
1

Lecture 6
Simultaneous Multithreading

Slides were used during lectures by
David Patterson, Berkeley, spring 2006

Outline

• Thread Level Parallelism (TLP)
• Multithreading
• Simultaneous Multithreading (SMT)
• Power 4 vs. Power 5
• Head to Head: VLIW vs. Superscalar vs. SMT
• Commentary
• Conclusion

How to Exceed ILP Limits?

• These are not laws of physics; just practical
limits for today, and perhaps overcome via
research

• Compiler and ISA advances could change
results

• WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

– Can get conflicts via allocation of stack frames
as a called procedure reuses the memory
addresses of a previous frame on the stack

HW v. SW to increase ILP

• Memory disambiguation: HW best
• Speculation:

– HW best when dynamic branch prediction
better than compile time prediction

– Exceptions easier for HW
– HW doesn’t need bookkeeping code or

compensation code
– Very complicated to get right

• Scheduling: SW can look ahead to
schedule better

• Compiler independence: does not require
new compiler, recompilation to run well

Performance beyond single thread ILP

• There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data
Level Parallelism

• Thread: process with own instructions and
data

– thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical
operations on data, and lots of data

Thread Level Parallelism (TLP)

• ILP exploits implicit parallel operations
within a loop or straight-line code segment

• TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

• Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many

programs
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to exploit
than ILP

2

New Approach: Multithreaded Execution

• Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

– processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch ≈ 100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another

thread can be executed (coarse grain)

Fine-Grained Multithreading

• Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

• Usually done in a round-robin fashion, skipping
any stalled threads

• CPU must be able to switch threads every clock
• Advantage is it can hide both short and long

stalls, since instructions from other threads
executed when one thread stalls

• Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

• Used on Sun’s Niagara (will see later)

Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2
cache misses

• Advantages
– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly stall
• Disadvantage is hard to overcome throughput losses

from shorter stalls, due to pipeline start-up costs
– Since CPU issues instructions from 1 thread, when a stall

occurs, the pipeline must be emptied or frozen
– New thread must fill pipeline before instructions can complete

• Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high
cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

For most apps, most execution units lie idle

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,
ISCA 1995.

For an 8-way
superscalar

Do both ILP and TLP?

• TLP and ILP exploit two different kinds of
parallel structure in a program

• Could a processor oriented at ILP to
exploit TLP?

– functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

3

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

• Just adding a per thread renaming table and
keeping separate PCs

– Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”

Multithreaded Categories

Tim
e (

pr
oc

es
so

r c
yc

le)

Superscalar Fine-Grained Coarse-Grained Multiprocessing Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

Design Challenges in SMT

• Since SMT makes sense only with fine-grained
implementation, impact of fine-grained scheduling
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor
single-thread performance?

– Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

Power 4

Single-threaded predecessor to Power 5.
8 execution units in out-of-order engine,

each may issue an instruction each cycle.

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

Power 5

Power 4
Power 5 data flow ...

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

4

Power 5 thread performance ...

Relative priority
of each thread
controllable in
hardware.

For balanced
operation, both
threads run
slower than if
they “owned” the
machine.

Changes in Power 5 to support SMT

• Increased associativity of L1 instruction cache
and the instruction address translation buffers

• Added per thread load and store queues
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3

caches
• Added separate instruction prefetch and

buffering per thread
• Increased the number of virtual registers from

152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the

Power4 core because of the addition of SMT
support

Initial Performance of SMT

• Pentium 4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate

– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC
benchmarks paired with every other (262 runs)
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains

130
W

592 M,
423
mm2

1.69 int.
2 FP

6/5/11Statically
scheduled
VLIW-style

Intel
Itanium 2

80W
(est.)

200 M,
300
mm2

(est.)

1.96 int.
2 FP

8/4/8Speculative
dynamically

scheduled; SMT;
2 CPU cores/chip

IBM
Power5
(1 CPU
only)

104
W

114 M,
115
mm2

2.86 int.
3 FP

3/3/4Speculative
dynamically
scheduled

AMD
Athlon 64

FX-57

115
W

125 M,
122
mm2

3.87 int.
1 FP

3/3/4Speculative
dynamically

scheduled; deeply
pipelined; SMT

Intel
Pentium

4
Extreme

PowerTransis-
tors,

Die size

Clock
Rate
(GHz)

Func-
tional
Units

Fetch /
Issue /

Execute

Micro architectureProcessor

Head to Head ILP competition

Performance on SPECint2000

0

5 0 0

10 0 0

15 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

gzip vpr gcc mcf craf t y parser eon perlbmk gap vort ex bzip2 t wolf

SP
EC

 R
at

io

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

Performance on SPECfp2000

0

2000

4000

6000

8000

10000

12000

14000

w upw ise sw im mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

SP
EC

 R
at

io

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

5

Normalized Performance: Efficiency

0

5

10

15

20

25

30

35

SPECInt / M
Transistors

SPECFP / M
Transistors

SPECInt /
mm^2

SPECFP /
mm^2

SPECInt /
Watt

SPECFP /
Watt

Itanium 2 Pentium 4 AMD Athlon 64 POWER 5

1342FP/Watt

2134Int/Watt

3124FP/area

3124Int/area

3124FP/Trans

3124Int/Trans

P
o
w
e
r
5

A
t
h
l
o
n

P
e
n
t
I
u
m
4

I
t
a
n
i
u
m
2Rank

No Silver Bullet for ILP

• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance

followed by the Pentium 4, Itanium 2, and Power5
• Itanium 2 and Power5, which perform similarly on

SPECFP, clearly dominate the Athlon and
Pentium 4 on SPECFP

• Itanium 2 is the most inefficient processor both
for Fl. Pt. and integer code for all but one
efficiency measure (SPECFP/Watt)

• Athlon and Pentium 4 both make good use of
transistors and area in terms of efficiency,

• IBM Power5 is the most effective user of energy
on SPECFP and essentially tied on SPECINT

Limits to ILP

• Doubling issue rates above today’s 3-6
instructions per clock, say to 6 to 12 instructions,
probably requires a processor to

– Issue 3 or 4 data memory accesses per cycle,
– Resolve 2 or 3 branches per cycle,
– Rename and access more than 20 registers per cycle, and
– Fetch 12 to 24 instructions per cycle.

• Complexities of implementing these capabilities
likely means sacrifices in maximum clock rate

– E.g, widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes the
most power!

Limits to ILP

• Most techniques for increasing performance increase
power consumption

• The key question is whether a technique is energy
efficient: does it increase power consumption faster
than it increases performance?

• Multiple issue processors techniques all are energy
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that

grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained

performance
• Number of transistors switching = f(peak issue rate), and

performance = f(sustained rate),
growing gap between peak and sustained performance
⇒ increasing energy per unit of performance

Commentary

• Itanium architecture does not represent a significant
breakthrough in scaling ILP or in avoiding the problems
of complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly
focusing on TLP implemented with single-chip
multiprocessors

• In 2000, IBM announced the 1st commercial single-chip,
general-purpose multiprocessor, the Power4, which
contains 2 Power3 processors and an integrated L2
cache

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus on
single-chip multiprocessors rather than more aggressive uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP,

may differ from desktop, where single-thread performance may continue
to be a primary requirement

And in conclusion …

• Limits to ILP (power efficiency, compilers,
dependencies …) seem to limit to 3 to 6 issue for
practical options

• Explicitly parallel (Data level parallelism or Thread
level parallelism) is next step to performance

• Coarse grain vs. Fine grained multithreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained
multithreading based on OOO superscalar
microarchitecture

– Instead of replicating registers, reuse rename registers

• Itanium/EPIC/VLIW is not a breakthrough in ILP
• Balance of ILP and TLP unclear in marketplace

6

Reading

• This lecture:
– chapter 3: Limits on ILP; Multithreading

• Next lecture:
– appendix F (on CD): Vector processors
– start with chapter 4: Multiprocessors

