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Lecture 6
Simultaneous Multithreading

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Outline

• Thread Level Parallelism (TLP)
• Multithreading
• Simultaneous Multithreading (SMT)
• Power 4 vs. Power 5
• Head to Head: VLIW vs. Superscalar vs. SMT
• Commentary
• Conclusion

How to Exceed ILP Limits?

• These are not laws of physics; just practical 
limits for today, and perhaps overcome via 
research

• Compiler and ISA advances could change 
results

• WAR and WAW hazards through memory: 
eliminated WAW and WAR hazards through 
register renaming, but not in memory usage

– Can get conflicts via allocation of stack frames 
as a called procedure reuses the memory 
addresses of a previous frame on the stack

HW v. SW to increase ILP

• Memory disambiguation: HW best
• Speculation: 

– HW best when dynamic branch prediction 
better than compile time prediction

– Exceptions easier for HW
– HW doesn’t need bookkeeping code or 

compensation code
– Very complicated to get right

• Scheduling: SW can look ahead to 
schedule better

• Compiler independence: does not require 
new compiler, recompilation to run well

Performance beyond single thread ILP

• There can be much higher natural 
parallelism in some applications 
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data 
Level Parallelism

• Thread: process with own instructions and 
data

– thread may be a process part of a parallel program of 
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC, 
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical 
operations on data, and lots of data

Thread Level Parallelism (TLP)

• ILP exploits implicit parallel operations 
within a loop or straight-line code segment

• TLP explicitly represented by the use of 
multiple threads of execution that are 
inherently parallel

• Goal: Use multiple instruction streams to 
improve 
1. Throughput of computers that run many 

programs 
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to exploit 
than ILP
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New Approach: Multithreaded Execution

• Multithreading: multiple threads to share the 
functional units of 1 processor via 
overlapping

– processor must duplicate independent state of each thread 
e.g., a separate copy of register file, a separate PC, and for 
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms, 
which already support multiple processes

– HW for fast thread switch; much faster than full process 
switch ≈ 100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another 

thread can be executed (coarse grain)

Fine-Grained Multithreading

• Switches between threads on each instruction, 
causing the execution of multiples threads to be 
interleaved 

• Usually done in a round-robin fashion, skipping 
any stalled threads

• CPU must be able to switch threads every clock
• Advantage is it can hide both short and long 

stalls, since instructions from other threads 
executed when one thread stalls 

• Disadvantage is it slows down execution of 
individual threads, since a thread ready to 
execute without stalls will be delayed by 
instructions from other threads

• Used on Sun’s Niagara (will see later)

Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2 
cache misses

• Advantages 
– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other 

threads issued only when the thread encounters a costly stall
• Disadvantage is hard to overcome throughput losses 

from shorter stalls, due to pipeline start-up costs
– Since CPU issues instructions from 1 thread, when a stall 

occurs, the pipeline must be emptied or frozen 
– New thread must fill pipeline before instructions can complete 

• Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of high 
cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

For most apps, most execution units lie idle

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism”, 
ISCA 1995.

For an 8-way 
superscalar

Do both ILP and TLP?

• TLP and ILP exploit two different kinds of 
parallel structure in a program 

• Could a processor oriented at ILP to 
exploit TLP?

– functional units are often idle in data path designed for 
ILP because of either stalls or dependences in the code 

• Could the TLP be used as a source of 
independent instructions that might keep 
the processor busy during stalls? 

• Could TLP be used to employ the 
functional units that would otherwise lie 
idle when insufficient ILP exists?

Simultaneous Multi-threading ...
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M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
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Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that 
dynamically scheduled processor already has 
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the 
register sets of independent threads 

– Register renaming provides unique register identifiers, so 
instructions from multiple threads can be mixed in datapath 
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of 
order, and get better utilization of the HW 

• Just adding a per thread renaming table and 
keeping separate PCs

– Independent commitment can be supported by logically 
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”
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Design Challenges in SMT

• Since SMT makes sense only with fine-grained 
implementation, impact of fine-grained scheduling 
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor 
single-thread performance? 

– Unfortunately, with a preferred thread, the processor is likely to 
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in 

– Instruction issue - more candidate instructions need to be 
considered

– Instruction completion - choosing which instructions to commit 
may be challenging

• Ensuring that cache and TLB conflicts generated 
by SMT do not degrade performance

Power 4

Single-threaded predecessor to Power 5.  
8 execution units in out-of-order engine, 

each may issue an instruction each cycle.

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)

Power 5

Power 4
Power 5 data flow ...

Why only 2 threads? With 4, one of the shared 
resources (physical registers, cache, memory 
bandwidth) would be prone to bottleneck 
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Power 5 thread performance ...

Relative priority 
of each thread 
controllable in 
hardware.

For balanced 
operation, both 
threads run 
slower than if 
they “owned” the 
machine.

Changes in  Power 5 to support SMT

• Increased associativity of L1 instruction cache 
and the instruction address translation buffers 

• Added per thread load and store queues 
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3 

caches
• Added separate instruction prefetch and 

buffering per thread
• Increased the number of virtual registers from 

152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the 

Power4 core because of the addition of SMT 
support

Initial Performance of SMT

• Pentium 4 Extreme SMT yields 1.01 speedup for 
SPECint_rate benchmark and 1.07 for SPECfp_rate

– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC 
benchmarks paired with every other (262 runs) 
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for 
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup 
between 0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains
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Normalized Performance: Efficiency
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No Silver Bullet for ILP 

• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance 

followed by the Pentium 4, Itanium 2, and Power5
• Itanium 2 and Power5, which perform similarly on 

SPECFP, clearly dominate the Athlon and 
Pentium 4 on SPECFP

• Itanium 2 is the most inefficient processor both 
for Fl. Pt. and integer code for all but one 
efficiency measure (SPECFP/Watt)

• Athlon and Pentium 4 both make good use of 
transistors and area in terms of efficiency, 

• IBM Power5 is the most effective user of energy 
on SPECFP and essentially tied on SPECINT

Limits to ILP

• Doubling issue rates above today’s 3-6 
instructions per clock, say to 6 to 12 instructions, 
probably requires a processor to 

– Issue 3 or 4 data memory accesses per cycle, 
– Resolve 2 or 3 branches per cycle, 
– Rename and access more than 20 registers per cycle, and 
– Fetch 12 to 24 instructions per cycle. 

• Complexities of implementing these capabilities 
likely means sacrifices in maximum clock rate 

– E.g,  widest issue processor is the Itanium 2, but it also has 
the slowest clock rate, despite the fact that it consumes the 
most power!

Limits to ILP

• Most techniques for increasing performance increase 
power consumption 

• The key question is whether a technique is energy 
efficient: does it increase power consumption faster 
than it increases performance? 

• Multiple issue processors techniques all are energy 
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that

grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained 

performance
• Number of transistors switching = f(peak issue rate), and 

performance = f( sustained rate), 
growing gap between peak and sustained performance 
⇒ increasing energy per unit of performance

Commentary

• Itanium architecture does not represent a significant 
breakthrough in scaling ILP or in avoiding the problems 
of complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly 
focusing on TLP implemented with single-chip 
multiprocessors 

• In 2000, IBM announced the 1st commercial single-chip, 
general-purpose multiprocessor, the Power4, which 
contains 2 Power3 processors and an integrated L2 
cache 

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus on 
single-chip multiprocessors rather than more aggressive uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP, 

may differ from desktop, where single-thread performance may continue 
to be a primary requirement

And in conclusion …

• Limits to ILP (power efficiency, compilers, 
dependencies …) seem to limit to 3 to 6 issue for 
practical options

• Explicitly parallel (Data level parallelism or Thread 
level parallelism) is next step to performance

• Coarse grain vs. Fine grained multithreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained 
multithreading based on OOO superscalar 
microarchitecture

– Instead of replicating registers, reuse rename registers

• Itanium/EPIC/VLIW is not a breakthrough in ILP
• Balance of ILP and TLP unclear in marketplace



6

Reading

• This lecture: 
– chapter 3: Limits on ILP; Multithreading

• Next lecture: 
– appendix F (on CD): Vector processors
– start with chapter 4: Multiprocessors


