F4,F0,F2

4 stall

5 stall

6 S.D 88(R1),F4 ;altered offset when move DSUBUI

7 BNEZ R1,Loop

Swap DADDUI and S.D by changing address of S.D
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Unroll  Loop Four Times 
(straightforward way)

Rewrite loop to 
minimize stalls?

1 Loop:L.D F0,0(R1)
3 ADD.D F4,F0,F2
6 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
7 L.D F6,-8(R1)
9 ADD.D F8,F6,F2
12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
13 L.D F10,-16(R1)
15 ADD.D F12,F10,F2
18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
19 L.D F14,-24(R1)
21 ADD.D F16,F14,F2
24 S.D -24(R1),F16
25 DADDUI R1,R1,#-32 ;alter to 4*8
27 BNEZ R1,LOOP

27 clock cycles, or 6.75 per iteration
(Assumes R1 is multiple of 4)

1 cycle stall

2 cycles stall

Unrolled Loop That Minimizes 
Stalls
1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 S.D 8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

Unrolled Loop Detail
• Do not usually know upper bound of loop

• Suppose it is n, and we would like to unroll the 
loop to make k copies of the body

• Instead of a single unrolled loop, we generate a 
pair of consecutive loops:

– 1st executes ( n mod k ) times and has a body that is the 
original loop

– 2nd is the unrolled body surrounded by an outer loop that 
iterates ( n/k) times

• For large values of n, most of the execution time 
will be spent in the unrolled loop

5 Loop Unrolling Decisions
Requires understanding how one instruction depends 
on another and how the instructions can be changed 
or reordered given the dependences:

1. Determine loop unrolling useful by finding that loop iterations were 
independent (except for maintenance code) 

2. Use different registers to avoid unnecessary constraints forced by using 
same registers for different computations 

3. Eliminate the extra test and branch instructions and adjust the loop 
termination and iteration code

4. Determine that loads and stores in unrolled loop can be interchanged by 
observing that loads and stores from different iterations are independent 

• Transformation requires analyzing memory addresses and finding that they do 
not refer to the same address

5. Schedule the code, preserving any dependences needed to yield the same 
result as the original code

3 Limits to Loop Unrolling
1) Decrease in amount of overhead amortized with 

each extra unrolling
• Amdahl’s Law

2) Growth in code size 
• For larger loops, concern it increases the instruction cache 

miss rate

3) Register pressure : potential shortfall in 
registers created by aggressive unrolling and 
scheduling
• If not be possible to allocate all live values to registers, may

lose some or all of its advantage

Loop unrolling reduces impact of branches on pipeline; 
another way is branch prediction

Static Branch Prediction
• We saw scheduling code around delayed branch
• To reorder code around branches, need to predict 

branch statically when compile 
• Simplest scheme is to predict a branch as taken

– Average misprediction = untaken branch frequency = 34% SPEC

More accurate 
scheme predicts 
branches using 
profile information 
collected from 
earlier runs, and 
modify prediction 
based on last run:
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Dynamic Branch Prediction
• Why does prediction work?

– Underlying algorithm has regularities
– Data that is being operated on has regularities
– Instruction sequence has redundancies that are artifacts of 

way that humans/compilers think about problems

• Is dynamic branch prediction better than static 
branch prediction?

– Seems to be 
– There are a small number of important branches in programs 

which have dynamic behavior

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)

• Branch History Table: Lower bits of PC address 
index table of 1-bit values

– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two 
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of  looping as before
– First time through loop on next time through code, when it 

predicts exit instead of looping

• Solution: 2-bit scheme where change prediction 
only if get misprediction twice

– Red: stop, not taken
– Green: go, taken
– Adds hysteresis to decision making process

Dynamic Branch Prediction

T

T NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
TakenT

NT
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NT

BHT Accuracy
• Mispredict because either:

– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table:
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Correlated Branch Prediction
• Idea:  record m most recently executed branches 

as taken or not taken, and use that pattern to 
select the proper n-bit branch history table

• In general, ( m,n) predictor means record last m
branches to select between 2 m history tables, 
each with n-bit counters

– Thus, old 2-bit BHT is a (0,2) predictor

• Global Branch History: m-bit shift register 
keeping T/NT status of last m branches.

Correlating Branches

(2,2) predictor

– Behavior of recent 
branches selects 
between four 
predictions of next 
branch, updating 
just that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4
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Tournament Predictors

• Multilevel branch predictor

• Use n-bit saturating counter to choose between 
predictors

• Usual choice between global and local predictors

Tournament Predictors

Tournament predictor using, say, 4K 2-bit counters 
indexed by local branch address.  Chooses 
between:

• Global predictor

– 4K entries index by history of last 12 branches (2 12 = 4K)

– Each entry is a standard 2-bit predictor

• Local predictor

– Local history table: 1024 10-bit entries recording last 10 
branches, index by branch address

– The pattern of the last 10 occurrences of that particular branch
used to index table of 1K entr ies with 3-bit saturating counters

Comparing Predictors (Fig. 
2.8)

Advantage of tournament predictor is ability to 
select the right predictor for a particular branch
– Particularly crucial for integer benchmarks. 
– A typical tournament predictor will select the global predictor 

almost 40% of the time for the SPEC integer benchmarks 
and less than 15% of the time for the SPEC FP benchmarks

Pentium 4 Misprediction Rate 
(per 1000 instructions, not per 
branch)
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SPECint2000 SPECfp2000

6% misprediction rate per branch SPECint 
(19% of INT instructions are branch)

2% misprediction rate per branch SPECfp
(5% of FP instructions are branch)

• Branch target calculation is costly and stalls the 
instruction fetch.

• BTB stores PCs the same way as caches.

• The PC of a branch is sent to the BTB.

• When a match is found the corresponding 
Predicted PC is returned.

• If the branch was predicted taken, instruction 
fetch continues at the returned predicted PC.

Branch Target Buffers (BTB)
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Branch Target Buffers
Dynamic Branch Prediction 
Summary

• Prediction becoming important part of execution

• Branch History Table: 2 bits for loop accuracy

• Correlation: Recently executed branches correlated with 
next branch

– Either different branches (GA)
– Or different executions of same branches (PA)

• Tournament predictors take insight to next level, by using 
multiple predictors 

– usually one based on global information and one based on local 
information, and combin ing them with a selector

– In 2006, tournament predictors using 30K bits are in processors like the 
Power5 and Pentium 4

• Branch Target Buffer: include branch address & prediction

break

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic 

Scheduling
• Tomasulo Algorithm
• Conclusion

Advantages of Dynamic 
Scheduling
• Dynamic scheduling - hardware rearranges the 

instruction execution to reduce stalls while 
maintaining data flow and exception behavior

• It handles cases when dependences unknown at 
compile time 

– it allows the processor to tolerate unpredictable delays such 
as cache misses, by executing other code while waiting for 
the miss to resolve

• It allows code that compiled for one pipeline to 
run efficiently on a different pipeline 

• It simplifies the compiler 
• Hardware speculation , a technique with 

significant performance advantages, builds on 
dynamic scheduling (next lecture)

HW Schemes: Instruction 
Parallelism

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

• Enables out-of-order execution and allows out-of-
order completion (e.g., SUBD)

– In a dynamically scheduled pipeline, all instructions still pass
through issue stage in order ( in-order issue )

• Will distinguish when an instruction begins execution
and when it completes execution ; between 2 times, 
the instruction is in execution

• Note: Dynamic execution creates WAR and WAW 
hazards and makes exceptions harder
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Dynamic Scheduling Step 1
• Simple pipeline had 1 stage to check both 

structural and data hazards: Instruction 
Decode (ID), also called Instruction Issue

• Split the ID pipe stage of simple 5-stage 
pipeline into 2 stages: 
1) Issue —Decode instructions, check for structural 

hazards 

2) Read operands —Wait until no data hazards, then 
read operands

A Dynamic Algorithm: 
Tomasulo’s

• For IBM 360/91 (before caches!)
฀ Long memory latency

• Goal: High Performance without special compilers

• Small number of floating point registers (4 in 360) 
prevented interesting compiler scheduling of operations

– This led Tomasulo to try to figure out how to get more effective
registers — renaming in hardware!

• Why Study 1966 Computer? 

• The descendants of this have flourished!
– Alpha 21264, Pentium 4, AMD Opteron, Power 5, …

Tomasulo Algorithm
• Control & buffers distributed with Function Units (FU)

– FU buffers called “ reservation stations ”; have pending operands

• Registers in instructions repl aced by values or pointers to 
reservation stations(RS); called  register renaming ; 

– Renaming avoids WAR, WAW hazards

– More reservation stations than registers, so can do optimizations compilers 
cannot

• Results to FU from RS, not through registers , over Common Data 
Bus that broadcasts results to all FUs

– Avoids RAW hazards by executing an instruction only when its operands are 
available

• Load and Stores treated as FUs with RSs as well

• Integer instructions can go past branches (predict taken), allowing 
FP ops beyond basic block in FP queue

Tomasulo Organization

FP 
adders

Add1
Add2
Add3

FP 
multipliers

Mult1
Mult2

From Mem FP Registers

Reservation 
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store 
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source 
registers (value to be written)

– Note: Qj,Qk=0 => ready
– Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status —Indicates which functional unit 
will write each register, if one exists. Blank when no 
pending instructions that will write that register. 

Three Stages of Tomasulo 
Algorithm
1. Issue —get instruction from FP Op Queue

If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2. Execute —operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result —finish execution (WB)
Write on Common Data Bus to all awaiting units; 
mark reservation station available

• Normal data bus: data + destination (“go to” bus)

• Common data bus : data + source (“ come from ” bus)
– 64 bits of data + 4 bits  of Functional Unit  source address
– Write if matches expected Functional Unit (produces result)
– Does the broadcast

• Example speed: 
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /
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Tomasulo Example

Instruction  sta tus: Exec W rite
In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 L oad1 N o
L D F2 45+ R 3 L oad2 N o
M U L T D F0 F2 F4 L oad3 N o
SU B D F8 F6 F2
D IV D F1 0 F0 F6
A D D D F6 F8 F2

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M u lt1 N o
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

0 F U

Clock cycle 
counter

FU count
Down 

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

Tomasulo Example Cycle 1
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 L oad1 Y es 34+R 2
L D F2 45+ R 3 L oad2 N o
M U L T D F0 F2 F4 L oad3 N o
SU B D F8 F6 F2
D IV D F1 0 F0 F6
A D D D F6 F8 F2

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M u lt1 N o
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

1 F U L oad1

Note: Can have multiple loads outstanding

Tomasulo Example Cycle 2
Instruction status: Exec W rite

In struction j k Issue C om p Result Busy A ddress
L D F6 34+ R2 1 L oad1 Y es 34+R2
L D F2 45+ R3 2 L oad2 Y es 45+R3
M U L T D F0 F2 F4 L oad3 N o
SU B D F8 F6 F2
D IV D F10 F0 F6
A D D D F6 F8 F2

R eserva tion  Stations: S1 S2 R S RS
Tim e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M ult1 N o
M ult2 N o

R egister result sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

2 F U L oad2 L oad1

Tomasulo Example Cycle 3
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 L oad1 Y es 34+R 2
L D F2 45+ R 3 2 L oad2 Y es 45+R 3
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2
D IV D F1 0 F0 F6
A D D D F6 F8 F2

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M u lt1 Y es M U L T D R (F4 ) L oad2
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

3 F U M ult1 L oad2 L oad1

• Note: registers names are removed (“renamed”) in 
Reservation Stati ons; MULT issued

• Load1 completing; what is waiting for Load1? 

Tomasulo Example Cycle 4
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 L oad2 Y es 45+R 3
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4
D IV D F1 0 F0 F6
A D D D F6 F8 F2

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 Y es SU B D M (A 1) L oad2
A dd2 N o
A dd3 N o
M u lt1 Y es M U L T D R (F4 ) L oad2
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

4 F U M ult1 L oad2 M (A 1) A dd1

Load2 completing; what is waiting for Load2? 

Tomasulo Example Cycle 5
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

2 A dd1 Y es SU B D M (A 1) M (A 2)
A dd2 N o
A dd3 N o

10 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

5 F U M ult1 M (A 2) M (A 1) A dd1 M u lt2

Timer starts down for Add1, Mult1
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Tomasulo Example Cycle 6
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

1 A dd1 Y es SU B D M (A 1) M (A 2)
A dd2 Y es A D D D  M (A 2) A dd1
A dd3 N o

9 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

6 F U M ult1 M (A 2) A dd2 A dd1 M u lt2

Issue ADDD here despite name dependency on F6? 

Tomasulo Example Cycle 7
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

0 A dd1 Y es SU B D M (A 1) M (A 2)
A dd2 Y es A D D D  M (A 2) A dd1
A dd3 N o

8 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

7 F U M ult1 M (A 2) A dd2 A dd1 M u lt2

Add1 (SUBD) completing; what is waiting for it? 

Tomasulo Example Cycle 8
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
2 A dd2 Y es A D D D  (M -M ) M (A 2)

A dd3 N o
7 M u lt1 Y es M U L T D M (A 2) R (F4 )

M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

8 F U M ult1 M (A 2) A dd2 (M -M ) M u lt2

Tomasulo Example Cycle 9
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
1 A dd2 Y es A D D D  (M -M ) M (A 2)

A dd3 N o
6 M u lt1 Y es M U L T D M (A 2) R (F4 )

M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

9 F U M ult1 M (A 2) A dd2 (M -M ) M u lt2

Tomasulo Example Cycle 10
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
0 A dd2 Y es A D D D  (M -M ) M (A 2)

A dd3 N o
5 M u lt1 Y es M U L T D M (A 2) R (F4 )

M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

10 F U M ult1 M (A 2) A dd2 (M -M ) M u lt2

Add2 (ADDD) completing; what is waiting for it? 

Tomasulo Example Cycle 11
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o

4 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

11 F U M ult1 M (A 2) (M -M + M(M -M ) M u lt2

• Write result of ADDD here?
• All quick instructions complete in this cycle!
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Tomasulo Example Cycle 12
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o

3 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

12 F U M ult1 M (A 2) (M -M + M(M -M ) M u lt2

Tomasulo Example Cycle 13
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o

2 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

13 F U M ult1 M (A 2) (M -M + M(M -M ) M u lt2

Tomasulo Example Cycle 14
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o

1 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

14 F U M ult1 M (A 2) (M -M + M(M -M ) M u lt2

Tomasulo Example Cycle 15
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 15 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o

0 M u lt1 Y es M U L T D M (A 2) R (F4 )
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

15 F U M ult1 M (A 2) (M -M + M(M -M ) M u lt2

Mult1 (MULTD) completing; what is waiting for it? 

Tomasulo Example Cycle 16
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 15 16 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M u lt1 N o

40 M u lt2 Y es D IV D M *F4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

16 F U M * F4 M (A 2) (M -M + M(M -M ) M u lt2

Just waiting for Mult2 (DIVD) to complete

Faster than light computation
(skip a couple of cycles)
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Tomasulo Example Cycle 55
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 15 16 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M u lt1 N o

1 M u lt2 Y es D IV D M *F4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

55 F U M * F4 M (A 2) (M -M + M(M -M ) M u lt2

Tomasulo Example Cycle 56
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 15 16 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5 56
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M u lt1 N o

0 M u lt2 Y es D IV D M *F4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

56 F U M * F4 M (A 2) (M -M + M(M -M ) M u lt2

Mult2 (DIVD) is completing; what is waiting for it? 

Tomasulo Example Cycle 57
Instruction  sta tus: Exec W rite

In struction j k Issue C om p Resu lt B usy A ddress
L D F6 34+ R 2 1 3 4 L oad1 N o
L D F2 45+ R 3 2 4 5 L oad2 N o
M U L T D F0 F2 F4 3 15 16 L oad3 N o
SU B D F8 F6 F2 4 7 8
D IV D F1 0 F0 F6 5 56 57
A D D D F6 F8 F2 6 10 11

R eserva tion  S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M u lt1 N o
M u lt2 Y es D IV D M *F4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

56 F U M * F4 M (A 2) (M -M + M(M -M ) R esu lt

Once again: In-order issue, out-of-order execution and 
out-of-order completion.

Why can Tomasulo overlap loop 
iterations?
• Register renaming

– Multiple iterations use differe nt physical destinations for 
registers (dynamic loop unrolling).

• Reservation stations 
– Permit instruction issue to advance past integer control flow 

operations
– Also buffer old values of registers - totally avoiding the WAR 

stall 

• Other perspective: Tomasulo building data 
flow dependency graph on the fly

Tomasulo s scheme 
offers 
two major advantages
1. Distribution of the hazard detection logic

– distributed reservation stations and the CDB
– If multiple instructions wa iting on single result, & each 

instruction has other operand, then instructions can be 
released simultaneously by broadcast on CDB 

– If a centralized register file were used, the units would 
have to read their results from the registers when 
register buses are available

2. Elimination of stalls for WAW and WAR 
hazards

Tomasulo Drawbacks
• Complexity

– delays of 360/91, MIPS 10000, Alpha 21264, 
IBM PPC 620 in CA: AQA 2/e, but not in silicon!

• Many associative stores (CDB) at high speed

• Performance limited by Common Data Bus
– Each CDB must go to multiple functional units 

high capacitance, high wiring density
– Number of functional units that can complete per cycle 

limited to one!
» Multiple CDBs more FU logic for parallel assoc stores

• Non-precise interrupts!
– We will address this later
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And In Conclusion … (1)

• Leverage Implicit Parallelism for Performance: 
Instruction Level Parallelism

• Loop unrolling by comp iler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP
– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another

And In Conclusion … (2)
• Reservations stations: renaming to larger set of 

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks (integer units gets ahead, 
beyond branches)

• Helps cache misses as well

• Lasting Contributions
– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Intel Pentium 4, IBM Power 5, 
AMD Athlon/Opteron, … 

Reading

• This lecture: chapter 2 Instruction-Level Parallelism

• Next week: no class, Oct 3 rd

• Next class, Oct 10 th: ILP (cont’d)

• This afternoon: introduction on assignment 2; 
highly recommended!
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Lecture 5 – Instruction Level 

Parallelism (cont’d)

Slides were used during lectures by 

David Patterson, Berkeley, spring 2006

Review from Last Time (1)

• Leverage Implicit Parallelism for Performance: 
Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP
– Works when can’t know dependence at compile time

– Can hide L1 cache misses

– Code for one machine runs well on another

Review from Last Time (2)

• Reservations stations: renaming to larger set of 
registers + buffering source operands

– Prevents registers as bottleneck

– Avoids WAR, WAW hazards

– Allows loop unrolling in HW

• Not limited to basic blocks 
(integer units gets ahead, beyond branches)

• Helps cache misses as well

• Lasting Contributions
– Dynamic scheduling

– Register renaming

– Load/store disambiguation

• 360/91 descendants are Pentium 4, Power 5, AMD 
Athlon/Opteron, … 

Outline

• ILP

• Speculation

• Speculative Tomasulo Example

• Memory Aliases

• Exceptions

• VLIW

• Increasing instruction bandwidth

• Register Renaming vs. Reorder Buffer

• Value Prediction

• Limits to ILP

Speculation to greater ILP

• Greater ILP: Overcome control dependence by 
hardware speculating on outcome of branches 
and executing program as if guesses were correct

– Speculation fetch, issue, and execute instructions as if 
branch predictions were always correct 

– Dynamic scheduling only fetches and issues
instructions

• Essentially a data flow execution model: 
Operations execute as soon as their operands are 
available

Speculation to greater ILP

3 components of HW-based speculation:

1. Dynamic branch prediction to choose which 
instructions to execute 

2. Speculation to allow execution of instructions 
before control dependences are resolved 
+ ability to undo effects of incorrectly speculated sequence 

3. Dynamic scheduling to deal with scheduling of 
different combinations of basic blocks 



2

Adding Speculation to Tomasulo

• Must separate execution from allowing 
instruction to finish or “commit”

• This additional step called instruction commit

• When an instruction is no longer speculative, 
allow it to update the register file or memory 

• Requires additional set of buffers to hold results 
of instructions that have finished execution but 
have not committed

• This reorder buffer (ROB) is also used to pass 
results among instructions that may be 
speculated

Reorder Buffer (ROB)

• In Tomasulo’s algorithm, once an instruction 
writes its result, any subsequently issued 
instructions will find result in the register file

• With speculation, the register file is not updated 
until the instruction commits 

– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval 
between completion of instruction execution and 
instruction commit

– ROB is a source of operands for instructions, just as 
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS

Reorder Buffer Entry

Each entry in the ROB contains four fields: 

1. Instruction type 
• A branch (has no destination result), a store (has a memory 

address destination), or a register operation (ALU operation 
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or 

memory address (for stores) where the instruction result 
should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the 

value is ready

Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued

• When instructions complete, results placed into ROB
– Supplies operands to other instruction between execution 

complete & commit more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit  values at head of ROB placed in 
registers

• As a result, easy to undo 
speculated instructions 
on mispredicted branches 
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path

Recall: 4 Steps of Speculative Tomasulo
Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & 
send operands & reorder buffer no. for destination (this stage 
sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch 
CDB for result; when both in reservation station, execute; 
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update 
register with result (or store to memory) and remove instr from 
reorder buffer. Mispredicted branch flushes reorder buffer 
(sometimes called “graduation”)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10F10

F0F0
ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)
NN

NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0 ADDD F0,F4,F6ADDD F0,F4,F6 NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

5 0+R35 0+R3

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
ROB5ROB5 ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
NN

NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

Dest

Reorder Buffer

Registers

1 10+R21 10+R2

5 0+R35 0+R3

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
M[10]M[10] ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

NN

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

6 ADDD M[10],R(F6)6 ADDD M[10],R(F6) 3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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----

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest
Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???

Avoiding Memory Hazards

• WAW and WAR hazards through memory are 
eliminated with speculation because actual 
updating of memory occurs in order, when a 
store is at head of the ROB, and hence, no 
earlier loads or stores can still be pending

• RAW hazards through memory are maintained 
by two restrictions: 
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination 
field that matches the value of the A field of the load, and 

2. maintaining the program order for the computation of an 
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that 
accesses a memory location written to by an 
earlier store cannot perform the memory access 
until the store has written the data

Exceptions and Interrupts

• IBM 360/91 invented “imprecise interrupts”
– Computer stopped at this PC; its likely close to this address

– Not so popular with programmers

– Also, what about Virtual Memory? (Not in IBM 360)

• Technique for both precise interrupts/exceptions 
and speculation: in-order completion and in-
order commit

– If we speculate and are wrong, need to back up and restart 
execution to point at which we predicted incorrectly

– This is exactly same as need to do with precise exceptions

• Exceptions are handled by not recognizing the 
exception until instruction that caused it is ready 
to commit in ROB

– If a speculated instruction raises an exception, the exception 
is recorded in the ROB

– This is why reorder buffers in all new processors

Getting CPI below 1

• CPI œ 1 if issue only 1 instruction every clock cycle 

• Multiple-issue processors come in 3 flavors: 
1. statically-scheduled superscalar processors,

2. dynamically-scheduled superscalar processors, and 

3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying 
numbers of instructions per clock 
– use in-order execution if they are statically scheduled, or 

– out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number 
of instructions formatted either as one large 
instruction or as a fixed instruction packet with the 
parallelism among instructions explicitly indicated 
by the instruction (Intel/HP Itanium)

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple 
operations

– In IA-64, grouping called a “packet”

– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations

– By definition, all the operations the compiler puts in the long 
instruction word are independent => execute in parallel

– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several branches

Recall: Unrolled Loop that Minimizes 
Stalls for Scalar

1 Loop: L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,0(R1) L.D F6,-8(R1) 1

L.D F10,-16(R1) L.D F14,-24(R1) 2

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5

S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6

S.D -16(R1),F12 S.D -24(R1),F16 7

S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI  R1,R1,#48 8

S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)

Problems with 1st Generation VLIW

• Increase in code size
– generating enough operations in a straight-line code fragment 

requires ambitiously unrolling loops

– whenever VLIW instructions are not full, unused functional 
units translate to wasted bits in instruction encoding

• Operated in lock-step; no hazard detection HW
– a stall in any functional unit pipeline caused entire processor 

to stall, since all functional units must be kept synchronized

– Compiler might prediction function units, but caches hard to 
predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit 

latencies require different versions of the code

Intel/HP IA-64 “Explicitly Parallel 
Instruction Computer (EPIC)”

• IA-64: instruction set architecture

• 128 64-bit integer regs + 128 82-bit floating point regs
– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies 
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags) 
=> 40% fewer mispredictions?

• Itanium™ was first implementation (2001)
– Highly parallel and deeply pipelined hardware at 800Mhz

– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)

– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process

– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

Increasing Instruction Fetch Bandwidth

• Predicts next 
instruct address, 
sends it out 
before decoding 
instruction

• PC of branch 
sent to BTB

• When match is 
found, Predicted 
PC is returned

• If branch 
predicted taken, 
instruction fetch 
continues at 
Predicted PC

Branch Target Buffer (BTB)

IF BW: Return Address Predictor

• Small buffer of 
return addresses 
acts as a stack

• Caches most 
recent return 
addresses

• Call Push a 
return address 
on stack

• Return Pop an 
address off stack & 
predict as new PC
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More Instruction Fetch Bandwidth

• Integrated branch prediction Branch predictor is 
part of instruction fetch unit and is constantly 
predicting branches

• Instruction prefetch Instruction fetch units prefetch 
to deliver multiple instruct. per clock, integrating it 
with branch prediction

• Instruction memory access and buffering Fetching 
multiple instructions per cycle:

– May require accessing multiple cache blocks 
(prefetch to hide cost of crossing cache blocks) 

– Provides buffering, acting as on-demand unit to 
provide instructions to issue stage as needed 
and in quantity needed



6

Speculation: Register Renaming vs. ROB

• Alternative to ROB is a larger physical set of 
registers combined with register renaming

– Extended registers replace function of both ROB and 
reservation stations

• Instruction issue maps names of architectural 
registers to physical register numbers in 
extended register set

– On issue, allocates a new unused register for the destination 
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register 
holding an instruction destination does not become the 
architectural register until the instruction commits

• Most Out-of-Order processors today use 
extended registers with renaming

Value Prediction

• Attempts to predict value produced by instruction

– E.g., Loads a value that changes infrequently

• Value prediction is useful only if it significantly 
increases ILP

– Focus of research has been on loads; so-so 
results, no processor uses value prediction

• Related topic is address aliasing prediction
– RAW for load and store or WAW for 2 stores

• Address alias prediction is both more stable and 
simpler since need not actually predict the address 
values, only whether such values conflict

– Has been used by a few processors

(Mis) Speculation on Pentium 4

39%
43%

24%

45%

24%

3%
1% 1% 0%

20%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

% of micro-ops not used

Floating PointInteger

Perspective

• Interest in multiple-issue because wanted to improve 
performance without affecting uniprocessor 
programming model

• Taking advantage of ILP is conceptually simple, but 
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger

• Processors of last 5 years (Pentium 4, IBM Power 5, 
AMD Opteron) have the same basic structure and 
similar sustained issue rates (3 to 4 instructions per 
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many 
renaming registers, and 2X as many load-store units

performance 8 to 16X

• Peak v. delivered performance gap increasing

In Conclusion …

• Interrupts and Exceptions either interrupt the current 
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single 
point in the program to restart execution

– All instructions before that point have completed

– No instructions after or including that point have completed 

• Hardware techniques exist for precise exceptions even 
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution

break
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Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)

– Hardware sophistication

– Compiler sophistication

• How much ILP is available using existing 
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW 
mechanisms to keep on processor 
performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints

– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock

– Motorola AltaVec: 128 bit ints and FPs

– Supersparc Multimedia ops, etc.

Overcoming Limits

• Advances in compiler technology + 
significantly new and different hardware 
techniques may be able to overcome 
limitations assumed in studies

• However, unlikely such advances when 
coupled with realistic hardware will 
overcome these limits in near future 

Limits to ILP

Initial HW Model here; MIPS compilers. 

Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided

2. Branch prediction – perfect; no mispredictions

3. Jump prediction – all jumps perfectly predicted 
(returns, case statements)
2 & 3 no control dependencies; perfect speculation 
& an unbounded buffer of instructions available

4. Memory-address alias analysis – addresses known 
& a load can be moved before a store provided 
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions 
(FP *,/); unlimited instructions issued/clock cycle; 
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Limits to ILP (1)

• Doubling issue rates above today’s 3-6 
instructions per clock, say to 6 to 12 instructions, 
probably requires a processor to 

– issue 3 or 4 data memory accesses per cycle, 

– resolve 2 or 3 branches per cycle, 

– rename and access more than 20 registers per cycle, and 

– fetch 12 to 24 instructions per cycle. 

• The complexities of implementing these 
capabilities is likely to mean sacrifices in the 
maximum clock rate 

– E.g.,  widest issue processor is the Itanium 2, but it also has 
the slowest clock rate, despite the fact that it consumes the 
most power!

Limits to ILP (2)

• Most techniques for increasing performance 
increase power consumption 

• The key question is whether a technique is energy 
efficient : does it increase power consumption 
faster than it increases performance? 

• Multiple issue processors techniques all are 
energy inefficient:
1. Issuing multiple instructions incurs some overhead in 

logic that grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained 
performance

• Number of transistors switching = f(peak issue 
rate), and performance = f(sustained rate), 
growing gap between peak and sustained 
performance 

increasing energy per unit of performance
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Reading

• This lecture: 

– chapter 2 ILP
– chapter 3: 3.1-3.4 Limits to ILP

• Next lecture: 

– chapter 3: 3.5-3.8 Simultaneous Multithreading (SMT)

• No class on Wed Oct 31st

• Wed Nov 14th 11.15-13.00h & 13.45-15.30h, room 402
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Lecture 6
Simultaneous Multithreading

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Outline

• Thread Level Parallelism (TLP)
• Multithreading
• Simultaneous Multithreading (SMT)
• Power 4 vs. Power 5
• Head to Head: VLIW vs. Superscalar vs. SMT
• Commentary
• Conclusion

How to Exceed ILP Limits?

• These are not laws of physics; just practical 
limits for today, and perhaps overcome via 
research

• Compiler and ISA advances could change 
results

• WAR and WAW hazards through memory: 
eliminated WAW and WAR hazards through 
register renaming, but not in memory usage

– Can get conflicts via allocation of stack frames 
as a called procedure reuses the memory 
addresses of a previous frame on the stack

HW v. SW to increase ILP

• Memory disambiguation: HW best
• Speculation: 

– HW best when dynamic branch prediction 
better than compile time prediction

– Exceptions easier for HW
– HW doesn’t need bookkeeping code or 

compensation code
– Very complicated to get right

• Scheduling: SW can look ahead to 
schedule better

• Compiler independence: does not require 
new compiler, recompilation to run well

Performance beyond single thread ILP

• There can be much higher natural 
parallelism in some applications 
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data 
Level Parallelism

• Thread : process with own instructions and 
data

– thread may be a process part of a parallel program of 
multiple processes, or it ma y be an independent program

– Each thread has all the stat e (instructions, data, PC, 
register state, and so on) necessary to allow it to execute

• Data Level Parallelism : Perform identical 
operations on data, and lots of data

Thread Level Parallelism (TLP)

• ILP exploits implicit parallel operations 
within a loop or straight-line code segment

• TLP explicitly represented by the use of 
multiple threads of execution that are 
inherently parallel

• Goal: Use multiple instruction streams to 
improve 
1. Throughput of computers that run many 

programs 
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to exploit 
than ILP
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New Approach: Mult ithreaded Execution

• Multithreading: multiple threads to share the 
functional units of 1 processor via 
overlapping

– processor must duplicate inde pendent state of each thread 
e.g., a separate copy of regist er file, a separate PC, and for 
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms, 
which already support multiple processes

– HW for fast thread switch; much faster than full process 
switch 100s to 1000s of clocks

• When switch?
– Alternate instruction pe r thread (fine grain)
– When a thread is stalled, pe rhaps for a cache miss, another 

thread can be executed (coarse grain)

Fine-Grained Multithreading

• Switches between threads on each instruction, 
causing the execution of multiples threads to be 
interleaved 

• Usually done in a round-robin fashion, skipping 
any stalled threads

• CPU must be able to switch threads every clock
• Advantage is it can hide both short and long 

stalls, since instructions from other threads 
executed when one thread stalls 

• Disadvantage is it slows down execution of 
individual threads, since a thread ready to 
execute without stalls will be delayed by 
instructions from other threads

• Used on Sun’s Niagara (will see later)

Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2 
cache misses

• Advantages 
– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other 

threads issued only when the thread encounters a costly stall

• Disadvantage is hard to overcome throughput losses 
from shorter stalls, due to pipeline start-up costs

– Since CPU issues instructions from 1 thread, when a stall 
occurs, the pipeline must be emptied or frozen 

– New thread must fill pipeline before instructions can complete 

• Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of high 
cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

For most apps, most execution units lie idle

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism”, 
ISCA 1995.

For an 8-way 
superscalar

Do both ILP and TLP?

• TLP and ILP exploit two different kinds of 
parallel structure in a program 

• Could a processor oriented at ILP to 
exploit TLP?

– functional units are often idle in data path designed for 
ILP because of either stalls or dependences in the code 

• Could the TLP be used as a source of 
independent instructions that might keep 
the processor busy during stalls? 

• Could TLP be used to employ the 
functional units that would otherwise lie 
idle when insufficient ILP exists?

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units
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Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that 
dynamically scheduled processor already has 
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the 
register sets of independent threads 

– Register renaming provides unique register identifiers, so 
instructions from multiple threads can be mixed in datapath 
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of 
order, and get better utilization of the HW 

• Just adding a per thread renaming table and 
keeping separate PCs

– Independent commitment can be supported by logically 
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”

Multithreaded Categories
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Idle slot

Design Challenges in SMT

• Since SMT makes sense only with fine-grained 
implementation, impact of fine-grained scheduling 
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor 
single-thread performance? 

– Unfortunately, with a preferred thread, the processor is likely to 
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in 

– Instruction issue - more candidate instructions need to be 
considered

– Instruction completion - choosing which instructions to commit 
may be challenging

• Ensuring that cache and TLB conflicts generated 
by SMT do not degrade performance

Power 4

Single-threaded predecessor to Power 5.  
8 execution units in out-of-order engine, 

each may issue an instruction each cycle.

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)

Power 5

Power 4
Power 5 data flow ...

Why only 2 threads? With 4, one of the shared 
resources (physical registers, cache, memory 
bandwidth) would be prone to bottleneck 
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Power 5 thread performance ...

Relative priority 
of each thread 
controllable in 
hardware.

For balanced 
operation, both 
threads run 
slower than if 
they “owned” the 
machine.

Changes in  Power 5 to support SMT

• Increased associativity of L1 instruction cache 
and the instruction address translation buffers 

• Added per thread load and store queues 
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3 

caches
• Added separate instruction prefetch and 

buffering per thread
• Increased the number of virtual registers from 

152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the 

Power4 core because of the addition of SMT 
support

Initial Performance of SMT

• Pentium 4 Extreme SMT yields 1.01 speedup for 
SPECint_rate benchmark and 1.07 for SPECfp_rate

– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC 
benchmarks paired with every other (26 2 runs) 
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for 
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup 
between 0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains
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Intel 
Itanium 2

80W 
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200 M, 
300 
mm 2

(est.)

1.96 int. 
2 FP

8/4/8Speculative 
dynamically 

scheduled; SMT; 
2 CPU cores/chip

IBM 
Power5 
(1 CPU 
only)
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W

114 M, 
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mm 2

2.86 int. 
3 FP

3/3/4Speculative 
dynamically 
scheduled

AMD 
Athlon 64 

FX-57

115 
W

125 M,    
122 
mm 2

3.87 int. 
1 FP

3/3/4Speculative 
dynamically 

scheduled; deeply 
pipelined; SMT 
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Pentium 
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Normalized Performance: Efficiency
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No Silver Bullet for ILP 

• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance 

followed by the Pentium 4, Itanium 2, and Power5
• Itanium 2 and Power5, which perform similarly on 

SPECFP, clearly dominate the Athlon and 
Pentium 4 on SPECFP

• Itanium 2 is the most inefficient processor both 
for Fl. Pt. and integer code for all but one 
efficiency measure (SPECFP/Watt)

• Athlon and Pentium 4 both make good use of 
transistors and area in terms of efficiency, 

• IBM Power5 is the most effective user of energy 
on SPECFP and essentially tied on SPECINT

Limits to ILP

• Doubling issue rates above today’s 3-6 
instructions per clock, say to 6 to 12 instructions, 
probably requires a processor to 

– Issue 3 or 4 data memory accesses per cycle, 
– Resolve 2 or 3 branches per cycle, 
– Rename and access more than 20 registers per cycle, and 
– Fetch 12 to 24 instructions per cycle. 

• Complexities of implementing these capabilities 
likely means sacrifices in maximum clock rate 

– E.g,  widest issue processor is the Itanium 2, but it also has 
the slowest clock rate, despite the fact that it consumes the 
most power!

Limits to ILP

• Most techniques for increasing performance increase 
power consumption 

• The key question is whether a technique is energy 
efficient : does it increase power consumption faster 
than it increases performance? 

• Multiple issue processors techniques all are energy 
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that

grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained 

performance

• Number of transistors switching = f(peak issue rate), and 
performance = f( sustained rate), 
growing gap between peak and sustained performance 

increasing energy per unit of performance

Commentary

• Itanium architecture does not represent a significant 
breakthrough in scaling ILP or in avoiding the problems 
of complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly 
focusing on TLP implemented with single-chip 
multiprocessors 

• In 2000, IBM announced the 1st commercial single-chip, 
general-purpose multiprocessor, the Power4, which 
contains 2 Power3 processors and an integrated L2 
cache 

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus on 
single-chip multiprocessors rather than more aggressive uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP, 

may differ from desktop, where single-thread performance may continue 
to be a primary requirement

And in conclusion …

• Limits to ILP (power efficiency, compilers, 
dependencies …) seem to limit to 3 to 6 issue for 
practical options

• Explicitly parallel (Data level parallelism or Thread 
level parallelism) is next step to performance

• Coarse grain vs. Fine grained multithreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained 
multithreading based on OOO superscalar 
microarchitecture

– Instead of replicating registers, reuse rename registers

• Itanium/EPIC/VLIW is not a breakthrough in ILP
• Balance of ILP and TLP unclear in marketplace
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Reading

• This lecture: 
– chapter 3: Limits on ILP; Multithreading

• Next lecture: 
– appendix F (on CD): Vector processors
– start with chapter 4: Multiprocessors
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Lecture 7
Vector Processors &

Multiprocessor Introduction

Slides were used during lectures by 
Krste Asanovic & David Patterson, 

Berkeley, spring 2006

Outline

• Vector Processors
• Vector Metrics, Terms

• Multiprocessing Motivation
• SISD v. SIMD v. MIMD
• Centralized vs. Distributed Memory
• Challenges to Parallel Programming

• Conclusion

Supercomputers

Definition of a supercomputer:
• Fastest machine in world at given task
• A device to turn a compute-bound problem into an 

I/O bound problem 
• Any machine costing $30M+
• Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

Supercomputer Applications

Typical application areas
• Military research (nuclear  weapons, cryptography)
• Scientific research
• Weather forecasting
• Oil exploration
• Industrial design (car crash simulation)

All involve huge computations on large data sets

In 70s-80s, Supercomputer Vector Machine

Vector Supercomputers

Epitomized by Cray-1, 1976:

Scalar Unit + Vector Extensions
• Load/Store Architecture
• Vector Registers
• Vector Instructions
• Hardwired Control
• Highly Pipelined Functional Units
• Interleaved Memory System
• No Data Caches
• No Virtual Memory

Cray-1 (1976)
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Cray-1 (1976)

Single Port
Memory

16 banks of 
64-bit words

+ 
8-bit SECDED

80MW/sec data 
load/store

320MW/sec 
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

( (Ah) + j k m )

64
T Regs

(A0)

( (Ah) + j k m )

64 
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

B jk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element 
Vector Registers

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic 
Instructions

ADDV v3, v1, v2 v3

v2
v1

v1
Vector Load and 

Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

Vector Code Example

# Scalar Code

LI R4, 64

loop:

L.D F0, 0(R1)

L.D F2, 0(R2)

ADD.D F4, F2, F0

S.D F4, 0(R3)

DADDIU R1, 8

DADDIU R2, 8

DADDIU R3, 8

DSUBIU R4, 1

BNEZ R4, loop

# Vector Code

LI VLR, 64

LV V1, R1

LV V2, R2

ADDV.D V3, V1, V2

SV V3, R3

# C code

for (i=0; i<64; i++)

C[i] = A[i] + B[i];

Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same patte rn as previous instructions
– access a contiguous block of memo ry (unit-stride load/store)
– access memory in a known patte rn (strided load/store) 

• Scalable
– can run same object code on more parallel pipelines or lanes

Vector Arithmetic Execution

• Use deep pipeline ( µ fast clock) to 
execute element operations

• Simplifies control of deep pipeline 
because elements in vector are 
independent ( µ no hazards!) 

V3 <- V1 x V2

V
1

V
2

V
3

Six stage multiply pipeline

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address 
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time : Cycles between accesses to same bank
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Vector Instruction Execution

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 

functional units

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 
0, 4, 8, …

Elements 
1, 5, 9, …

Elements 
2, 6, 10, …

Elements 
3, 7, 11, …

T0 Vector Microprocessor (1995)

LaneVector register 
elements striped 

over lanes

[0]
[8]

[16]
[24]

[1]
[9]

[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Vector Memory-Memory versus 
Vector Register Machines
• Vector memory-memory instructions hold all vector operands 

in main memory
• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71), 

were memory-memory machines
• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)

{

C[i] = A[i] + B[i];

D[i] = A[i] - B[i];

}

Example Source Code ADDV C, A, B

SUBV D, A, B

Vector Memory-Memory Code

LV V1, A

LV V2, B

ADDV V3, V1, V2

SV V3, C

SUBV V4, V1, V2

SV V4, D

Vector Register Code

Vector Memory-Memory vs. 
Vector Register Machines

• Vector memory-memory architectures (VMMA) require 
greater main memory bandwidth, why?

– All operands must be read in and out of memory

• VMMAs make if difficult to overlap execution of 
multiple vector operations, why? 

– Must check dependencies on memory addresses

• VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 100 elements
– For Cray-1, vector/scalar breakeven point was around 2 elements

µApart from CDC follow-ons (Cyber-205, ETA-10) all 
major vector machines since Cray-1 have had vector 
register architectures

(we ignore vector memory-memory from now on)

Automatic Code 
Vectorization

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time 
reordering of operation sequencing
µ requires extensive loop dependence 

analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e
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Vector Stripmining

ANDI R1, N, 63 # N mod 64

MTC1 VLR, R1 # Do remainder

loop:

LV V1, RA

DSLL R2, R1, 3 # Multiply by 8

DADDU RA, RA, R2 # Bump pointer

LV V2, RB

DADDU RB, RB, R2

ADDV.D V3, V1, V2

SV V3, RC

DADDU RC, RC, R2

DSUBU N, N, R1 # Subtract elements

LI R1, 64

MTC1 VLR, R1 # Reset full length

BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

Problem: Vector registers have finite length
Solution: Break loops into pieces that fit into 

vector registers, “Stripmining”

load

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1

Memory

V
1

Load 
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Vector Chaining Advantage

• With chaining, can start dependent instruction as soon 
as first result appears

Load

Mul

Add

Load

Mul

AddTime

• Without chaining, must wait for last element of result to 
be written before starting dependent instruction
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Vector Startup

Two components of vector startup penalty
– functional unit latency (time through pipeline)
– dead time or recovery time (time before another vector 

instruction can start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

Dead Time and Short Vectors

T0, Eight lanes
No dead time

100% efficiency with 8 element 
vectors

No dead time

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94% 
with 128 element vectors

4 cycles dead time

64 cycles active

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction ( Gather )
LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA, vB, vC # Do add

SV vA, rA # Store result

Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)

A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector

LVI vA, rA, vB # Gather initial A values

ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Scatter incremented values

Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)

if (A[i]>0) then
A[i] = B[i];

Solution: Add vector mask (or flag ) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, F0 # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
scan mask vector and only execute 

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
execute all N operations, turn off result 

writeback according to mask
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Compress/Expand Operations

• Compress packs non-masked elements from one 
vector register contiguously at start of destination 
vector register

– population count of mask vector  gives packed vector length

• Expand performs inverse operation

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

A[3]

A[4]

A[5]

A[6]

A[7]

A[0]

A[1]

A[2]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

B[3]

A[4]

A[5]

B[6]

A[7]

B[0]

A[1]

B[2]

Expand

A[7]

A[1]

A[4]

A[5]

Compress

A[7]

A[1]

A[4]

A[5]

Used for density-time 
conditionals and also 
for general selection 
operations

Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;

for (i=0; i<N; i++)

sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary 
tree to perform reduction
# Rearrange as:

sum[0:VL-1] = 0 # Vector of VL partial sums

for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

# Now have VL partial sums in one vector register

do {

VL = VL/2; # Halve vector length

sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

A Modern Vector Super: NEC SX-6 (2003)

• CMOS Technology
– 500 MHz CPU, fits on single chip
– SDRAM main memory (up to 64GB)

• Scalar unit
– 4-way superscalar with out-of-o rder and speculative execution
– 64KB I-cache and 64KB data cache

• Vector unit
– 8 foreground VRegs + 64 background VRegs (256x64-bit 

elements/VReg)
– 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit, 1 mask unit
– 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)
– 1 load & store unit (32x8 byte accesses/cycle)
– 32 GB/s memory bandwidth per processor

• SMP structure
– 8 CPUs connected to memory through crossbar
– 256 GB/s shared memory bandwidth (4096 interleaved banks)

Multimedia Extensions

• Very short vectors added to existing ISAs for micros
• Usually 64-bit registers split into 2x32b or 4x16b or 8x8b
• Newer designs have 128-bit registers (Altivec, SSE2)
• Limited instruction set:

– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

• Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in microprocessors

Properties of Vector Processors

• Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate

• Vector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over - 64 elements
=> no (data) caches required! (Do use instruction cache)

• Reduces branches and branch problems in pipelines

• Single vector instruction implies lots of work (- loop)
=> fewer instruction fetches

Spec92fp   Operations (Millions) Instructions (M)
Program        RISC   Vector     R / V       RISC      Vector   R / V
swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71x
nasa7 69 41 1.7x 69 2.2 31x
su2cor 51 35 1.4x 51 1.8 29x
tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x
mdljdp2 32 52 0.6x 32 15.8 2x

Operation & Instruction Count: 
RISC v. Vector Processor
(from F. Quintana, U. Barcelona.)

Vector reduces ops by 1.2X, instructions by 20X
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Common Vector Metrics

• R : MFLOPS rate on an infinite-length vector
– vector “speed of light”
– Real problems do not have unlimit ed vector lengths, and the start-up 

penalties encountered in real problems will be larger 
– (Rn is the MFLOPS rate for a vector of length n)

• N1/2: The vector length needed to reach one-half of R
– a good measure of the impact of start-up

• NV: The vector length needed to make vector mode faster than scalar 
mode 

– measures both start-up and speed of  scalars relative to vectors, 
quality of connection of scalar unit to vector unit

Vector Execution Time

• Time = f(vector length, data dependicies, struct. hazards) 
• Initiation rate : rate that FU consumes vector elements 

(= number of lanes; usually 1 or  2 on Cray T-90)
• Convoy : set of vector instructions that can begin 

execution in same clock (no struct. or data hazards)
• Chime : approx. time for a vector operation
• m convoys take m chimes ; if each vector length is n, 

then they take approx. m x n clock cycles (ignores 
overhead; good approximization for long vectors)

4 convoys, 1 lane, VL=64
µ 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X

2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV V4,V2,V3 ;add

4: SV Ry,V4 ;store the result

Memory operations

• Load/store operations move groups of data between 
registers and memory

• Three types of addressing
– Unit stride

» Contiguous block of information in memory
» Fastest: always possible to optimize this

– Non-unit (constant) stride
» Harder to optimize memory system for all possible strides
» Prime number of data banks makes it easier to support different 

strides at full bandwidth
– Indexed (gather-scatter)

» Vector equivalent of register indirect
» Good for sparse arrays of data
» Increases number of programs that vectorize

Interleaved Memory Layout

• Great for unit stride: 
– Contiguous elements in different DRAMs
– Startup time for vector operati on is latency of single read

• What about non-unit stride?
– Above good for strides that are relatively prime to 8
– Bad for: 2, 4
– Better: prime number of banks…!

Vector Processor

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

Addr
Mod 8
= 0

Addr
Mod 8
= 1

Addr
Mod 8
= 2

Addr
Mod 8
= 4

Addr
Mod 8
= 5

Addr
Mod 8
= 3

Addr
Mod 8
= 6

Addr
Mod 8
= 7

How to get full bandwidth for Unit Stride?

• Memory system must sustain (# lanes x word) /clock
• No. memory banks > memory latency to avoid stalls

– m banks m words per memory latency l clocks
– if m < l, then gap in memory pipeline:
clock: 0 … l l+1 l+2 … l+m - 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m
– may have 1024 banks in SRAM

• If desired throughput greater than one word per cycle
– Either more banks (start multiple requests simultaneously)
– Or wider DRAMS.  Only good for unit stride or large data types

• More banks/weird numbers of banks good to support 
more strides at full bandwidth

– How to do prime number of banks efficiently?

Vectors Are Inexpensive

Scalar
• N ops per cycle

2) circuitry
• HP PA-8000

• 4-way issue
• reorder buffer:

850K transistors
• incl. 6,720 5-bit 

register number 
comparators

Vector
• N ops per cycle

2) circuitry

• T0 vector micro
• 24 ops per cycle
• 730K transistors total

• only 23 5-bit register 
number comparators

• No floating point
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Vectors Lower Power

Vector
• One inst fetch, decode, 

dispatch per vector
• Structured register 

accesses
• Smaller code for high 

performance, less power in 
instruction cache misses

• Bypass cache

• One TLB lookup per
group of loads or stores

• Move only necessary data
across chip boundary

Single-issue Scalar
• One instruction fetch, decode, 

dispatch per operation
• Arbitrary register accesses,

adds area and power
• Loop unrolling and software 

pipelining for high performance 
increases instruction cache 
footprint

• All data passes through cache; 
waste power if no temporal locality

• One TLB lookup per load or store

• Off-chip access in whole cache lines

Superscalar Energy Efficiency Even Worse

Vector
• Control logic grows

linearly with issue width
• Vector unit switches

off when not in use

• Vector instructions expose 
parallelism without 
speculation

• Software control of
speculation when desired:

– Whether to use vector mask or 
compress/expand for 
conditionals

Superscalar
• Control logic grows 

quadratically with issue 
width

• Control logic consumes 
energy regardless of 
available parallelism

• Speculation to increase 
visible parallelism 
wastes energy

Vector Applications

Limited to scientific computing?
• Multimedia Processing (compress., graphics, audio synth, 

image proc.)

• Standard benchmark kernels (Matrix Multiply, FFT, 

Convolution, Sort)

• Lossy Compression (JPEG, MPEG video and audio)

• Lossless Compression (Zero removal, RLE, Differencing, LZW)

• Cryptography (RSA, DES/IDEA, SHA/MD5)

• Speech and handwriting recognition
• Operating systems/Networking (memcpy, memset, parity, 

checksum)

• Databases (hash/join, data mining, image/video serving)

• Language run-time support (stdlib, garbage collection)

• even SPECint95

Older Vector Machines

Machine         Year     Clock    Regs Elements  FUs LSUs
Cray 1 1976 80 MHz 8 64 6 1
Cray XMP 1983 120 MHz 8 64 8 2 L, 1 S
Cray YMP 1988 166 MHz 8 64 8 2 L, 1 S
Cray C-90 1991 240 MHz 8 128 8 4
Cray T-90 1996 455 MHz 8 128 8 4
Convex C-1 1984 10 MHz 8 128 4 1
Convex C-4 1994 133 MHz 16 128 3 1
Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
NEC SX/3 1995 400 MHz 8+8K 256+var 16 8

Newer Vector Computers

• Cray X1
– MIPS like ISA + Vector in CMOS

• NEC Earth Simulator
– Fastest computer in world for 3 years; 40 TFLOPS
– 640 CMOS vector nodes

Key Architectural Features of X1

New vector instruction set architecture (ISA)
– Much larger register set (32x64 vector, 64+64 scalar)

– 64- and 32-bit memory and IEEE arithmetic

– Based on 25 years of experience compiling with Cray1 ISA

Decoupled Execution
– Scalar unit runs ahead of vector unit, doing addressing and control
– Hardware dynamically unrolls loops, and issues multiple loops 

concurrently
– Special sync operations keep pipeline full, even across barriers

Allows the processor to perform well on short nested loops

Scalable, distributed shared  memory (DSM) architecture

– Memory hierarchy: caches, local memory, remote memory

– Low latency, load/store access to entire machine (tens of TBs)

– Processors support 1000’s of outstanding refs with flexible addressing
– Very high bandwidth network
– Coherence protocol, addressing and synchronization optimized for DM
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• Technology refresh of the X1 (0.13 m)
– ~50% faster processors

– Scalar performance enhancements

– Doubling processor density

– Modest increase in memory system bandwidth

– Same interconnect and I/O

• Machine upgradeable
– Can replace Cray X1 nodes with X1E nodes

Cray X1E Mid-life Enhancement ESS – configuration  of a general 
purpose supercomputer
1. Processor Nodes (PN) Total number of processor nodes is 640. Each 

processor node consists of eight vector processors of 8 GFLOPS and 
16GB shared memories. Therefore, total numbers of processors is 
5,120 and total peak performance and main memory of the system are 
40 TFLOPS and 10 TB, respectively.  Two nodes are installed into one 
cabinet, which size is 40”x56”x80”. 16 nodes are in a cluster. Power 
consumption per cabinet is approximately 20 KVA.

2. Interconnection Network (IN): Each node is coupled together with more 
than 83,000 copper cables via single-stage crossbar switches of 
16GB/s x2 (Load + Store). The total length of the cables is 
approximately 1,800 miles.

3. Hard Disk. Raid disks are used for the system. The capacities are 450 
TB for the systems operations and 250 TB for users.

4. Mass Storage system: 12 Automatic Cartridge Systems (STK 
PowderHorn9310);  total storage capacity is approximately 1.6 PB. 

From Horst D. Simon, NERSC/LBNL, May 
15, 2002, “ESS Rapid Response Meeting”

Earth Simulator Earth Simulator Building

ESS – complete system installed 4/1/2002 Vector Summary

• Vector is alternative model for exploiting ILP
• If code is vectorizable, then simpler hardware, 

more energy efficient, and better real-time model 
than Out-of-order machines

• Design issues include number of lanes, number of 
functional units, number of vector registers, length 
of vector registers, exception handling, conditional 
operations

• Fundamental design issue is memory bandwidth
– With virtual address translation and caching

• Will multimedia popularity revive vector 
architectures?
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Outline

• Vector Processors
• Vector Metrics, Terms

• Multiprocessing Motivation
• SISD v. SIMD v. MIMD
• Centralized vs. Distributed Memory
• Challenges to Parallel Programming

• Conclusion
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Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, 
Computer Architecture: A Quantitative 
Approach, 4th edition, 2006

3X

Déjà vu all over again?

“… today’s processors … are nearing an impasse as technologies approach 
the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (Uniprocessor performance )
µ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore 
designs. … This is a sea change in computing”

Paul Otellini, President, Intel ( 2005) 

• All microprocessor companies switch to MP (2X CPUs / 2 yrs)
µ Procrastination penalized: 2X sequential perf. / 5 yrs

32442Threads/chip

4221Threads/Processor

8222Processors/chip

Sun/’05IBM/’04Intel/’06AMD/’05Manufacturer/Year

Other Factors Multiprocessors

• Growth in data-intensive applications
– Data bases, file servers, … 

• Growing interest in servers, server perf.
• Increasing desktop perf. less important 

– Outside of graphics

• Improved understanding in how to use 
multiprocessors effectively 

– Especially server where significant natural TLP

• Advantage of leveraging design investment 
by replication 

– Rather than unique design

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD Data Level Parallelism
• MIMD Thread Level Parallelism
• MIMD popular because 

– Flexible: N pgms and 1 multithreaded pgm
– Cost-effective: same MPU in desktop & MIMD

Multiple Instruction Multiple 
Data MIMD
(Clusters, SMP servers)

Multiple Instruction Single 
Data (MISD)
(????)

Single Instruction Multiple 
Data SIMD
(single PC: Vector, CM-2)

Single Instruction Single 
Data (SISD)
(Uniprocessor)

M.J. Flynn, "Very High-Speed Computers", 
Proc. of the IEEE , V 54, 1900-1909, Dec. 1966. Back to Basics

• “A parallel computer is a collection of processing 
elements that cooperate and communicate to 
solve large problems fast.”

• Parallel Architecture = Computer Architecture + 
Communication Architecture

• Two classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor

• Larger number chips and cores than 1
• BW demands Memory distributed among 

processors
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Centralized vs. Distributed Memory

Centralized Memory

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

Distributed Memory 

Scale

Centralized Memory Multiprocessor 

• Also called symmetric multiprocessors (SMPs)
because single main memory has a symmetric 
relationship to all processors

• Large caches single memory can satisfy 
memory demands of small number of 
processors

• Can scale to a few dozen processors by using 
a switch and by using many memory banks

• Although scaling beyond that is technically 
conceivable, it becomes less attractive as the 
number of processors sharing centralized 
memory increases

Distributed Memo ry Multiprocessor 

• Pro: Cost-effective way to scale memory 
bandwidth 
• If most accesses are to local memory

• Pro: Reduces latency of local memory 
accesses

• Con:  Communicating data between 
processors more complex

• Con: Must change software to take 
advantage of increased memory BW

Two Models for Communication and 
Memory Architecture

1. Communication occurs by explicitly passing 
messages among the processors: 
message-passing multiprocessors

2. Communication occurs through a shared address 
space (via loads and stores): 
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared 

address, centralized memory MP
• NUMA (Non Uniform Memory Access time 

multiprocessor) for shared address, distributed 
memory MP

• In past, confusion whether “sharing” means 
sharing physical memory (Symmetric MP) or 
sharing address space

Challenges of Parallel Processing

• First challenge is % of program 
inherently sequential

• Suppose 80X speedup from 100 
processors. What fraction of original 
program can be sequential?
a.10%
b.5%
c.1%
d.<1%

Amdahl’s Law Answers 

( )

( )

( )

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100
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Challenges of Parallel Processing

• Second challenge is long latency to 
remote memory

• Suppose 32 CPU MP, 2GHz, 200 ns remote 
memory, all local ac cesses hit memory 
hierarchy and base CPI is 0.5. (Remote 
access = 200/0.5 = 400 clock cycles.) 

• What is performance impact if 0.2% 
instructions involve remote access?
a. 1.5X
b. 2.0X
c. 2.5X

CPI Equation 

CPI = Base CPI + 
Remote request rate x Remote request cost

= 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

No communication is 1.3/0.5 or 2.6 faster than 
0.2% instructions involve remote access

And in Conclusion [1/2] …

• One instruction operates on vectors of data
• Vector loads get data from memory into big 

register files, operate, and then vector store
• E.g., Indexed load, store for sparse matrix
• Easy to add vector to commodity instruction set

– E.g., Morph SIMD into vector

• Vector is very efficient architecture for 
vectorizable codes, including multimedia and 
many scientific codes

And in Conclusion [2/2] …

• “End” of uniprocessors speedup => Multiprocessors
• Parallelism challenges: % parallalizable, long latency 

to remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for Larger MP

• Message Passing vs. Shared Address
– Uniform access time vs. Non-uniform access time

Reading and Schedule

• This lecture: 
– Appendix F: Vector Processors
– Chapter 4: 4.1 Introduction Multiprocessors

• Next week, Oct 31 st: No class

• Next lecture, Nov 7 th: remainder of chapter 4 
(in the afternoon feedback on assignment 2a)

• On Wed Nov 14 th both at 11.15-13.00h and at 
13.45-15.30h lectures in room 402
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Lecture 8
Snooping Cache Based 

Multiprocessors

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Review

• 1 instruction operates on vectors of data
• Vector loads get data from memory into big register files, 

operate, and then vector store
• E.g., Indexed load, st ore for sparse matrix
• Easy to add vector to commodity instruction set

– E.g., Morph SIMD into vector

• Vector is very effi cient architecture for vectorizable codes, 
including multimedia and many scientific codes

• “End” of uniprocessors speedup Multiprocessors
• Parallelism challenges: % parallalizable, long latency to 

remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for larger MP

• Message Passing vs. Shared Address
– Uniform access time vs. Non-uniform access time

Outline

• Review
• Coherence
• Write Consistency
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Conclusion

Challenges of Parallel Processing

1. Application parallelism primarily via 
new algorithms that have better parallel 
performance

2. Long remote latency impact both by 
architect and by the programmer

• For example, reduce frequency of 
remote accesses either by 
– Caching shared data (HW) 
– Restructuring the data layout to make more 

accesses local (SW)

• Today’s lecture on HW  to help latency 
via caches

Symmetric Shared-Memory Architectures

• From multiple boards on a shared bus to 
multiple processors inside a single chip

• Caches both
– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data 
reduces latency to shared data, 

memory bandwidth for shared data,
and interconnect bandwidth

cache coherence problem

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on 

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7
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Example

• Intuition not guaranteed by coherence
• Expect memory to respect order between accesses 

to different locations issued by a given process
– to preserve orders among accesses to same location by 

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and  flag is 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

Mem

P1 Pn

Conceptual 
Picture

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will be 

returned by a read

• Coherence defines behavior to same location, 
Consistency defines behavior to other locations

• Reading an address 
should return the last 
value written to that 
address
– Easy in uniprocessors, 

except for I/O

Defining Coherent Memory System

1. Preserve Program Order : A read by processor P to 
location X that follows a write by P to X, with no writes of 
X by another processor occurring between the write and 
the read by P, always returns the value written by P 

2. Coherent view of memory : Read by a processor to 
location X that follows a write by another processor to X 
returns the written value if the read and write are 
sufficiently separ ated in time and no other writes to X 
occur between the two accesses 

3. Write serialization : 2 writes to same location by any 2 
processors are seen in the same order by all processors 
– If not, a processor could keep value 1 since saw as last write
– For example, if the values 1 and then 2 are written to a 

location, processors can never read the value of the location 
as 2 and then later read it as 1

Write Consistency

For now assume
1. A write does not complete (and allow the next 

write to occur) until all processors have seen the 
effect of that write

2. The processor does not change the order of any 
write with respect to any other memory access

µ if a processor writes location A followed by 
location B, any processor that sees the new 
value of B must also see the new value of A 

These restrictions allow the processor to reorder 
reads, but forces the processor to finish writes in 
program order

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have 
copies of the same data in several caches

– Unlike I/O, where its rare

• Rather than trying to avoid sharing in SW, 
SMPs use a HW protocol to maintain coherent caches

– Migration and Replication key to  performance of shared data

• Migration – data can be moved to a local cache and 
used there in a transparent fashion 

– Reduces both latency to access shared data that is allocated 
remotely and bandwidth demand on the shared memory

• Replication – for reading shared data simultaneously, 
since caches make a copy of data in local cache

– Reduces both latency of access and contention for read shared data

Outline

• Review
• Coherence
• Write Consistency
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Conclusion
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Two Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of 
physical memory is kept in just one location, 
the directory

2. Snooping — Every cache with a copy of data 
also has a copy of sharing status of block, but 
no centralized state is kept
• All caches are accessible via some broadcast medium 

(a bus or switch) 
• All cache controllers monitor or snoop on the medium 

to determine whether or not they have a copy of a 
block that is requested on a bus or switch access

Snooping Cache-Coherence Protocols

• Cache Controller “ snoops ” all transactions on 
the shared medium (bus or switch)

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

• Either get exclusive access before write via 
write invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Example: Write-through Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium BW

all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

Architectural Building Blocks

• Cache block state transition diagram
– FSM specifying how disposition of block changes

» invalid, valid, exclusive

• Broadcast Medium Transactions (e.g., bus)
– Fundamental system design abstraction
– Logically single set of wires connect several devices
– Protocol: arbitration, command/addr, data
µ Every device observes every transaction

• Broadcast medium enforces serialization of read or 
write accesses Write serialization

– 1st processor to get medium invalidates others copies
– Implies cannot complete wr ite until it obtains bus
– All coherence schemes require serializing accesses to same 

cache block

• Also need to find up-to-date copy of cache block

Locate up-to-date copy of data

• Write-through: get up-to-date copy from memory
– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache 

block, it provides it in response to a read 
request and aborts the memory access

– Complexity from retrieving cache block from cache, which 
can take longer than retrieving it from memory 

• Write-back needs lower memory bandwidth 
Support larger numbers of faster processors 
Most multiprocessors use write-back

Cache Resources for WB Snooping

• Normal cache tags can be used  for snooping
• Valid bit per block makes invalidation easy
• Read misses easy since rely on snooping
• Writes Need to know whether any other copies 

of the block are cached
– No other copies No need to place write on bus for WB
– Other copies Need to place invalidate on bus
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Cache Resources for WB Snooping

• To track whether a cache block is shared, add 
extra state bit associated with each cache block, 
like valid bit and dirty bit

– Write to Shared block Need to place invalidate on 
bus and mark cache block as private (if an option)

– No further invalidations will be sent for that block
– This processor called owner of cache block
– Owner then changes state from shared to unshared (or 

exclusive)

Cache behavior in response to bus

• Every bus transaction must check the cache-
address tags

– could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags
– Since L2 less heavily used than L1

Every entry in L1 cache must be present in the L2 cache, called
the inclusion property

– If Snoop gets a hit in L2 cache, then it must arbitrate for the L1 
cache to update the state and possibly retrieve the data, which 
usually requires a stall of the processor

Example Protocol

• Snooping coherence protocol is usually 
implemented by incorporating a finite-state 
controller in each node

• Logically, think of a separate controller 
associated with each cache block

– That is, snooping operations or cache requests for different 
blocks can proceed independently

• In implementations, a single controller allows 
multiple operations to distinct blocks to proceed 
in interleaved fashion 

– That is, one operation may be initiated before another is 
completed, even through only one cache access or one bus 
access is allowed at time 

Write-through Invalidate Protocol

• 2 states per block in each cache
– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with 

blocks that are in the cache 
– other blocks can be seen as being in 

invalid (not-present) state in that cache

• Writes invalidate all other cache 
copies
– can have multiple simultaneous readers 

of block, but write invalidates them

I

V
BusWr / --

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State  Tag   Data

I/O devicesMem

P1

$ $

Pn

Bus

State  Tag   Data

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus Write

Is 2-state Protocol Coherent?

• Processor only observes state of memory system by issuing 
memory operations

• Assume bus transactions and memory operations are atomic 
and a one-level cache

– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing next
– with one-level cache, assume invalidations applied during bus transaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writ es through reads, so determines 

whether write serialization is satisfied
– But read hits may happen independen tly and do not appear on bus or 

enter directly in bus order

• Let’s understand other ordering issues

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though 

shared-medium (bus) will  order read misses too
– any order among reads between writes is fine, 

as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:
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BREAK

Example Write Back Snoopy Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block in 

response to the read request and aborts the memory access

• Each memory block is in one state:
– Clean in all caches and up-to-date in memory ( Shared )
– OR Dirty in exactly one cache ( Exclusive )
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses

CPU read hit
Write-Back State Machine - CPU

• State machine
for CPU requests
for each 
cache block

• Non-resident 
blocks invalid

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU read

CPU write

Place read 
miss on bus

Place write 
miss on bus

CPU write
Place write miss/
invalid on bus

CPU write miss (?)
Write-back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write-Back State Machine - Bus request

• State machine
for bus requests
for each 
cache block

Invalid
Shared

(read only)

Exclusive
(read/write)

Write-back block; 
abort memory access

Write miss
for this block

Read miss 
for this block

Write miss
for this block

Write-back block; 
abort memory access

Block-replacement

• State machine
for CPU requests
for each 
cache block

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU read

CPU write

CPU read hit

Place read miss
on bus

Place write 
miss on bus CPU read miss

Write-back cache block
Place read miss on bus

CPU write
Place write miss on Bus

CPU read miss
Place read miss 
on bus

CPU write miss
Write-back cache block
Place write miss on bus

CPU read hit
CPU write hit

Place read miss
on bus

Write-back State Machine-III 

• State machine
for CPU requests
for each 
cache block and
for bus requests
for each 
cache block

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU read

CPU write

CPU read hit

Place write 
miss on bus
CPU read miss
Write-back block
Place read miss
on bus CPU write

Place write miss on Bus

CPU read miss
Place read miss 
on bus

CPU write miss
Write-back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write-back
block; abort
memory access

Write miss
for this block

Read miss 
for this block

Write Back
Block; abort
memory access
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 !=  A2
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Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first, 
and then write the same cache block!

– Two step process:
» Arbitrate for bus 
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: 

can have multiple outstanding transactions for a block
» Multiple misses can interleave, 

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

Implementing Snooping Caches

• Multiple processors must be on bus, access to both 
addresses and data

• Add a few new commands to perform coherency, 
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags, 
could interfere with CPU just to check: 

– solution 1: duplicate set of tags for L1 caches just to allow checks in 
parallel with CPU

– solution 2: L2 cache already duplicate, 
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1

Limitations in Symmetric Shared-Memory 
Multiprocessors and Snooping Protocols

• Single memory accommodate all CPUs
Multiple memory banks

• Bus-based multiprocessor, bus must 
support both coherence traffic & normal 
memory traffic
Multiple buses or interconnection 

networks (cross bar or small point-to-point)
• Opteron

– Memory connected directly to each dual-core chip
– Point-to-point connections for up to 4 chips
– Remote memory and local me mory latency are similar, 

allowing OS Opteron as UMA computer

Outline

• Review
• Coherence
• Write Consistency
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Conclusion

Performance of Symmetric Shared-Memory 
Multiprocessors

Cache performance is combination of 
1. Uniprocessor cache miss traffic
2. Traffic caused by communication 

– Results in invalidations and subsequent cache misses

4th C: coherence miss
– Joins Compulsory, Capacity, Conflict

Coherency Misses

1. True sharing misses arise from the 
communication of data through the cache 
coherence mechanism
• Invalidates due to 1 st write to shared block
• Reads by another CPU of modified block in different cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is 
invalidated because some word in the block, 
other than the one being read, is written into
• Invalidation does not cause a new value to be 

communicated, but only causes an extra cache miss
• Block is shared, but no word in block is actually shared

miss would not occur if block size were 1 word
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Example: True v. False Sharing v. Hit?

Read x25

Write x24

Write x13

Read x22

Write x11

True, False, Hit? Why?P2P1Time

Assume x1 and x2 in same cache block. 
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

MP Performance 4 Processor Commercial Workload: 
OLTP, Decision Support (Database), Search Engine
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MP Performance 2MB Cach e Commercial Workload: 
OLTP, Decision Support (Database), Search Engine

True sharing,
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increase 
going from 1 
to 8 CPUs
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A Cache Coherent System Must:

• Provide set of states, state transition diagram, 
and actions

• Manage coherence protocol
– (0)  Determine when to invoke coherence protocol
– (a)  Find info about state of block in other caches to 

determine action
» whether need to communicate with other cached copies

– (b)  Locate  the other copies
– (c)  Communicate with those copies  (invalidate/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache
– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus
– faulting processor sends out a “search” 
– others respond to the search probe and take necessary 

action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t 
scale with p

– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least  p network 

transactions

• Scalable coherence:
– can have same cache states and state transition diagram
– different mechanisms to manage protocol

And in Conclusion …

• Caches contain all information on state of 
cached memory blocks 

• Snooping cache over shared medium for smaller 
MP by invalidating other cached copies on write

• Sharing cached data Coherence (values 
returned by a read), Consistency (when a written 
value will be returned by a read)

• MPs are highly effective for multiprogrammed
workloads

• MPs proved effective for intensive commercial 
workloads, such as OLTP (assuming enough I/O 
to be CPU-limited), DSS applications (where 
query optimization is critical), and large-scale, 
web searching applications
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Reading and Schedule

• This lecture: 
– 4.2 Symmetric Shared-Memory Architectures
– 4.3 Performance of Symmetric Shared-Memory          

Multiprocessors

• This afternoon: feedback on assignment 2a

• Next week, Nov 14 th:

– 11.15-13.00h: directory-based MP & rest of 
chapter 4

– 13.45-15.30h: chapter 5 memory hierarchy design
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Lecture 9

Directory Based Multiprocessors

Slides were used during lectures by 

David Patterson, Berkeley, spring 2006

Review

• Caches contain all information on state of 
cached memory blocks 

• Snooping cache over shared medium for smaller 
MP by invalidating other cached copies on write

• Sharing cached data Coherence (values 
returned by a read), Consistency (when a written 
value will be returned by a read)

Outline

• Review

• Directory-based protocols and examples

• Synchronization 

• Consistency

• Cross Cutting Issues

• Fallacies and Pitfalls

• Cautionary Tale

• Sun T1 (“Niagara”) Multiprocessor

• Microprocessor Comparison

• Conclusion

Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus
– faulting processor sends out a “search” 

– others respond to the search probe and take necessary 
action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t 
scale with p

– on bus, bus bandwidth doesn’t scale

– on scalable network, every fault leads to at least  p network 
transactions

• Scalable coherence:
– can have same cache states and state transition diagram

– different mechanisms to manage protocol

Scalable Approach: Directories

• Every memory block has associated directory 
information

– keeps track of copies of cached blocks and their states

– on a miss, find directory entry, look it up, and communicate 
only with the nodes that have copies if necessary

– in scalable networks, communication with directory and 
copies is through network transactions

• Many alternatives for organizing directory 
information

Basic Operation of Directory

• k processors  

•  With each cache-block in memory: 
k presence-bits, 1 dirty-bit

•  With each cache-block in cache:    
1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }

• if dirty-bit ON   then { recall line from dirty proc (cache state to 
shared); update memory; turn dirty-bit OFF; turn p[i] ON; 
supply recalled data to i;}

• Write to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all 
caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }

• ...
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Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: œ 1 processors have data, memory up-to-date

– Uncached (no processor has it; not valid in any cache)

– Exclusive: 1 processor (owner) has data; 
memory out-of-date

• In addition to cache state, must track which 
processors have data when in the shared state 
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data 

write miss

– Processor blocks until access completes

– Assume messages received 
and acted upon in order sent

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point

– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates

– Home node where the memory location 
of an address resides

– Remote node has a copy of a cache 
block, whether exclusive or shared

• Example messages on next slide: 
P = processor number, A = address

Directory Protocol Messages (Fig 4.22)

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A; 
make P a read sharer and request data

Write miss Local cache Home directory P, A

– Processor P has a write miss at address A; 
make P the exclusive owner and request data

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
change the state of A in the remote cache to shared

Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; 
invalidate the block in the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory (read miss response)
Data write back Remote cache Home directory A, Data

– Write back a data value for address A (invalidate response)

State Transition Diagram for One Cache 
Block in Directory Based System

• States identical to snoopy case; 
transactions very similar

• Transitions caused by read misses, write 
misses, invalidates, data fetch requests

• Generates read miss & write miss 
message to home directory

• Write misses that were broadcast on the 
bus for snooping explicit invalidate & 
data fetch requests

• Note: on a write, a cache block is bigger, 
so need to read the full cache block

CPU -Cache State Machine

• State machine
for CPU requests
for each 
memory block

• Invalid state
if in memory

Fetch/Invalidate
send Data Write Back message 

to home directory

Invalidate

Invalid

Exclusive

(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss 
msg to home
directory

CPU Write: Send 
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back 
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message 
and Write Miss to home directory

CPU read miss: send Data 
Write Back message and 
read miss to home directory

Shared

(read only)

State Transition Diagram for Directory 

• Same states & structure as the transition 
diagram for an individual cache

• 2 actions: update of directory state & 
send messages to satisfy requests 

• Tracks all copies of memory block

• Also indicates an action that updates the 
sharing set, Sharers, as well as sending 
a message
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Directory State Machine

• State machine
for Directory 
requests for each 
memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive

(read/write)

Read miss:
Sharers = {P}
send Data Value 
Reply

Write Miss: 
send Invalidate 
to Sharers;
then Sharers = {P};
send Data Value 
Reply msg

Write Miss:
Sharers = {P}; 
send Data 
Value Reply
msg

Read miss:
Sharers += {P}; 
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss: 
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P}; 
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

Example Directory Protocol

• Message sent to directory causes two actions:
– Update the directory

– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the 
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory &requestor 
made only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the 
Sharing node. The block is made Exclusive to indicate that the only 
valid copy is cached. Sharers indicates the identity of the owner. 

• Block is Shared the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory & 

requesting processor is added to the sharing set.

– Write miss: requesting processor is sent the value. All processors in 
the set Sharers are sent invalidate messages, & Sharers is set to 
identity of requesting processor. The state of the block is made
Exclusive.

Example Directory Protocol

• Block is Exclusive: current value of the block is held in 
the cache of the processor identified by the set Sharers 
(the owner) three possible directory requests:

– Read miss: owner processor sent data fetch message, causing state of 
block in owner’s cache to transition to Shared and causes owner to 
send data to directory, where it is written to memory & sent back to 
requesting processor. 
Identity of requesting processor is added to set Sharers, which still 
contains the identity of the processor that was the owner (since it still 
has a readable copy).  State is shared.

– Data write-back: owner processor is replacing the block and hence must 
write it back, making memory copy up-to-date 
(the home directory essentially becomes the owner), the block is now 
Uncached, and the Sharer set is empty. 

– Write miss: block has a new owner. A message is sent to old owner 
causing the cache to send the value of the block to the directory from 
which it is sent to the requesting processor, which becomes the new 
owner. Sharers is set to identity of new owner, and state of block is 
made Exclusive.

Example

P1 P2 Bus Directory Memor
step State Addr ValueStateAddr ValueActionProc. Addr Value Addr State {Procs}Value

P1: Write 10 to A1

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10

10

10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

A1

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block 

(but different memory block addresses A1 Œ A2)

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

Implementing a Directory

• We assume operations atomic, but they are not; 
reality is much harder; must avoid deadlock 
when run out of buffers in network (see 
Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data directly to 

requestor from owner vs. 1st to memory and then from 
memory to requestor

Basic Directory Transactions

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack
 

Inval. ack
 

3a. 3b.

4a. 4b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S
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Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req

R/_

R/_

R/_
S

S

S

Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pA
Read_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_

EX

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)
Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req E
W/_

I

E

W/req E

RU/_

A Popular Middle Ground

• Two-level “hierarchy”

• Individual nodes are multiprocessors, connected 
non-hierarchically

– e.g. mesh of SMPs

• Coherence across nodes is directory-based
– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory
– orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?

Synchronization

• Why Synchronize? Need to know when it is safe for 
different processes to use shared data

• Issues for Synchronization:
– Uninterruptable instruction to fetch and update memory (atomic 

operation);

– User level synchronization operation using this primitive;

– For large scale MPs, synchronization can be a bottleneck; 
techniques to reduce contention and latency of synchronization

Uninterruptable Instruction to Fetch 
and Update Memory

• Atomic exchange: interchange a value in a register for 
a value in memory

0 synchronization variable is free 

1 synchronization variable is locked and unavailable

– Set register to 1 & swap

– New value in register determines success in getting lock
0 if you succeeded in setting the lock (you were first)

1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value 
passes the test

• Fetch-and-increment: it returns the value of a memory 
location and atomically increments it

– 0 synchronization variable is free 
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Uninterruptable Instruction to Fetch 
and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead

• Load linked (or load locked) + store conditional
– Load linked returns the initial value

– Store conditional returns 1 if it succeeds (no other store to same 
memory location since preceding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try  ; branch store fails (R3 = 0)
mov R4,R2  ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional 
beqz R2,try  ; branch store fails (R2 = 0)

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire, 
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency

– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all 
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable; 
when it changes, then try exchange (“test and test&set”):
try: li R2,#1

lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;Œ 0 not free spin
exch R2,0(R1) ;atomic exchange

bnez R2,try ;already locked?

Another MP Issue: 
Memory Consistency Models

• What is consistency? When must a processor see the 
new value? e.g., seems that
P1: A = 0; P2: B = 0;

..... .....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models: 
what are the rules for such cases?

• Sequential consistency: result of any execution is the 
same as if the accesses of each processor were kept in 
order and the accesses among different processors 
were interleaved assignments before ifs above

– SC: delay all memory accesses until all invalidates done

Memory Consistency Model

• Schemes faster execution to sequential consistency

• Not an issue for most programs; they are synchronized
– A program is synchronized if all access to shared data are ordered by 

synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are 
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since 
most programs are synchronized; characterized by their 
attitude towards: RAR, WAR, RAW, WAW 
to different addresses

Relaxed Consistency Models: The Basics

• Key idea: allow reads and writes to complete out of order, but 
to use synchronization operations to enforce ordering, so that 
a synchronized program behaves as if the processor were 
sequentially consistent 

– By relaxing orderings, may obtain performance advantages 
– Also specifies range of legal compiler optimizations on shared data
– Unless synchronization points are clearly defined and programs are 

synchronized, compiler could not interchange read and write of 2 shared 
data items because might affect the semantics of the program

• 3 major sets of relaxed orderings:
1. WsR ordering (all writes completed before next read) 

• Because retains ordering among writes, many programs that 
operate under sequential consistency operate under this 
model, without additional synchronization. Called processor 
consistency

2. W s W ordering (all writes completed before next write) 
3. R s W and R s R orderings, a variety of models depending on ordering 

restrictions and how synchronization operations enforce ordering

• Many complexities in relaxed consistency models; defining 
precisely what it means for a write to complete; deciding when 
processors can see values that it has written

Mark Hill observation

Instead, use speculation to hide latency from 
strict consistency model
– If processor receives invalidation for memory reference 

before it is committed, processor uses speculation recovery 
to back out computation and restart with invalidated 
memory reference

1. Aggressive implementation of sequential 
consistency or processor consistency gains 
most of advantage of more relaxed models

2. Implementation adds little to implementation 
cost of speculative processor

3. Allows the programmer to reason using the 
simpler programming models
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Cross Cutting Issues: Performance 
Measurement of Parallel Processors

• Performance: how well scale as increase Proc

• Speedup fixed as well as scaleup of problem
– Assume benchmark of size n on p processors makes sense: how 

scale benchmark to run on m * p processors?

– Memory-constrained scaling: keeping the amount of memory 
used per processor constant

– Time-constrained scaling: keeping total execution time, 
assuming perfect speedup, constant

• Example: 1 hour on 10 P, time ~ O(n3), 100 P? 
– Time-constrained scaling: 1 hour 101/3n 2.15n scale up

– Memory-constrained scaling: 10n size 103/10 100X or 100 
hours! 10X processors for 100X longer???

– Need to know application well to scale: # iterations, error 
tolerance

Fallacy: Amdahl’s Law doesn’t apply 
to parallel computers

• Since some part linear, can’t go 100X?

• 1987 claim to break it, since 1000X speedup
– researchers scaled the benchmark to have a data set size 

that is 1000 times larger and compared the uniprocessor 
and parallel execution times of the scaled benchmark. For 
this particular algorithm the sequential portion of the 
program was constant independent of the size of the input, 
and the rest was fully parallel—hence, linear speedup with 
1000 processors

• Usually sequential scale with data too

Fallacy: Linear speedups are needed to 
make multiprocessors cost-effective

• Mark Hill & David Wood 1995 study

• Compare costs SGI uniprocessor and MP

• Uniprocessor = $38,400 + $100 * MB

• MP = $81,600 + $20,000 * P + $100 * MB

• 1 GB, uni = $138k v. mp = $181k + $20k * P

• What speedup for better MP cost performance?

• 8 proc = $341k; $341k/138k 2.5X

• 16 proc need only 3.6X, or 25% linear speedup

• Even if need some more memory for MP, not linear

Fallacy: Scalability is almost free

• “build scalability into a multiprocessor and then 
simply offer the multiprocessor at any point on 
the scale from a small number of processors to a 
large number”

• Cray T3E scales to 2048 CPUs vs. 4 CPU Alpha 
– At 128 CPUs, it delivers a peak bisection BW of 38.4 GB/s, or 

300 MB/s per CPU (uses Alpha microprocessor)

– Compaq Alphaserver ES40 up to 4 CPUs and has 5.6 GB/s of 
interconnect BW, or 1400 MB/s per CPU

• Build apps that scale requires significantly more 
attention to load balance, locality, potential 
contention, and serial (or partly parallel) portions 
of program. 10X is very hard

Pitfall: Not developing SW to take advantage 
(or optimize for) multiprocessor architecture

• SGI OS protects the page table data structure 
with a single lock, assuming that page 
allocation is infrequent

• Suppose a program uses a large number of 
pages that are initialized at start-up

• Program parallelized so that multiple processes 
allocate the pages

• But page allocation requires lock of page table 
data structure, so even an OS kernel that allows 
multiple threads will be serialized at 
initialization (even if separate processes)

Answers to 1995 Questions about Parallelism

In the 1995 edition of this text, we concluded the 
chapter with a discussion of two then current 
controversial issues.

1. What architecture would very large scale, 
microprocessor-based multiprocessors use? 

2. What was the role for multiprocessing in the 
future of microprocessor architecture? 

Answer 1. Large scale multiprocessors did not 
become a major and growing market clusters 
of single microprocessors or moderate SMPs

Answer 2. Astonishingly clear. For at least for the 
next 5 years, future MPU performance comes 
from the exploitation of TLP through multicore 
processors vs. exploiting more ILP
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Cautionary Tale

• Key to success of birth and development of ILP in 
1980s and 1990s was software in the form of 
optimizing compilers that could exploit ILP 

• Similarly, successful exploitation of TLP will 
depend as much on the development of suitable 
software systems as it will on the contributions of 
computer architects

• Given the slow progress on parallel software in the 
past 30+ years, it is likely that exploiting TLP 
broadly will remain challenging for years to come

T1 (“Niagara”)

• Target: Commercial server applications
– High thread level parallelism (TLP)

» Large numbers of parallel client requests

– Low instruction level parallelism (ILP)

» High cache miss rates

» Many unpredictable branches

» Frequent load-load dependencies

• Power, cooling, and space are major 
concerns for data centers

• Metric: Performance/Watt/Sq. Ft.

• Approach: Multicore, Fine-grain 
multithreading, Simple pipeline, Small 
L1 caches, Shared L2

T1 Architecture

• Also ships with 6 or 4 processors

T1 pipeline

• Single issue, in-order, 6-deep pipeline: F, S, D, E, M, W 

• 3 clock delays for loads & branches.

• Shared units: 

– L1 $, L2 $ 

– TLB 

– X units 

– pipe registers

• Hazards:
– Data

– Structural

T1 Fine-Grained Multithreading

• Each core supports four threads and has its own 
level one caches (16KB for instructions and 8 KB 
for data)

• Switching to a new thread on each clock cycle 

• Idle threads are bypassed in the scheduling 
– Waiting due to a pipeline delay or cache miss

– Processor is idle only when all 4 threads are idle or stalled 

• Both loads and branches incur a 3 cycle delay 
that can only be hidden by other threads 

• A single set of floating point functional units is 
shared by all 8 cores

– floating point performance was not a focus for T1

Memory, Clock, Power

• 16 KB 4 way set assoc. I$/ core
• 8 KB 4 way set assoc. D$/ core
• 3MB 12 way set assoc. L2 $ shared

– 4 x 750KB  independent banks
– crossbar switch to connect  
– 2 cycle throughput, 8 cycle latency
– Direct link to DRAM & Jbus
– Manages cache coherence for the 8 cores
– CAM based directory

• Coherency is enforced among the L1 caches by a directory 
associated with each L2 cache block 

• Used to track which L1 caches have copies of an L2 block 
• By associating each L2 with a particular memory bank and 

enforcing the subset property, T1 can place the directory at L2 
rather than at the memory, which reduces the directory 
overhead 

• L1 data cache is write-through, only invalidation messages are 
required; the data can always be retrieved from the L2 cache

• 1.2 GHz at 72W typical, 79W peak power consumption

Write through

• allocate LD

• no-allocate ST



9

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

1.5 MB;

32B

1.5 MB;

64B

3 MB;

32B

3 MB;

64B

6 MB;

32B 

6 MB;

64B

L
2
 M

is
s
 r

a
te

TPC-C

SPECJBB

Miss Rates: L2 Cache Size, Block Size

T1

0

20

40

60

80

100

120

140

160

180

200

1.5 MB; 32B 1.5 MB; 64B 3 MB; 32B 3 MB; 64B 6 MB; 32B 6 MB; 64B

L
2

 M
is

s
 l
a

te
n

c
y

TPC-C

SPECJBB

Miss Latency: L2 Cache Size, Block Size

T1

CPI Breakdown of Performance

4.80.21 1.65 6.60 SPECWeb99

5.70.18 1.40 5.60 SPECJBB

4.40.23 1.80 7.20 TPC-C

Effective 

IPC for 

8 cores

Effective 

CPI for 

8 cores

Per 

core 

CPI

Per 

Thread 

CPIBenchmark

Not Ready Breakdown

• TPC-C - store buffer full is largest contributor
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Performance: Benchmarks + Sun Marketing

14,74016,061
NotesBench (Lotus Notes 

performance)

4,850 (2850 with two dual-core 
Xeon processors)

7,88114,001

SPECweb2005 (Web server 
performance)

24,208 (SC1425 with dual single-
core Xeon)

61,78963,378
SPECjbb2005 (Java server software) 

business operations/ sec

Dell PowerEdge
IBM p5-550 with 2 

dual-core Power5 chips
Sun Fire 
T2000Benchmark\Architecture

Space, Watts, and Performance 

HP marketing view of T1 Niagara

1. Sun’s radical UltraSPARC T1 chip is made up of individual 
cores that have much slower single thread performance when 
compared to the higher performing cores of the Intel Xeon,  
Itanium,  AMD Opteron or even classic UltraSPARC
processors.

2. The Sun Fire T2000 has poor floating-point performance, by 
Sun’s own admission.

3. The Sun Fire T2000 does not support commerical Linux or 
Windows® and requires a lock-in to Sun and Solaris.

4. The UltraSPARC T1, aka CoolThreads, is new and unproven, 
having just been introduced in December 2005.

5. In January 2006, a well-known financial analyst downgraded 
Sun on concerns over the UltraSPARC T1’s limitation to only 
the Solaris operating system, unique requirements, and 
longer adoption cycle, among other things. [10]

• Where is the compelling value to warrant taking such a risk?

• http://h71028.www7.hp.com/ERC/cache/280124-0-0-0-121.html
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+Power5 Opteron Sun T1

Niagara 2

• Improve performance by increasing threads 
supported per chip from 32 to 64 

– 8 cores * 8 threads per core

• Floating-point unit for each core, not for each 
chip

• Hardware support for encryption standards EAS, 
3DES, and elliptical-curve cryptography 

• Niagara 2 will add a number of 8x PCI Express 
interfaces directly into the chip in addition to 
integrated 10Gigabit Ethernet XAU interfaces and 
Gigabit Ethernet ports. 

• Integrated memory controllers will shift support 
from DDR2 to FB-DIMMs and double the 
maximum amount of system memory. 

Kevin Krewell

“Sun's Niagara Begins CMT Flood -

The Sun UltraSPARC T1 Processor Released”

Microprocessor Report, January 3, 2006

And in Conclusion …

• Caches contain all information on state of 
cached memory blocks 

• Snooping cache over shared medium for smaller 
MP by invalidating other cached copies on write

• Sharing cached data Coherence (values 
returned by a read), Consistency (when a written 
value will be returned by a read)

• Snooping and Directory Protocols similar; bus 
makes snooping easier because of broadcast 
(snooping uniform memory access)

• Directory has extra data structure to keep track 
of state of all cache blocks

• Distributing directory                                          
scalable shared address multiprocessor 
Cache coherent, Non uniform memory access

Reading

• This lecture: 

– chapter 4: 4.4-4.10 rest of Multiprocessors and TLP

• Next lecture: 

– chapter 5: Memory Hierarchy Design
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Lecture 10

Advanced Memory Hierarchy

Slides were used during lectures by 

David Patterson, Berkeley, spring 2006

Outline

• 11 Advanced Cache Optimizations

• Memory Technology and DRAM optimizations

• Virtual Machines

• Xen VM: Design and Performance

• AMD Opteron Memory Hierarchy

• Opteron Memory Performance vs. Pentium 4

• Conclusion

Why More on Memory Hierarchy?
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Review: 6 Basic Cache Optimizations

Reducing hit time

1. Giving Reads Priority over Writes 
• E.g., Read complete before earlier writes in write buffer

2. Avoiding Address Translation during Cache 
Indexing

Reducing Miss Penalty

3. Multilevel Caches

Reducing Miss Rate

4. Larger Block size (Compulsory misses)

5. Larger Cache size (Capacity misses)

6. Higher Associativity (Conflict misses)

11 Advanced Cache Optimizations

Reducing hit time

1.Small and simple 
caches

2.Way prediction

3.Trace caches

Increasing cache 
bandwidth

4.Pipelined caches

5.Multibanked caches

6.Nonblocking caches

Reducing Miss Penalty

7. Critical word first

8. Merging write buffers

Reducing Miss Rate

9. Compiler optimizations

Reducing miss penalty or 
miss rate via parallelism

10.Hardware prefetching

11.Compiler prefetching

1. Fast Hit times via Small and Simple Caches

• Index tag memory and then compare takes time

• Small cache can help hit time since smaller memory 
takes less time to index

– E.g., L1 caches same size for 3 generations of AMD microprocessors: 
K6, Athlon, and Opteron

– Also L2 cache small enough to fit on chip with the processor avoids 
time penalty of going off chip

• Simple direct mapping
– Can overlap tag check with data transmission since no choice

• Access time estimate for 90 nm using CACTI model 4.0
– Median ratios of access time relative to the direct-mapped caches are 

1.32, 1.39, and 1.43 for 2-way, 4-way, and 8-way caches

-
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2. Fast Hit times via  Way Prediction

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 

• Way prediction: keep extra bits in cache to predict the 
“way”, or block within the set, of next cache access. 

– Multiplexor is set early to select desired block, only 1 tag comparison 
performed that clock cycle in parallel with reading the cache data 

– Miss 1st check other blocks for matches in next clock cycle

• Accuracy 85%

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Used for instruction caches vs. data caches

Hit Time

Way-Miss Hit Time Miss Penalty

3. Fast Hit times via  Trace Cache                  
(Pentium 4 only; and last time?)

• Find more instruction level parallelism?
How avoid translation from x86 to microops? 

• Trace cache in Pentium 4
1. Dynamic traces of the executed instructions vs. static sequences of 

instructions as determined by layout in memory

» Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions

» Decode/translate from x86 to micro-ops on trace cache miss

+ 1. better utilize long blocks (don’t exit in middle of 
block, don’t enter at label in middle of block)

- 1. complicated address mapping since addresses no 
longer aligned to power-of-2 multiples of word size

- 1. instructions may appear multiple times in multiple 
dynamic traces due to different branch outcomes

4. Increasing Cache Bandwidth by Pipelining

• Pipeline cache access to maintain bandwidth, but 
higher latency

• Instruction cache access pipeline stages:

1: Pentium

2: Pentium Pro through Pentium III 

4: Pentium 4

- greater penalty on mispredicted branches 

- more clock cycles between the issue of the load 
and the use of the data

5. Increasing Cache Bandwidth: 
Non-Blocking Caches

• Non-blocking cache or  lockup-free cache allow data 
cache to continue to supply cache hits during a miss

– requires F/E bits on registers or out-of-order execution

– requires multi-bank memories

• “hit under miss ”  reduces the effective miss penalty 
by working during miss vs. ignoring CPU requests

• “hit under multiple miss ” or “miss under miss ”  may 
further lower the effective miss penalty by overlapping 
multiple misses

– Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses

– Requires multiple memory banks (otherwise cannot support)

– Pentium Pro allows 4 outstanding memory misses

Value of Hit Under Miss for SPEC (old data)

• FP programs on average: AMAT= 0.68 s 0.52 s 0.34 s 0.26

• Int programs on average: AMAT= 0.24 s 0.20 s 0.19 s 0.19

• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92
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6. Increasing Cache Bandwidth via 
Multiple Banks

• Rather than treat the cache as a single monolithic 
block, divide into independent banks that can support 
simultaneous accesses

– E.g.,T1 (“Niagara”) L2 has 4 banks

• Banking works best when accesses naturally spread 
themselves across banks mapping of addresses to 
banks affects behavior of memory system

• Simple mapping that works well is “sequential 
interleaving”  

– Spread block addresses sequentially across banks

– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4
is 0; bank 1 has all blocks whose address modulo 4 is 1; …
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7. Reduce Miss Penalty: 
Early Restart and Critical Word First

• Don’t wait for full block before restarting CPU

• Early restart – As soon as the requested word of the 
block arrives, send it to the CPU and let the CPU 
continue execution

– Spatial locality tend to want next sequential word, so not clear 
size of benefit of just early restart

• Critical Word First – Request the missed word first 
from memory and send it to the CPU as soon as it 
arrives; let the CPU continue execution while filling 
the rest of the words in the block

– Long blocks more popular today µ Critical Word 1st Widely used 

block

8. Merging Write Buffer to 
Reduce Miss Penalty

• Write buffer to allow processor to continue 
while waiting to write to memory

• If buffer contains modified blocks, the 
addresses can be checked to see if address of 
new data matches the address of a valid write 
buffer entry 

• If so, new data are combined with that entry

• Increases block size of write for write-through 
cache of writes to sequential words, bytes since 
multiword writes more efficient to memory

• The Sun T1 (Niagara) processor, among many 
others, uses write merging

9. Reducing Misses by 
Compiler Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts (using tools they developed)

• Data
– Merging Arrays : Improve spatial locality by single array of compound 

elements vs. 2 arrays

– Loop Interchange : Change nesting of loops to access data in order 
stored in memory

– Loop Fusion : Combine 2 independent loops that have same looping 
and some variables overlap

– Blocking : Improve temporal locality by accessing “blocks” of data 
repeatedly vs. going down whole columns or rows

Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding 
through memory every 100 words; improved 
spatial locality

Loop Fusion Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; 
improve spatial locality
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Blocking Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]

– Read N elements of 1 row of y[] repeatedly

– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

Blocking Example

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;

};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too? 

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses vs. 

48 despite both fit in cache

Blocking Factor   
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Summary of Compiler Optimizations to 
Reduce Cache Misses (by hand)

10. Reducing Misses by Hardware
Prefetching of Instructions & Data

• Prefetching relies on having extra memory bandwidth that can 
be used without penalty

• Instruction Prefetching
– Typically, CPU fetches 2 blocks on a miss: the requested block and the 

next consecutive block. 

– Requested block is placed in instruction cache when it returns, and 
prefetched block is placed into instruction stream buffer

• Data Prefetching
– Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 

different 4 KB pages 

– Prefetching invoked if 2 successive L2 cache misses to a page, 
if distance between those cache blocks is < 256 bytes
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11. Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)

– Cache Prefetch: load into cache 
(MIPS IV, PowerPC, SPARC v. 9)

– Special prefetching instructions cannot cause faults;
a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?

– Higher superscalar reduces difficulty of issue bandwidth
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Compiler Optimization vs. 
Memory Hierarchy Search

• Compiler tries to figure out memory hierarchy 
optimizations

• New approach: “Auto-tuners” 1st run variations of 
program on computer to find best combinations of 
optimizations (blocking, padding, …) and algorithms, 
then produce C code to be compiled for that computer

• “Auto-tuner” targeted to numerical method
– E.g., PHiPAC (BLAS), Atlas (BLAS), 

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking

for finite element problem [Im, Yelick, Vuduc, 2005]

Best Sparse Blocking for 8 Computers

All possible column block sizes selected for 8 computers; 
How could compiler know?

IBM 
Power 3

Intel/HP 
Itanium 2

IBM Power 4, 
Intel/HP Itanium

Sun Ultra 2, 
Sun Ultra 3, 

AMD Opteron

Intel 
Pentium M8

4

2

1

ro
w

 b
lo

ck
 s

iz
e 

(r
)

1 2 4 8
column block size (c)

Needs nonblocking cache; in 
many CPUs3++

Compiler-controlled 
prefetching

Many prefetch instructions; 
AMD Opteron prefetches 
data

2 instr., 
3 data

++
Hardware prefetching of 
instructions and data

Software is a challenge; 
some computers have 
compiler option

0+
Compiler techniques to reduce 
cache misses

Widely used with write 
through

1+Merging write buffer

Widely used2+
Critical word first and early 
restart

Used in L2 of Opteron and 
Niagara

1+Banked caches

Widely used3++Nonblocking caches

Widely used1+–Pipelined cache access

Used in Pentium 43+Trace caches 

Used in Pentium 41+Way-predicting caches 

Trivial; widely used0–+Small and simple caches

CommentHW cost/ 
complexity

Miss 
rate

Miss 
penalty

Band-
width

Hit 
TimeTechnique

Main Memory Background

• Performance of Main Memory: 
– Latency: Cache Miss Penalty

» Access Time : time between request and word arrives

» Cycle Time : time between requests

– Bandwidth: I/O & Large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)

– Addresses divided into 2 halves (Memory as a 2D matrix):

» RAS or Row Access Strobe
» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor

Size: DRAM/SRAM - 4-8, 
Cost/Cycle time : SRAM/DRAM - 8-16

Main Memory Deep Background

• “Out-of-Core”, “In-Core,” “Core Dump”?

• “Core memory”?

• Non-volatile, magnetic

• Lost to 4 Kbit DRAM (today using 512Mbit DRAM)

• Access time 750 ns, cycle time 1500-3000 ns
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DRAM logical organization (4 Mbit)

Square root of bits per RAS/CAS

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)

A0…A10

…
11 D

Q

Word Line
Storage 
Cell

Quest for DRAM Performance

1. Fast Page mode 
– Add timing signals that allow repeated accesses to row buffer 

without another row access time

– Such a buffer comes naturally, as each array will buffer 1024 to
2048 bits for each access

2. Synchronous DRAM (SDRAM)
– Add a clock signal to DRAM interface, so that the repeated 

transfers would not bear overhead to synchronize with DRAM 
controller

3. Double Data Rate (DDR SDRAM)
– Transfer data on both the rising edge and falling edge of the 

DRAM clock signal doubling the peak data rate

– DDR2 lowers power by dropping the voltage from 2.5 to 1.8 
volts + offers higher clock rates: up to 400 MHz

– DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz

Improved Bandwidth, not Latency

DRAM name based on Peak Chip Transfers / Sec
DIMM  name based on Peak DIMM MBytes / Sec

PC1280012800DDR3-16001600800DDR3

PC1070010664DDR3-13331333666DDR3

PC85008528DDR3-10661066533DDR3

PC64006400DDR2-800800400DDR2

PC53005336DDR2-667667333DDR2

PC43004264DDR2-533533266DDR2

PC32003200DDR400400200DDR

PC24002400DDR300300150DDR

PC21002128DDR266266133DDR

DIMM 
Name

Mbytes/s/ 
DIMM

DRAM 
Name

M transfers 
/ second

Clock Rate 
(MHz)

Stan-
dard

x 2 x 8
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Need for Error Correction!

• Motivation:
– Failures/time proportional to number of bits!

– As DRAM cells shrink, more vulnerable

• Went through period in which failure rate was low 
enough without error correction that people didn’t 
do correction

– DRAM banks too large now

– Servers always corrected memory systems

• Basic idea: add redundancy through parity bits
– Common configuration: Random error correction

» SEC-DED (single error correct, double error detect)

» One example: 64 data bits + 8 parity bits (11% overhead)

– Really want to handle failures of physical components as well

» Organization is multiple DRAMs/DIMM, multiple DIMMs

» Want to recover from failed DRAM and failed DIMM!

» “Chip kill” handle failures width of single DRAM chip

Outline

• 11 Advanced Cache Optimizations

• Memory Technology and DRAM optimizations

• Virtual Machines

• Xen VM: Design and Performance

• AMD Opteron Memory Hierarchy

• Opteron Memory Performance vs. Pentium 4

• Conclusion

Introduction to Virtual Machines

• VMs developed in late 1960s
– Remained important in mainframe computing over the years

– Largely ignored in single user computers of 1980s and 1990s

• Recently regained popularity due to
– increasing importance of isolation and security in modern systems, 

– failures in security and reliability of standard operating systems, 

– sharing of a single computer among many unrelated users,

– and the dramatic increases in raw speed of processors, which 
makes the overhead of VMs more acceptable
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What is a Virtual Machine (VM)?

• Broadest definition includes all emulation 
methods that provide a standard software 
interface, such as the Java VM

• “(Operating) System Virtual Machines” provide a 
complete system level environment at binary ISA

– Here assume ISAs always match the native hardware ISA

– E.g., IBM VM/370, VMware ESX Server, and Xen

• Present illusion that VM users have entire 
computer to themselves, including a copy of OS

• Single computer runs multiple VMs, and can 
support a multiple, different OSes 

– On conventional platform, single OS “owns” all HW resources 

– With a VM, multiple OSes all share HW resources

• Underlying HW platform is called the host, and 
its resources are shared among the guest VMs

Virtual Machine Monitors (VMMs)

• Virtual machine monitor (VMM) or hypervisor is 
software that supports VMs

• VMM determines how to map virtual resources to 
physical resources

• Physical resource may be time-shared, 
partitioned, or emulated in software 

• VMM is much smaller than a traditional OS; 
– isolation portion of a VMM is 10,000 lines of code

VMM Overhead?

• Depends on the workload

• User-level processor-bound programs (e.g., 
SPEC) have zero-virtualization overhead 

– Runs at native speeds since OS rarely invoked

• I/O-intensive workloads OS-intensive 
execute many system calls and privileged 

instructions 
can result in high virtualization overhead 

– For System VMs, goal of architecture and VMM is to run 
almost all instructions directly on native hardware

• If I/O-intensive workload is also I/O-bound
low processor utilization since waiting for I/O 
processor virtualization can be hidden 
low virtualization overhead

Requirements of a Virtual Machine Monitor

• A VM Monitor 
– Presents a SW interface to guest software, 

– Isolates state of guests from each other, and 

– Protects itself from guest software (including guest OSes)

• Guest software should behave on a VM exactly 
as if running on the native HW 

– Except for performance-related behavior or limitations of 
fixed resources shared by multiple VMs

• Guest software should not be able to change 
allocation of real system resources directly

• Hence, VMM must control everything even 
though guest VM and OS currently running is 
temporarily using them

– Access to privileged state, Address translation, I/O, 
Exceptions and Interrupts, …

Requirements of a Virtual Machine Monitor

• VMM must be at higher privilege level than 
guest VM, which generally run in user mode 
µ Execution of privileged instructions handled by VMM

• E.g., Timer interrupt: VMM suspends currently 
running guest VM, saves its state, handles 
interrupt, determine which guest VM to run 
next, and then load its state 
– Guest VMs that rely on timer interrupt provided with virtual 

timer and an emulated timer interrupt by VMM

• Requirements of system virtual machines are 
same as paged-virtual memory: 

1. At least 2 processor modes, system and user

2. Privileged subset of instructions available only in system 
mode, trap if executed in user mode

– All system resources controllable only via these instructions

ISA Support for Virtual Machines

• If plan for VM during design of ISA, easy to reduce 
instructions executed by VMM, speed to emulate

– ISA is virtualizable if can execute VM directly on real machine while 
letting VMM retain ultimate control of CPU: “direct execution”

– Since VMs have been considered for desktop/PC server apps only 
recently, most ISAs were created ignoring virtualization, including 
80x86 and most RISC architectures

• VMM must ensure that guest system only interacts 
with virtual resources conventional guest OS 
runs as user mode program on top of VMM

– If guest OS accesses or modifies information related to HW resources 
via a privileged instruction—e.g., reading or writing the page table 
pointer—it will trap to VMM

• If not, VMM must intercept instruction and support 
a virtual version of sensitive information as guest 
OS expects
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Impact of VMs on Virtual Memory

• Virtualization of virtual memory if each guest OS in 
every VM manages its own set of page tables?

• VMM separates real and physical memory
– Makes real memory a separate, intermediate level between virtual

memory and physical memory

– Some use the terms virtual memory, physical memory, and 
machine memory to name the 3 levels

– Guest OS maps virtual memory to real memory via its page tables,
and VMM page tables map real memory to physical memory

• VMM maintains a shadow page table that maps 
directly from the guest virtual address space to the 
physical address space of HW

– Rather than pay extra level of indirection on every memory access

– VMM must trap any attempt by guest OS to change its page table 
or to access the page table pointer

ISA Support for VMs & Virtual Memory

• IBM 370 architecture added additional level of 
indirection that is managed by the VMM 

– Guest OS keeps its page tables as before, so the shadow 
pages are unnecessary

– (AMD Pacifica proposes same improvement for 80x86)

• To virtualize software TLB, VMM manages the 
real TLB and has a copy of the contents of the 
TLB of each guest VM

– Any instruction that accesses the TLB must trap

– TLBs with Process ID tags support a mix of entries from 
different VMs and the VMM, thereby avoiding flushing of the 
TLB on a VM switch

Impact of I/O on Virtual Memory

• I/O most difficult part of virtualization
– Increasing number of I/O devices attached to the computer 

– Increasing diversity of I/O device types

– Sharing of a real device among multiple VMs

– Supporting many device drivers that are required, especially if 
different guest OSes are supported on same VM system

• Give each VM generic versions of each type of 
I/O device driver, and let VMM to handle real I/O

• Method for mapping virtual to physical I/O device 
depends on the type of device:
– Disks partitioned by VMM to create virtual disks for guest VMs

– Network interfaces shared between VMs in short time slices, 
and VMM tracks messages for virtual network addresses to 
ensure that guest VMs only receive their messages

Example: Xen VM

• Xen: Open-source System VMM for 80x86 ISA 
– Project started at University of Cambridge, GNU license model

• Original vision of VM is running unmodified OS
– Significant wasted effort just to keep guest OS happy

• “paravirtualization” – small modifications to guest OS to 
simplify virtualization 

Three examples of paravirtualization in Xen:

1. To avoid flushing TLB when invoke VMM, Xen mapped 
into upper 64 MB of address space of each VM 

2. Guest OS allowed to allocate pages, just check that didn’t 
violate protection restrictions 

3. To protect the guest OS from user programs in VM, Xen 
takes advantage of 4 protection levels available in 80x86 
– Most OSes for 80x86 keep everything at privilege levels 0 or at 3.

– Xen VMM runs at the highest privilege level (0) 

– Guest OS runs at the next level (1) 

– Applications run at the lowest privilege level (3)

Xen changes for paravirtualization

• Port of Linux to Xen changed 3000 lines,                          
or 1% of 80x86-specific code 

– Does not affect application-binary interfaces of guest OS

• OSes supported in Xen 2.0

• More OSes in Xen 3.0

Yes No FreeBSD 5 
Yes No Plan 9 
Yes Yes NetBSD 3.0 
Yes No NetBSD 2.0 
Yes Yes Linux 2.6 
Yes Yes Linux 2.4 

Runs as guest OS Runs as host OSOS 

http://wiki.xensource.com/xenwiki/OSCompatibility

Xen and I/O

• To simplify I/O, privileged VMs assigned to each 
hardware I/O device: “driver domains” 

– Xen Jargon: “domains” = Virtual Machines

• Driver domains run physical device drivers, 
although interrupts still handled by VMM before 
being sent to appropriate driver domain 

• Regular VMs (“guest domains”) run simple 
virtual device drivers that communicate with 
physical devices drivers in driver domains over a 
channel to access physical I/O hardware 

• Data sent between guest and driver domains by 
page remapping
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Xen Performance
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• Performance relative to native Linux for Xen for 6 
benchmarks from Xen developers

• User-level processor-bound programs? I/O-
intensive workloads? I/O-Bound I/O-Intensive? 

• Detailed performance analysis: see book

Xen Performance, Part II

• Subsequent study noticed Xen experiments based 
on 1 Ethernet network interfaces card (NIC), and 
single NIC was a performance bottleneck
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Linux Xen-privileged driver VM ("driver domain") Xen-guest VM + driver VM

Xen Performance, Part III

1. > 2X instructions for guest VM + driver VM

2. > 4X L2 cache misses

3. 12X – 24X Data TLB misses
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Linux Xen-privileged driver VM only Xen-guest VM + driver VM

Xen Performance, Part IV

1. > 2X instructions: page remapping and page 
transfer between driver and guest VMs and due to 
communication between the 2 VMs over a channel

2. 4X L2 cache misses: Linux uses zero-copy 
network interface that depends on ability of NIC to 
do DMA from different locations in memory 
– Since Xen does not support “gather DMA” in its virtual network 

interface, it can’t do true zero-copy in the guest VM

3. 12X – 24X Data TLB misses: 2 Linux optimizations
– Superpages for part of Linux kernel space, and 4MB pages 

lowers TLB misses versus using 1024 4 KB pages.  Not  in Xen

– PTEs marked global are not flushed on a context switch, and 
Linux uses them for its kernel space. Not  in Xen

Future Xen may address 2. and 3., but 1. inherent?

Protection and Instruction Set Architecture

• Example Problem: 80x86 POPF instruction loads 
flag registers from top of stack in memory
– One such flag is Interrupt Enable (IE)

– In system mode, POPF changes IE 

– In user mode, POPF simply changes all flags except IE 

– Problem: guest OS runs in user mode inside a VM, so it expects 
to see changed a IE, but it won’t

• Historically, IBM mainframe HW and VMM took 3 
steps:
1. Reduce cost of processor virtualization

» Intel/AMD proposed ISA changes to reduce this cost

2. Reduce interrupt overhead cost due to virtualization

3. Reduce interrupt cost by steering interrupts to proper VM directly 
without invoking VMM

2. and 3. not yet addressed by Intel/AMD; in the future?

80x86 VM Challenges

18 instructions cause problems for virtualization:

1. Read control registers in user model that reveal 
that the guest operating system in running in a 
virtual machine (such as POPF), and 

2. Check protection as required by the segmented 
architecture but assume that the operating 
system is running at the highest privilege level

Virtual memory: 80x86 TLBs do not support 
process ID tags more expensive for VMM and 
guest OSes to share the TLB 
– each address space change typically requires a TLB flush
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Intel/AMD address 80x86 VM Challenges

• Goal is direct execution of VMs on 80x86

• Intel's VT-x

– A new execution mode for running VMs 

– An architected definition of the VM state 

– Instructions to swap VMs rapidly 

– Large set of parameters to select the circumstances 
where a VMM must be invoked

– VT-x adds 11 new instructions to 80x86

• Xen 3.0 plan proposes to use VT-x to run Windows on Xen 

• AMD’s Pacifica makes similar proposals
– Plus indirection level in page table like IBM VM 370

• Ironic adding a new mode
– If OS start using mode in kernel, new mode would cause performance 

problems for VMM since 100 times too slow

Outline

• 11 Advanced Cache Optimizations

• Memory Technology and DRAM optimizations

• Virtual Machines

• Xen VM: Design and Performance

• AMD Opteron Memory Hierarchy

• Opteron Memory Performance vs. Pentium 4

• Conclusion

AMD Opteron Memory Hierarchy

• 12-stage integer pipeline yields a maximum clock rate of 2.8 
GHz and fastest memory PC3200 DDR SDRAM

• 48-bit virtual and 40-bit physical addresses

• I and D cache: 64 KB, 2-way set associative, 64-B block, LRU

• L2 cache: 1 MB, 16-way, 64-B block, pseudo LRU

• Data and L2 caches use write back, write allocate 

• L1 caches are virtually indexed and physically tagged

• L1 I TLB and L1 D TLB: fully associative, 40 entries 
– 32 entries for 4 KB pages and 8 for 2 MB or 4 MB pages 

• L2 I TLB and L1 D TLB: 4-way, 512 entities of 4 KB pages

• Memory controller allows up to 10 cache misses
– 8 from D cache and 2 from I cache

Opteron Memory Hierarchy Performance

• For SPEC2000
– I cache misses per instruction is 0.01% to 0.09% 

– D cache misses per instruction are 1.34% to 1.43% 

– L2 cache misses per instruction are 0.23% to 0.36% 

• Commercial benchmark (“TPC-C-like”)
– I cache misses per instruction is 1.83%  (100X!)

– D cache misses per instruction are 1.39% ( same)

– L2 cache misses per instruction are 0.62% (2X to 3X)

• How compare to ideal CPI of 0.33?

CPI breakdown for Integer Programs
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CPI breakdown for FP Programs

• CPI above base attributable to memory 60%

• L2 cache misses 40% overall (70% memory CPI)
– Assumes misses are not overlapped with the execution pipeline 

or with each other, so the pipeline stall portion is a lower bound
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Pentium 4 vs. Opteron Memory Hierarchy

200 MHz x 128 bits200 MHz x 64 bitsMemory

1 stream to L28 streams to L2Prefetch

8-way associative, 
2 MB, 128B block

8-way associative, 16 
KB, 64B block, 
inclusive in L2

Trace Cache 
(8K micro-ops)

Pentium 4 (3.2 GHz*)

16-way associative, 
1 MB, 64B block

2-way associative, 
64 KB, 64B block, 
exclusive to L2

2-way associative, 
64 KB, 64B block

Opteron (2.8 GHz*)CPU
Instruction 
Cache

L2 cache

Data 
Cache

*Clock rate for this comparison in 2005; faster versions existed

Misses Per Instruction: Pentium 4 vs. Opteron
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Opteron better

Pentium better

• D cache miss: P4 is 2.3X to 3.4X vs. Opteron

• L2 cache miss: P4 is 0.5X to 1.5X vs. Opteron

• Note: Same ISA, but not same instruction count

2.3X

3.4X

0.5X

1.5X

Fallacies and Pitfalls

• Not delivering high memory bandwidth in a cache-based system

– 10 Fastest computers at Stream benchmark [McCalpin 2005]

– Only 4/10 computers rely on data caches, and their memory BW 
per processor is 7X to 25X slower than NEC SX7
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And in Conclusion [1/2] …

• Memory wall inspires optimizations since so much 
performance lost there

– Reducing hit time: Small and simple caches, Way prediction, 
Trace caches

– Increasing cache bandwidth: Pipelined caches, Multibanked 
caches, Nonblocking caches

– Reducing Miss Penalty: Critical word first, Merging write buffers

– Reducing Miss Rate: Compiler optimizations

– Reducing miss penalty or miss rate via parallelism: Hardware 
prefetching, Compiler prefetching

• “Auto-tuners” search replacing static compilation 
to explore optimization space?

• DRAM – Continuing Bandwidth innovations: Fast 
page mode, Synchronous, Double Data Rate

And in Conclusion [2/2] …

• VM Monitor presents a SW interface to guest 
software, isolates state of guests, and protects itself 
from guest software (including guest OSes)

• Virtual Machine Revival
– Overcome security flaws of large OSes

– Manage Software, Manage Hardware

– Processor performance no longer highest priority

• Virtualization challenges for processor, virtual 
memory, and I/O

– Paravirtualization to cope with those difficulties

• Xen as example VMM using paravirtualization
– 2005 performance on non-I/O bound, I/O intensive apps: 

80% of native Linux without driver VM, 34% with driver VM

• Opteron memory hierarchy still critical to 
performance

Reading

• This lecture: 

– chapter 5: Memory Hierarchy Design

• Next lecture: 

– chapter 6: Storage Systems
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Lecture 11 – Storage

Slides were used during lectures by 

David Patterson, Berkeley, spring 2006

Case for Storage

• Shift in focus from computation to 
communication and storage of information 

– E.g., Cray Research/Thinking Machines vs. Google/Yahoo

– “The Computing Revolution” (1960s to 1980s) 
“The Information Age” (1990 to today)

• Storage emphasizes reliability and scalability as 
well as cost-performance

• What is “Software king” that determines which 
HW actually features used?

– Operating System for storage

– Compiler for processor 

• Also has own performance theory—queuing 
theory—balances throughput vs. response time 

Outline

• Magnetic Disks

• RAID

• Advanced Dependability/Reliability/Availability

• I/O Benchmarks, Performance and Dependability

• Intro to Queuing Theory

• The End

Disk Organization

• 5000-30,000 
tracks/surface

• 100-500 
sectors/track

Disk Figure of Merit: Areal Density

• Bits recorded along a track
– Metric is Bits Per Inch (BPI)

• Number of tracks per surface
– Metric is Tracks Per Inch (TPI)

• Disk Designs Brag about bit density per unit area
– Metric is  Bits Per Square Inch: Areal Density = BPI x TPI

Year Areal Density
1973 2            
1979 8            
1989 63          
1997 3,090     
2000 17,100   
2006 130,000 
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Historical Perspective

• 1956 IBM Ramac — early 1970s Winchester
– Developed for mainframe computers, proprietary interfaces

– Steady shrink in form factor: 27 in. to 14 in.

• Form factor and capacity drives market more than performance

• 1970s developments
– 5.25 inch floppy disk formfactor (microcode into mainframe)

– Emergence of industry standard disk interfaces

• Early 1980s: PCs and first generation workstations

• Mid 1980s: Client/server computing 
– Centralized storage on file server

» accelerates disk downsizing: 8 inch to 5.25

– Mass market disk drives become a reality

» industry standards: SCSI, IPI, IDE

» 5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

• 1900s: Laptops => 2.5 inch drives

• 2000s: What new devices leading to new drives?
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Future Disk Size and Performance

• Continued advance in capacity (60%/yr) and 
bandwidth (40%/yr)

• Slow improvement in seek, rotation (8%/yr)

• Time to read whole disk 

Year Sequentially Randomly
(1 sector/seek)

1990 4 minutes 6 hours

2000 12 minutes 1 week(!)

2006 56 minutes 3 weeks (SCSI)

2006      171 minutes 7 weeks (SATA)

Use Arrays of Small Disks?

Katz and Patterson asked in 1987: 
Can smaller disks be used  to close gap in 
performance between disks and CPUs?

14”
10”5.25”3.5”

3.5”

Disk Array:    
1 disk design

Conventional:                 
4 disk  
designs

Low End High End

Replace Small Number of Large Disks with 
Large Number of Small Disks! (1988 Disks)

Capacity 

Volume 

Power

Data Rate 

I/O Rate   

MTTF  

Cost

IBM 3390K

20 GBytes

97 cu. ft.

3 KW

15 MB/s

600 I/Os/s

250 KHrs

$250K

IBM 3.5" 0061

320 MBytes

0.1 cu. ft.

11 W

1.5 MB/s

55 I/Os/s

50 KHrs

$2K

x70

23 GBytes

11 cu. ft.

1 KW

120 MB/s

3900 IOs/s

??? Hrs

$150K

Disk Arrays have potential for large data and 
I/O rates, high MB per cu. ft., high MB per KW, 
but what about reliability?

9X

3X

8X

6X

Array Reliability

Reliability of N disks = Reliability of 1 Disk ÷ N

50,000 Hours ÷ 70 disks = 700 hours

Disk system MTTF: Drops from 6 years  to 1 month!

Arrays (without redundancy) too unreliable to be 
useful!

Hot spares support reconstruction in parallel with 
access: very high media availability can be achieved

Hot spares support reconstruction in parallel with 
access: very high media availability can be achieved

Redundant Arrays of (Inexpensive) Disks

• Files are "striped" across multiple disks

• Redundancy yields high data availability

– Availability: service still provided to user, even if some 

components failed

• Disks will still fail

• Contents reconstructed from data redundantly 
stored in the array

Capacity penalty to store redundant info

Bandwidth penalty to update redundant info

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved

• Bandwidth sacrifice on write:
Logical write = two physical writes

• Reads may be optimized
• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip)

recovery
group
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Redundant Array of Inexpensive Disks 
RAID 3: Parity Disk

P contains sum of
other disks per stripe 
mod 2 (“parity”)
If disk fails, subtract 
P from sum of other 
disks to find missing information

P

10010011
11001101
10010011

. . .

logical record 1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

Striped physical
records

RAID 3

• Sum computed across recovery group to 
protect against hard disk failures, stored in 
P disk

• Logically, a single high capacity, high 
transfer rate disk: good for large transfers

• Wider arrays reduce capacity costs, but 
decreases availability

• 33% capacity cost for parity if 3 data disks 
and 1 parity disk

Inspiration for RAID 4

• RAID 3 relies on parity disk to discover 
errors on Read

• But every sector has an error detection field

• To catch errors on read, rely on error 
detection field vs. the parity disk

• Allows independent reads to different disks 
simultaneously

Redundant Arrays of Inexpensive Disks 
RAID 4: High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Disk Columns

Increasing
Logical

Disk 
Address

Stripe

Insides of 
5 disks

Insides of 
5 disks

Example:
small read 
D0 & D5, 
large write 
D12-D15

Example:
small read 
D0 & D5, 
large write 
D12-D15

Inspiration for RAID 5

• RAID 4 works well for small reads

• Small writes (write to one disk): 
– Option 1: read other data disks, create new sum and write to 

Parity Disk

– Option 2: since P has old sum, compare old data to new data, 
add the difference to P

• Small writes are limited by Parity Disk: Write to D0, D5 
both also write to P disk 

D0 D1 D2 D3 P

D4 D5 D6 PD7

Redundant Arrays of Inexpensive Disks 
RAID 5: High I/O Rate Interleaved Parity

Independent 
writes
possible 
because of
interleaved 
parity

Independent 
writes
possible 
because of
interleaved 
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical

Disk 
Addresses

Example: 
write to 
D0, D5 
uses disks 
0, 1, 3, 4
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Problems of Disk Arrays: Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old 
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2  Physical Writes

RAID 6: Recovering from 2 failures

Why > 1 failure recovery?

– operator accidentally replaces the wrong disk during 
a failure

– since disk bandwidth is growing more slowly than 
disk capacity, the MTT Repair a disk in a RAID 
system is increasing 
µ increases the chances of a 2nd failure during 
repair since takes longer

– reading much more data during reconstruction meant 
increasing the chance of an uncorrectable media 
failure, which would result in data loss

RAID 6: Recovering from 2 failures

• Network Appliance’s row-diagonal parity or RAID-DP
• Like the standard RAID schemes, it uses redundant 

space based on parity calculation per stripe 
• Since it is protecting against a double failure, it adds 

two check blocks per stripe of data. 
– If p+1 disks total, p-1 disks have data; assume p=5

• Row parity disk is just like in RAID 4 
– Even parity across the other 4 data blocks in its stripe

• Each block of the diagonal parity disk contains the 
even parity of the blocks in the same diagonal

Example p = 5

• Row diagonal parity starts by recovering one of the 4 blocks 
on the failed disk using diagonal parity

– Since each diagonal misses one disk, and all diagonals miss a 
different disk, 2 diagonals are only missing 1 block

• Once the data for those blocks is recovered, then the 
standard RAID recovery scheme can be used to recover 
two more blocks in the standard RAID 4 stripes

• Process continues until two failed disks are restored

043210

432104

321043

210432

104321

043210

Diagona
l Parity

Row 
Parity

Data 
Disk 3

Data 
Disk 2

Data 
Disk 1

Data 
Disk 0

Berkeley History: RAID-I

• RAID-I (1989) 
Consisted of a Sun 4/280 
workstation with 128 MB of DRAM, 
four dual-string SCSI controllers, 
28 5.25-inch SCSI disks and 
specialized disk striping software

• Today RAID is $24 billion 
dollar industry, 80% nonPC
disks sold in RAIDs

Summary: RAID Techniques: Goal was performance,
popularity due to reliability of storage

• Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"

Logical write = two physical writes

100% capacity overhead

• Parity Data Bandwidth Array (RAID 3)

Parity computed horizontally

Logically a single high data bw disk

• High I/O Rate Parity Array (RAID 5)

Interleaved parity blocks

Independent reads and writes

Logical write = 2 reads + 2 writes

1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

0
0
1
1
0
0
1
0

1
0
0
1
0
0
1
1

1
0
0
1
0
0
1
1
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Definitions

• Examples on why precise definitions so important 
for reliability

• Is a programming mistake a fault, error, or failure? 
– Are we talking about the time it was designed 

or the time the program is run? 

– If the running program doesn’t exercise the mistake, 
is it still a fault/error/failure?

• If an alpha particle hits a DRAM memory cell, is it a 
fault/error/failure if it doesn’t change the value? 

– Is it a fault/error/failure if the memory doesn’t access the changed bit? 

– Did a fault/error/failure still occur if the memory had error correction 
and delivered the corrected value to the CPU?  

International Federation for Information 
Processing (IFIP) Standard terminology

• Computer system dependability: quality of delivered service 
such that reliance can be placed on service

• Service is observed actual behavior as perceived by other 
system(s) interacting with this system’s users

• Each module has ideal specified behavior, where service 
specification is agreed description of expected behavior

• A system failure occurs when the actual behavior deviates 
from the specified behavior

• Failure occurred because an error, a defect in module
• The cause of an error is a fault
• When a fault occurs it creates a latent error, which becomes 

effective when it is activated
• When error actually affects the delivered service, a failure 

occurs (time from error to failure is error latency)

Fault v. (Latent) Error v. Failure

• An error is manifestation in the system of a fault, 
a failure is manifestation on the service of an error

• If an alpha particle hits a DRAM memory cell, is it a 
fault/error/failure if it doesn’t change the value? 

– Is it a fault/error/failure if the memory doesn’t access the changed bit? 
– Did a fault/error/failure still occur if the memory had error correction 

and delivered the corrected value to the CPU? 

• An alpha particle hitting a DRAM can be a fault
• If it changes the memory, it creates an error
• Error remains latent until effected memory word is read
• If the effected word error affects the delivered service, 

a failure occurs

Fault Categories

1. Hardware faults: Devices that fail, such alpha particle hitting 
a memory cell

2. Design faults: Faults in software (usually) and hardware 
design (occasionally)

3. Operation faults: Mistakes by operations and maintenance 
personnel

4. Environmental faults: Fire, flood, earthquake, power failure, 
and sabotage

Also by duration: 

1. Transient faults exist for limited time and not recurring 

2. Intermittent faults cause a system to oscillate between 
faulty and fault-free operation 

3. Permanent faults do not correct themselves over time

Fault Tolerance vs Disaster Tolerance

• Fault-Tolerance (or more properly, Error-Tolerance):
mask local faults (prevent errors from becoming 
failures)

– RAID disks

– Uninterruptible Power Supplies

– Cluster Failover  

• Disaster Tolerance:masks site errors
(prevent site errors from causing service failures)

– Protects against fire, flood, sabotage,..

– Redundant system and service at remote site.

– Use design diversity   

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

Case Studies - Tandem Trends
Reported MTTF by Component

0

50

100

150

200

250

300

350

400

450

1985 1987 1989

software

hardware

maintenance

operations

environment

total

Mean Time to System Failure (years) 
by Cause

1985 1987 1990
SOFTWARE 2 53 33 Years
HARDWARE 29 91 310 Years
MAINTENANCE 45 162 409 Years
OPERATIONS 99 171 136 Years
ENVIRONMENT 142 214 346 Years
SYSTEM 8 20 21 Years
Problem:  Systematic Under-reporting

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00
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  Cause of System Crashes       

20%
10% 5%

50%

18%

5%

15%

53%

69%

15% 18% 21%

0%

20%

40%

60%

80%

100%

1985 1993 2001

Other: app, power,  
network failure

System management: 
actions + N/problem

Operating System
failure

Hardware failure

(est.)

• VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01

• Sys. Man.: N crashes/problem, SysAdmin action
– Actions: set params bad, bad config, bad app install

• HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?

• Rule of Thumb: Maintenance 10X HW
– so over 5 year product life, ~ 95% of cost is maintenance

Is Maintenance the Key? HW Failures in Real Systems: Tertiary Disks

Component Total in System Total Failed % Failed
SCSI Controller 44 1 2.3%
SCSI Cable 39 1 2.6%
SCSI Disk 368 7 1.9%
IDE Disk 24 6 25.0%
Disk Enclosure -Backplane 46 13 28.3%
Disk Enclosure - Power Supply 92 3 3.3%
Ethernet Controller 20 1 5.0%
Ethernet Switch 2 1 50.0%
Ethernet Cable 42 1 2.3%
CPU/Motherboard 20 0 0%

A cluster of 20 PCs in seven 7-foot high, 19-inch wide 
racks with 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks. 
The PCs are P6-200MHz with 96 MB of DRAM each. 
They run FreeBSD 3.0 and the hosts are connected via 
switched 100 Mbit/second Ethernet

Does Hardware Fail Fast? 
4 of 384 Disks that failed in Tertiary Disk

Messages in system log for failed disk No. log 
msgs 

Duration 
(hours) 

Hardware Failure (Peripheral device write fault 
[for] Field Replaceable Unit) 

1763 186

Not Ready (Diagnostic failure: ASCQ = Component 
ID [of] Field Replaceable Unit) 

1460 90

Recovered Error (Failure Prediction Threshold 
Exceeded [for] Field Replaceable Unit) 

1313 5

Recovered Error (Failure Prediction Threshold 
Exceeded [for] Field Replaceable Unit) 

431 17

 

 

High Availability System Classes
Goal: Build Class 6 Systems

Availability

90.%

99.%

99.9%

99.99%

99.999%

99.9999%

99.99999%

System Type

Unmanaged

Managed

Well Managed

Fault Tolerant

High-Availability

Very-High-Availability

Ultra-Availability

Unavailable
(min/year)

50,000

5,000

500

50

5

.5

.05

Availability
Class

1
2
3
4
5
6
7

UnAvailability =  MTTR/MTBF
can cut it in ½ by cutting MTTR or MTBF

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

How Realistic is "5 Nines"?

• HP claims HP-9000 server HW and HP-UX OS can 
deliver 99.999% availability guarantee “in certain 
pre-defined, pre-tested customer environments” 

– Application faults?

– Operator faults?

– Environmental faults?

• Collocation sites (lots of computers in 1 building on 
Internet) have

– 1 network outage per year (~1 day)

– 1 power failure per year (~1 day)

• Microsoft Network unavailable recently for a day due 
to problem in Domain Name Server: if only outage 
per year, 99.7% or 2 Nines

Outline

• Magnetic Disks

• RAID

• Advanced Dependability/Reliability/Availability

• I/O Benchmarks, Performance and Dependability

• Intro to Queuing Theory

• The End
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I/O Performance

100%

Response
Time (ms)

Throughput 
(% total BW)

0

100

200

300

0%

Response time = Queue + Device Service time

Proc

Queue

IOC Device

Metrics:
Response Time
vs. Throughput

I/O Benchmarks

• For better or worse, benchmarks shape a field
– Processor benchmarks classically aimed at response time for fixed 

sized problem

– I/O benchmarks typically measure throughput, possibly with upper
limit on response times (or 90% of response times)

• Transaction Processing (TP)  (or On-line TP=OLTP)
– If bank computer fails when customer withdraw money, TP system 

guarantees account debited if customer gets $ & account 
unchanged if  no $

– Airline reservation systems & banks use TP

• Atomic transactions makes this work

• Classic metric is Transactions Per Second (TPS) 

I/O Benchmarks: Transaction Processing

• Early 1980s great interest in OLTP
– Expecting demand for high TPS (e.g., ATM machines, credit cards)

– Tandem’s success implied medium range OLTP expands

– Each vendor picked own conditions for TPS claims, report only CPU 
times with widely different I/O

– Conflicting claims led to disbelief of all benchmarks chaos

• 1984 Jim Gray (Tandem) distributed paper to Tandem 
+ 19 in other companies propose standard benchmark

• Published “A measure of transaction processing 
power,” Datamation, 1985 by Anonymous et. al

– To indicate that this was effort of large group

– To avoid delays of legal department of each author’s firm

– Still get mail at Tandem to author “Anonymous”

• Led to Transaction Processing Council in 1988
– www.tpc.org

I/O Benchmarks: TP1 by Anon et. al

• DebitCredit Scalability: size of account, branch, teller, 
history function of throughput

TPS Number of ATMs Account-file size

10 1,000 0.1 GB

100 10,000 1.0 GB

1,000 100,000 10.0 GB

10,000 1,000,000 100.0 GB

– Each input TPS =>100,000 account records, 10 branches, 100 ATMs

– Accounts must grow since a person is not likely to use the bank more 
frequently just because the bank has a faster computer! 

• Response time: 95% transactions take ø 1 second

• Report price (initial purchase price + 5 year 
maintenance = cost of ownership)

• Hire auditor to certify results

Unusual Characteristics of TPC

• Price is included in the benchmarks
– cost of HW, SW, and 5-year maintenance agreements 

included price-performance as well as performance

• The data set generally must scale in size as 
the throughput increases

– trying to model real systems, demand on system and size 
of the data stored in it increase together

• The benchmark results are audited
– Must be approved by certified TPC auditor, who enforces 

TPC rules only fair results are submitted

• Throughput is the performance metric but 
response times are limited

– eg, TPC-C: 90% transaction response times < 5 seconds

• An independent organization maintains the 
benchmarks

– COO ballots on changes, meetings, to settle disputes...

TPC Benchmark History/Status

Benchmark Data Size (GB) Performance 
Metric 

1st Results 

A: Debit Credit (retired) 0.1 to 10 transactions/s Jul-90 
B: Batch Debit Credit 
(retired) 

0.1 to 10 transactions/s  Jul-91 

C: Complex Query 
OLTP 

100 to 3000 
(min. 07 * tpm)

new order 
trans/min (tpm) 

Sep-92 

D: Decision Support 
(retired) 

100, 300, 1000 queries/hour Dec-95 

H: Ad hoc decision 
support 

100, 300, 1000 queries/hour Oct-99 

R: Business reporting 
decision support (retired) 

1000 queries/hour Aug-99 

W: Transactional web  ~ 50, 500 web inter-
actions/sec. 

Jul-00 

App: app. server & web 
services  

 Web Service 
Interactions/sec 

(SIPS) 

Jun-05 
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I/O Benchmarks via SPEC

• SFS 3.0 Attempt by NFS companies to agree on 
standard benchmark

– Run on multiple clients & networks (to prevent bottlenecks)

– Same caching policy in all clients

– Reads: 85% full block & 15% partial blocks

– Writes: 50% full block & 50% partial blocks

– Average response time: 40 ms

– Scaling: for every 100 NFS ops/sec, increase capacity 1GB

• Results: plot of server load (throughput) vs. response 
time & number of users

– Assumes: 1 user => 10 NFS ops/sec

– 3.0 for NFS 3.0

• Added SPECMail (mailserver), SPECWeb (webserver) 
benchmarks

2005 Example SPEC SFS Result: 
NetApp FAS3050c NFS servers

• 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM 
per processor, 1GB of Non-volatile memory per system

• 4 FDDI networks; 32 NFS Daemons, 24 GB file size

• 168 fibre channel disks: 72 GB, 15000 RPM, 2 or 4 FC 
controllers 
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4 processors

2 processors

Availability benchmark methodology

• Goal: quantify variation in QoS metrics as events 
occur that affect system availability

• Leverage existing performance benchmarks
– to generate fair workloads

– to measure & trace quality of service metrics

• Use fault injection to compromise system
– hardware faults (disk, memory, network, power)

– software faults (corrupt input, driver error returns)

– maintenance events (repairs, SW/HW upgrades)

• Examine single-fault and multi-fault workloads
– the availability analogues of performance micro- and macro-

benchmarks
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Reconstruction

Reconstruction

Example single-fault result

Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of vulnerability 

to second fault

– Solaris: large perf. impact but restores redundancy fast

Linux

Solaris

Reconstruction policy (2)

• Linux: favors performance over data availability
– automatically-initiated reconstruction, idle bandwidth

– virtually no performance impact on application

– very long window of vulnerability (>1hr for 3GB RAID)

• Solaris: favors data availability over app. perf.
– automatically-initiated reconstruction at high BW

– as much as 34% drop in application performance

– short window of vulnerability (10 minutes for 3GB)

• Windows: favors neither!
– manually-initiated reconstruction at moderate BW

– as much as 18% app. performance drop

– somewhat short window of vulnerability (23 min/3GB)

Introduction to Queuing Theory

• More interested in long term, steady state than in 
startup => Arrivals = Departures

• Little’s Law: 
Mean number tasks in system =                       

arrival rate x mean response time
– Observed by many, Little was first to prove

• Applies to any system in equilibrium, as long as 
black box not creating or destroying tasks

Arrivals Departures
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Deriving Little’s Law

• Timeobserve = elapsed time that observe a system
• Numbertask = number of (overlapping) tasks during Timeobserve

• Timeaccumulated = sum of elapsed times for each task 

Then
• Mean number tasks in system= Timeaccumulated / Timeobserve

• Mean response time= Timeaccumulated / Numbertask

• Arrival Rate= Numbertask/ Timeobserve

Factoring RHS of 1st equation
• Timeaccumulated / Timeobserve = Timeaccumulated / Numbertask x

Numbertask / Timeobserve 

Then get Little’s Law:
• Mean number tasks in system= Arrival Rate x Mean response time

A Little Queuing Theory: Notation

• Notation:
Time server average time to service a task 
Average service rate = 1 / Time server (traditionally µ) 
Time queue  average time/task in queue 
Time system average time/task in system  

= Time queue + Time server 
Arrival rate avg no. of arriving tasks/sec (traditionally そ) 

Length server average number of tasks in service
Length queue average length of queue 
Length system average number of tasks in service

= Length queue + Length server

• Little’s Law: Length server = Arrival rate x Time server
(Mean number tasks = arrival rate x mean service time)

Proc IOC Device

Queue server

System

Server Utilization

• For a single server, service rate = 1 / Time server

• Server utilization must be between 0 and 1, since 
system is in equilibrium (arrivals = departures); 
often called traffic intensity, traditionally と)

• Server utilization 
= mean number tasks in service 
= Arrival rate x Timeserver

• What is disk utilization if get 50 I/O requests per 
second for disk and average disk service time is 
10 ms (0.01 sec)?

• Server utilization = 50/sec x 0.01 sec = 0.5

• Or server is busy on average 50% of time

Time in Queue vs. Length of Queue

• We assume First In First Out (FIFO) queue

• Relationship of time in queue (Time queue ) to mean 
number of tasks in queue (Length queue ) ?

• Time queue = Length queue x Time server 
+ “Mean time to complete service of 

task when new task arrives if 
server is busy”

• New task can arrive at any instant; how predict 
last part?

• To predict performance, need to know sometime 
about distribution of events

Distribution of Random Variables

• A variable is random if it takes one of a specified 
set of values with a specified probability

– Cannot know exactly next value, but may know probability of all 
possible values

• I/O Requests can be modeled by a random variable 
because OS normally switching between several 
processes generating independent I/O requests

– Also given probabilistic nature of disks in seek and rotational delays

• Can characterize distribution of values of a random 
variable with discrete values using a histogram

– Divides range between the min & max values into buckets
– Histograms then plot the number in each bucket as columns
– Works for discrete values e.g., number of I/O requests?

• What about if not discrete? Very fine buckets

Characterizing distribution of 
a random variable

Need mean time and a measure of variance

For mean, use weighted arithmetic mean (WAM):

• fi = frequency of task i

• Ti = time for tasks I

Weighted arithmetic mean = f1×T1 + f2×T2 + . . . +fn×Tn

For variance, instead of standard deviation, use Variance 
(square of standard deviation) for WAM:

Variance = (f1×T12 + f2×T22 + . . . +fn×Tn2) – WAM2

– If time is miliseconds, Variance units are square milliseconds!

Got a unitless measure of variance?
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Squared Coefficient of Variance (C2)

• C2 = Variance / WAM2 

C = sqrt(Variance)/WAM = StDev/WAM
– Unitless measure

• Trying to characterize random events, but need 
distribution of random events with tractable math

• Most popular such distribution is exponential 
distribution , where C = 1

• Note using constant to characterize variability about 
the mean

– Invariance of C over time history of events has no impact on 
probability of an event occurring now 

– Called memoryless , an important assumption to predict behavior 

– (Suppose not; then have to worry about the exact arrival times of 
requests relative to each other make math not tractable!)

Poisson Distribution

• Most widely used exponential distribution is 
Poisson

• Described by probability mass function:

Probability (k) = e-a x ak / k! 
– where a = Rate of events x Elapsed time

• If interarrival times exponentially distributed 
& use arrival rate from above for rate of 
events, number of arrivals in time interval t
is a Poisson process

Time in Queue

• Time new task must wait for server to 
complete a task assuming server busy

– Assuming it’s a Poisson process

• Average residual service time 
= ½ x Arithmetic mean x (1 + C2)

– When distribution is not random & all values = 
average standard deviation is 0  C is 0 

average residual service time 
= half average service time

– When distribution is random & Poisson C is 1 
average residual service time 

= weighted arithmetic mean

Time in Queue

• All tasks in queue (Lengthqueue) ahead of new task 
must be completed before task can be serviced 

– Each task takes on average Timeserver

– Task at server takes average residual service time to complete 

• Chance server is busy is server utilization
expected time for service is Server utilization 

Average residual service time

• Timequeue = Lengthqueue x Timeserver 

+ Server utilization x Average residual service time

• Substituting definitions for Lengthqueue, Average 
residual service time, & rearranging:

Timequeue = Timeserver 

x Server utilization/(1-Server utilization) 

M/M/1 Queuing Model

• System is in equilibrium
• Times between 2 successive requests arriving, 

“interarrival times” , are exponentially distributed
• Number of sources of requests is unlimited 

“infinite population model”
• Server can start next job immediately
• Single queue, no limit to length of queue, and FIFO 

discipline, so all tasks in line must be completed
• There is one server
• Called M/M/1 (book also derives M/M/m)

1. Exponentially random request arrival (C2 = 1)

2. Exponentially random service time (C2 = 1)

3. 1 server

– M standing for Markov, mathematician who defined and 
analyzed the memoryless processes

Example

40 disk I/Os / sec, requests are exponentially 
distributed, and average service time is 20 ms

Arrival rate/sec = 40, Timeserver = 0.02 sec

1. On average, how utilized is the disk?

Server utilization = Arrival rate Timeserver
= 40 x 0.02 = 0.8 = 80%

2. What is the average time spent in the queue?

Timequeue = Timeserver 
x Server utilization/(1-Server utilization) 

= 20 ms x 0.8/(1-0.8) = 20 x 4 = 80 ms

3. What is the average response time for a disk request, 
including the queuing time and disk service time?

Timesystem=Timequeue + Timeserver = 80+20 ms = 100 ms



11

How much better with 2X faster disk?

Average service time is 10 ms

Arrival rate/sec = 40, Timeserver = 0.01 sec

1. On average, how utilized is the disk?

Server utilization = Arrival rate Timeserver
= 40 x 0.01 = 0.4 = 40%

2. What is the average time spent in the queue?

Timequeue = Timeserver 
x Server utilization/(1-Server utilization) 

= 10 ms x 0.4/(1-0.4) = 10 x 2/3 = 6.7 ms

3. What is the average response time for a disk request, 
including the queuing time and disk service time?

Timesystem=Timequeue + Timeserver=6.7+10 ms = 16.7 ms

6X faster response time with 2X faster disk!

Value of Queuing Theory in practice

• Learn quickly do not try to utilize resource 100% 
but how far should back off?

• Allows designers to decide impact of faster 
hardware on utilization and hence on response 
time

• Works surprisingly well

Cross cutting Issues: 
Buses point-to-point links and switches

?2503 GHz0.5 m2bPCI Express
?53333 / 66 MHz0.5 m32/64PCI

16,256375--10 m1bSerial Attach SCSI
1532080 MHz (DDR)12 m16b(Parallel) SCSI

?3003 GHz2 m2bSerial ATA
2133133 MHz0.5 m8b(Parallel) ATA

MaxMB/sClock ratelengthwidthStandard

• No. bits and BW is per direction 2X for both 
directions (not shown). 

• Since use fewer wires, commonly increase BW  via 
versions with 2X-12X the number of wires and BW

Storage Example: Internet Archive

• Goal of making a historical record of the Internet 
– Internet Archive began in 1996

– Wayback Machine interface perform time travel to see what 
the website at a URL looked like in the past

• It contains over a petabyte (1015 bytes), and is 
growing by 20 terabytes (1012 bytes) of new data 
per month

• In addition to storing the historical record, the 
same hardware is used to crawl the Web every 
few months to get snapshots of the Internet.

Internet Archive Cluster

• 1U storage node PetaBox GB2000 from 
Capricorn Technologies 

• Contains 4 500 GB Parallel ATA (PATA) 
disk drives, 512 MB of DDR266 DRAM, 
one 10/100/1000 Ethernet interface, and a 
1 GHz C3 Processor from VIA (80x86). 

• Node dissipates 80 watts 

• 40 GB2000s in a standard VME rack, 
80 TB of raw storage capacity 

• 40 nodes are connected with a 48-port 
10/100 or 10/100/1000 Ethernet switch 

• Rack dissipates about 3 KW 

• 1 PetaByte = 12 racks

Estimated Cost

• Via processor, 512 MB of DDR266 DRAM, ATA 
disk controller, power supply, fans, and 
enclosure = $500

• 7200 RPM Parallel ATA drives holds 500 GB = 
$375. 

• 48-port 10/100/1000 Ethernet switch and all 
cables for a rack = $3000.

• Cost $84,500 for a 80-TB rack. 

• 160 Disks are 60% of the cost

• Other costs: power, space, ……
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Estimated Performance

• 7200 RPM Parallel ATA drives holds 500 GB, has an 
average time seek of 8.5 ms, transfers at 50 MB/second 
from the disk. The PATA link speed is 133 MB/second.

– performance of the VIA processor is 1000 MIPS.

– operating system uses 50,000 CPU instructions for a disk I/O.

– network protocol stacks uses 100,000 CPU instructions to transmit a 
data block between the cluster and the external world

• ATA controller overhead is  0.1 ms to perform a disk I/O.

• Average I/O size is 16 KB for accesses to the historical 
record via the Wayback interface, and 50 KB when 
collecting a new snapshot

• Disks are limit: 75 I/Os/s per disk, 300/s per node, 12000/s 
per rack, or about 200 to 600 Mbytes/sec Bandwidth per 
rack

• Switch needs to support 1.6 to 3.8 Gbits/second over 40 
Gbit/sec links

Estimated Reliability

• CPU/memory/enclosure MTTF is 1,000,000 hours 
(x 40)

• PATA Disk MTTF is 125,000 hours (x 160)

• PATA controller MTTF is 500,000 hours (x 40)

• Ethernet Switch MTTF is 500,000 hours (x 1)

• Power supply MTTF is 200,000 hours (x 40)

• Fan MTTF is 200,000 hours (x 40)

• PATA cable MTTF is 1,000,000 hours (x 40)

• MTTF for the system is 531 hours ( 3 weeks)

• 70% of time failures are disks

• 20% of time failures are fans or power supplies

Summary (1/2)

• Disks: Arial Density now 30%/yr vs. 100%/yr in 2000s

• RAID Techniques: Goal was performance, popularity 
due to reliability of storage

• TPC: price performance as normalizing configuration 
feature

– Auditing to ensure no foul play

– Throughput with restricted response time is normal measure

• Faultµ Latent errors in system µ Failure in service
• Components often fail slowly 
• Real systems: problems in maintenance, operation as well 

as hardware, software

Summary (2/2)

• Little’s Law: Length system = rate x Time system
(Mean number customers = arrival rate x mean service time)

• Appreciation for relationship of latency and utilization:
– Timesystem= Timeserver  +Timequeue

– Timequeue = Timeserver 
x Server utilization/(1-Server utilization)

Proc IOC Device

Queue server

System

The End

• The last lecture

– chapter 6: Storage Systems

• Exam
– Mon Jan 14th 2008, 14-17h

– chap 1-6, app A, C & F

– remark: sample exams on website based on previous edition of book

• Assignment
– deadline 2b: Dec 3rd

– deadline 3: Dec 24th (intro by Eyal on Wed Dec 5th, 13.45h)


