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Lecture 8
Snooping Cache Based 

Multiprocessors

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Review
• 1 instruction operates on vectors of data
• Vector loads get data from memory into big register files, 

operate, and then vector store
• E.g., Indexed load, store for sparse matrix
• Easy to add vector to commodity instruction set

– E.g., Morph SIMD into vector

• Vector is very efficient architecture for vectorizable codes, 
including multimedia and many scientific codes

• “End” of uniprocessors speedup ⇒ Multiprocessors
• Parallelism challenges: % parallalizable, long latency to 

remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for larger MP

• Message Passing vs. Shared Address
– Uniform access time vs. Non-uniform access time

Outline

• Review
• Coherence
• Write Consistency
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Conclusion

Challenges of Parallel Processing

1. Application parallelism ⇒ primarily via 
new algorithms that have better parallel 
performance

2. Long remote latency impact ⇒ both by 
architect and by the programmer

• For example, reduce frequency of 
remote accesses either by 
– Caching shared data (HW) 
– Restructuring the data layout to make more 

accesses local (SW)
• Today’s lecture on HW  to help latency 

via caches

Symmetric Shared-Memory Architectures

• From multiple boards on a shared bus to 
multiple processors inside a single chip

• Caches both
– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data 
⇒ reduces latency to shared data, 
memory bandwidth for shared data,
and interconnect bandwidth
⇒ cache coherence problem

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on 

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!
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Example

• Intuition not guaranteed by coherence
• Expect memory to respect order between accesses 

to different locations issued by a given process
– to preserve orders among accesses to same location by 

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and  flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1 Pn
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Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will be 

returned by a read
• Coherence defines behavior to same location, 

Consistency defines behavior to other locations

• Reading an address 
should return the last 
value written to that 
address
– Easy in uniprocessors, 

except for I/O

Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to 

location X that follows a write by P to X, with no writes of 
X by another processor occurring between the write and 
the read by P, always returns the value written by P 

2. Coherent view of memory: Read by a processor to 
location X that follows a write by another processor to X 
returns the written value if the read and write are 
sufficiently separated in time and no other writes to X 
occur between the two accesses 

3. Write serialization: 2 writes to same location by any 2 
processors are seen in the same order by all processors 
– If not, a processor could keep value 1 since saw as last write
– For example, if the values 1 and then 2 are written to a 

location, processors can never read the value of the location 
as 2 and then later read it as 1

Write Consistency

For now assume
1. A write does not complete (and allow the next 

write to occur) until all processors have seen the 
effect of that write

2. The processor does not change the order of any 
write with respect to any other memory access

⇒ if a processor writes location A followed by 
location B, any processor that sees the new 
value of B must also see the new value of A 

These restrictions allow the processor to reorder 
reads, but forces the processor to finish writes in 
program order

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have 
copies of the same data in several caches

– Unlike I/O, where its rare

• Rather than trying to avoid sharing in SW, 
SMPs use a HW protocol to maintain coherent caches

– Migration and Replication key to performance of shared data

• Migration – data can be moved to a local cache and 
used there in a transparent fashion 

– Reduces both latency to access shared data that is allocated 
remotely and bandwidth demand on the shared memory

• Replication – for reading shared data simultaneously, 
since caches make a copy of data in local cache

– Reduces both latency of access and contention for read shared data
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Two Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of 
physical memory is kept in just one location, 
the directory

2. Snooping — Every cache with a copy of data 
also has a copy of sharing status of block, but 
no centralized state is kept
• All caches are accessible via some broadcast medium 

(a bus or switch) 
• All cache controllers monitor or snoop on the medium 

to determine whether or not they have a copy of a 
block that is requested on a bus or switch access

Snooping Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on 
the shared medium (bus or switch)

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

• Either get exclusive access before write via 
write invalidate or update all copies on write

State
Address
Data

I/O devicesMem
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$

Bus snoop

$

Pn

Cache-memory
transaction

Example: Write-through Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium BW
⇒ all recent MPUs use write invalidate
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Architectural Building Blocks
• Cache block state transition diagram

– FSM specifying how disposition of block changes
» invalid, valid, exclusive

• Broadcast Medium Transactions (e.g., bus)
– Fundamental system design abstraction
– Logically single set of wires connect several devices
– Protocol: arbitration, command/addr, data
⇒ Every device observes every transaction

• Broadcast medium enforces serialization of read or 
write accesses ⇒ Write serialization

– 1st processor to get medium invalidates others copies
– Implies cannot complete write until it obtains bus
– All coherence schemes require serializing accesses to same 

cache block
• Also need to find up-to-date copy of cache block

Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache 

block, it provides it in response to a read 
request and aborts the memory access

– Complexity from retrieving cache block from cache, which 
can take longer than retrieving it from memory 

• Write-back needs lower memory bandwidth 
⇒ Support larger numbers of faster processors 
⇒ Most multiprocessors use write-back

Cache Resources for WB Snooping

• Normal cache tags can be used  for snooping
• Valid bit per block makes invalidation easy
• Read misses easy since rely on snooping
• Writes ⇒ Need to know whether any other copies 

of the block are cached
– No other copies ⇒ No need to place write on bus for WB
– Other copies ⇒ Need to place invalidate on bus
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Cache Resources for WB Snooping

• To track whether a cache block is shared, add 
extra state bit associated with each cache block, 
like valid bit and dirty bit

– Write to Shared block ⇒ Need to place invalidate on 
bus and mark cache block as private (if an option)

– No further invalidations will be sent for that block
– This processor called owner of cache block
– Owner then changes state from shared to unshared (or 

exclusive)

Cache behavior in response to bus

• Every bus transaction must check the cache-
address tags

– could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags
– Since L2 less heavily used than L1
⇒ Every entry in L1 cache must be present in the L2 cache, called

the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate for the L1 

cache to update the state and possibly retrieve the data, which 
usually requires a stall of the processor

Example Protocol

• Snooping coherence protocol is usually 
implemented by incorporating a finite-state 
controller in each node

• Logically, think of a separate controller 
associated with each cache block

– That is, snooping operations or cache requests for different 
blocks can proceed independently

• In implementations, a single controller allows 
multiple operations to distinct blocks to proceed 
in interleaved fashion 

– That is, one operation may be initiated before another is 
completed, even through only one cache access or one bus 
access is allowed at time 

Write-through Invalidate Protocol

• 2 states per block in each cache
– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with 

blocks that are in the cache 
– other blocks can be seen as being in 

invalid (not-present) state in that cache
• Writes invalidate all other cache 

copies
– can have multiple simultaneous readers 

of block, but write invalidates them

I
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BusWr / --

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State  Tag   Data

I/O devicesMem
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Bus

State  Tag   Data

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus Write

Is 2-state Protocol Coherent?
• Processor only observes state of memory system by issuing 

memory operations
• Assume bus transactions and memory operations are atomic 

and a one-level cache
– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing next
– with one-level cache, assume invalidations applied during bus transaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writes through reads, so determines 

whether write serialization is satisfied
– But read hits may happen independently and do not appear on bus or 

enter directly in bus order

• Let’s understand other ordering issues

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though 

shared-medium (bus) will order read misses too
– any order among reads between writes is fine, 

as long as in program order
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BREAK

Example Write Back Snoopy Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block in 

response to the read request and aborts the memory access

• Each memory block is in one state:
– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses

CPU read hit
Write-Back State Machine - CPU

• State machine
for CPU requests
for each 
cache block

• Non-resident 
blocks invalid

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU read

CPU write

Place read 
miss on bus

Place write 
miss on bus

CPU write
Place write miss/
invalid on bus

CPU write miss (?)
Write-back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write-Back State Machine - Bus request

• State machine
for bus requests
for each 
cache block

Invalid Shared
(read only)

Exclusive
(read/write)

Write-back block; 
abort memory access

Write miss
for this block

Read miss 
for this block

Write miss
for this block

Write-back block; 
abort memory access

Block-replacement

• State machine
for CPU requests
for each 
cache block

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU read

CPU write

CPU read hit

Place read miss
on bus

Place write 
miss on bus CPU read miss

Write-back cache block
Place read miss on bus

CPU write
Place write miss on Bus

CPU read miss
Place read miss 
on bus

CPU write miss
Write-back cache block
Place write miss on bus

CPU read hit
CPU write hit

Place read miss
on bus

Write-back State Machine-III 
• State machine

for CPU requests
for each 
cache block and
for bus requests
for each 
cache block

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU read

CPU write

CPU read hit

Place write 
miss on bus
CPU read miss
Write-back block
Place read miss
on bus CPU write

Place write miss on Bus

CPU read miss
Place read miss 
on bus

CPU write miss
Write-back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write-back
block; abort
memory access

Write miss
for this block

Read miss 
for this block

Write Back
Block; abort
memory access
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 !=  A2
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Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first, 
and then write the same cache block!

– Two step process:
» Arbitrate for bus 
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: 

can have multiple outstanding transactions for a block
» Multiple misses can interleave, 

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

Implementing Snooping Caches

• Multiple processors must be on bus, access to both 
addresses and data

• Add a few new commands to perform coherency, 
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags, 
could interfere with CPU just to check: 

– solution 1: duplicate set of tags for L1 caches just to allow checks in 
parallel with CPU

– solution 2: L2 cache already duplicate, 
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1

Limitations in Symmetric Shared-Memory 
Multiprocessors and Snooping Protocols

• Single memory accommodate all CPUs
⇒ Multiple memory banks

• Bus-based multiprocessor, bus must 
support both coherence traffic & normal 
memory traffic

⇒ Multiple buses or interconnection 
networks (cross bar or small point-to-point)

• Opteron
– Memory connected directly to each dual-core chip
– Point-to-point connections for up to 4 chips
– Remote memory and local memory latency are similar, 

allowing OS Opteron as UMA computer

Outline

• Review
• Coherence
• Write Consistency
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Conclusion

Performance of Symmetric Shared-Memory 
Multiprocessors

Cache performance is combination of 
1. Uniprocessor cache miss traffic
2. Traffic caused by communication 

– Results in invalidations and subsequent cache misses

4th C: coherence miss
– Joins Compulsory, Capacity, Conflict

Coherency Misses

1. True sharing misses arise from the 
communication of data through the cache 
coherence mechanism
• Invalidates due to 1st write to shared block
• Reads by another CPU of modified block in different cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is 
invalidated because some word in the block, 
other than the one being read, is written into
• Invalidation does not cause a new value to be 

communicated, but only causes an extra cache miss
• Block is shared, but no word in block is actually shared

⇒ miss would not occur if block size were 1 word
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Example: True v. False Sharing v. Hit?

Read x25

Write x24

Write x13

Read x22

Write x11
True, False, Hit? Why?P2P1Time

Assume x1 and x2 in same cache block. 
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

MP Performance 4 Processor Commercial Workload: 
OLTP, Decision Support (Database), Search Engine
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MP Performance 2MB Cache Commercial Workload: 
OLTP, Decision Support (Database), Search Engine
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A Cache Coherent System Must:

• Provide set of states, state transition diagram, 
and actions

• Manage coherence protocol
– (0)  Determine when to invoke coherence protocol
– (a)  Find info about state of block in other caches to 

determine action
» whether need to communicate with other cached copies

– (b)  Locate  the other copies
– (c)  Communicate with those copies  (invalidate/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache
– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus
– faulting processor sends out a “search” 
– others respond to the search probe and take necessary 

action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t 
scale with p

– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least  p network 

transactions

• Scalable coherence:
– can have same cache states and state transition diagram
– different mechanisms to manage protocol

And in Conclusion …

• Caches contain all information on state of 
cached memory blocks 

• Snooping cache over shared medium for smaller 
MP by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values 
returned by a read), Consistency (when a written 
value will be returned by a read)

• MPs are highly effective for multiprogrammed
workloads

• MPs proved effective for intensive commercial 
workloads, such as OLTP (assuming enough I/O 
to be CPU-limited), DSS applications (where 
query optimization is critical), and large-scale, 
web searching applications
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Reading and Schedule

• This lecture: 
– 4.2 Symmetric Shared-Memory Architectures
– 4.3 Performance of Symmetric Shared-Memory          

Multiprocessors

• This afternoon: feedback on assignment 2a

• Next week, Nov 14th:

– 11.15-13.00h: directory-based MP & rest of 
chapter 4

– 13.45-15.30h: chapter 5 memory hierarchy design


