
Machine Learning,
Data Mining, and

Knowledge Discovery:
An Introduction

Lesson Outline

!!Introduction: Data Flood

!!Data Mining Application Examples

!!Data Mining & Knowledge Discovery

!!Data Mining Tasks

Trends leading to Data Flood

!!More data is generated:

!! Bank, telecom, other
business transactions ...

!! Scientific data: astronomy,
biology, etc

!! Web, text, and e-commerce

Big Data Examples

!!Europe's Very Long Baseline Interferometry

(VLBI) has 16 telescopes, each of which produces
1 Gigabit/second of astronomical data over a

25-day observation session

!! storage and analysis a big problem

!!AT&T handles billions of calls per day

!! so much data, it cannot be all stored -- analysis has to
be done “on the fly”, on streaming data

Largest databases in 2003

!!Commercial databases:

!!Winter Corp. 2003 Survey: France Telecom has largest
decision-support DB, ~30TB; AT&T ~ 26 TB

!!Web

!!Alexa internet archive: 7 years of data, 500 TB

!!Google searches 4+ Billion pages, many hundreds TB

!! IBM WebFountain, 160 TB (2003)

!! Internet Archive (www.archive.org),~ 300 TB

5 million terabytes created in 2002

!!UC Berkeley 2003 estimate: 5 exabytes (5 million

terabytes) of new data was created in 2002.

www.sims.berkeley.edu/research/projects/how-much-info-2003/

!!US produces ~40% of new stored data worldwide

Data Growth Rate

!!Twice as much information was created in 2002

as in 1999 (~30% growth rate)

!!Other growth rate estimates even higher

!!Very little data will ever be looked at by a human

!!Knowledge Discovery is NEEDED to make sense
and use of data.

Lesson Outline

!!Introduction: Data Flood

!!Data Mining Application Examples

!!Data Mining & Knowledge Discovery

!!Data Mining Tasks

Machine Learning / Data Mining
Application areas

!!Science

!! astronomy, bioinformatics, drug discovery, …

!!Business

!! advertising, CRM (Customer Relationship management),
investments, manufacturing, sports/entertainment, telecom, e-
Commerce, targeted marketing, health care, …

!!Web:

!! search engines, bots, …

!!Government

!! law enforcement, profiling tax cheaters, anti-terror(?)

Data Mining for Customer Modeling

!!Customer Tasks:

!!attrition prediction

!! targeted marketing:

!! cross-sell, customer acquisition

!! credit-risk

!! fraud detection

!!Industries

!!banking, telecom, retail sales, …

Customer Attrition: Case Study

!!Situation: Attrition rate at for mobile phone customers
is around 25-30% a year!

Task:

!!Given customer information for the past N months,

predict who is likely to attrite next month.

!!Also, estimate customer value and what is the cost-

effective offer to be made to this customer.

Customer Attrition Results

!!Verizon Wireless built a customer data warehouse

!!Identified potential attriters

!!Developed multiple, regional models

!!Targeted customers with high propensity to
accept the offer

!!Reduced attrition rate from over 2%/month to
under 1.5%/month (huge impact, with >30 M
subscribers)

(Reported in 2003)

Assessing Credit Risk: Case Study

!!Situation: Person applies for a loan

!!Task: Should a bank approve the loan?

!!Note: People who have the best credit don’t need
the loans, and people with worst credit are not

likely to repay. Bank’s best customers are in the

middle

Credit Risk - Results

!!Banks develop credit models using variety of

machine learning methods.

!!Mortgage and credit card proliferation are the

results of being able to successfully predict if a
person is likely to default on a loan

!!Widely deployed in many countries

Successful e-commerce – Case Study

!!A person buys a book (product) at Amazon.com.

!!Task: Recommend other books (products) this
person is likely to buy

!!Amazon does clustering based on books bought:

!! customers who bought “Advances in Knowledge
Discovery and Data Mining”, also bought “Data
Mining: Practical Machine Learning Tools and
Techniques with Java Implementations”

!!Recommendation program is quite successful

Problems Suitable for Data-Mining

!! require knowledge-based decisions

!! have a changing environment

!! have sub-optimal current methods

!! have accessible, sufficient, and relevant data

!! provides high payoff for the right decisions!

Privacy considerations important if personal data
is involved

Lesson Outline

!!Introduction: Data Flood

!!Data Mining Application Examples

!!Data Mining & Knowledge
Discovery

!!Data Mining Tasks

Knowledge Discovery Definition
Knowledge Discovery in Data is the

non-trivial process of identifying

!!valid

!!novel

!!potentially useful

!!and ultimately understandable patterns in data.

from Advances in Knowledge Discovery and Data
Mining, Fayyad, Piatetsky-Shapiro, Smyth, and
Uthurusamy, (Chapter 1), AAAI/MIT Press 1996

Related Fields

Statistics

Machine
Learning

Databases

Visualization

Data Mining and

Knowledge Discovery

Statistics, Machine Learning and
Data Mining

!! Statistics:

!! more theory-based

!! more focused on testing hypotheses

!! Machine learning

!! more heuristic

!! focused on improving performance of a learning agent

!! also looks at real-time learning and robotics – areas not part of data
mining

!! Data Mining and Knowledge Discovery

!! integrates theory and heuristics

!! focus on the entire process of knowledge discovery, including data
cleaning, learning, and integration and visualization of results

!! Distinctions are fuzzy

witten&eibe

Knowledge Discovery Process
flow, according to CRISP-DM

Monitoring

see

www.crisp-dm.org

for more

information

Historical Note:
Many Names of Data Mining

!!Data Fishing, Data Dredging: 1960-

!!used by Statistician (as bad name)

!!Data Mining :1990 --

!!used DB, business

!! in 2003 – bad image because of TIA

!!Knowledge Discovery in Databases (1989-)

!!used by AI, Machine Learning Community

!!also Data Archaeology, Information Harvesting,
Information Discovery, Knowledge Extraction, ...

Currently: Data Mining and Knowledge Discovery

are used interchangeably

Lesson Outline

!!Introduction: Data Flood

!!Data Mining Application Examples

!!Data Mining & Knowledge Discovery

!!Data Mining Tasks

Major Data Mining Tasks

!! Classification: predicting an item class

!! Clustering: finding clusters in data

!! Associations: e.g. A & B & C occur frequently

!! Visualization: to facilitate human discovery

!! Summarization: describing a group

!! Deviation Detection: finding changes

!! Estimation: predicting a continuous value

!! Link Analysis: finding relationships

!! …

Data Mining Tasks: Classification

Learn a method for predicting the instance class from
pre-labeled (classified) instances

Many approaches:

Statistics,

Decision Trees,

Neural Networks,

...

Data Mining Tasks: Clustering

Find “natural” grouping of
instances given un-labeled data

Summary:

!!Technology trends lead to data flood

!!data mining is needed to make sense of data

!!Data Mining has many applications, successful
and not

!!Knowledge Discovery Process

!!Data Mining Tasks

!! classification, clustering, …

More on Data Mining
and Knowledge Discovery

KDnuggets.com

!!News, Publications

!!Software, Solutions

!!Courses, Meetings, Education

!!Publications, Websites, Datasets

!!Companies, Jobs

!!…

Machine Learning:
finding patterns

Outline

!!Machine learning and
Classification

!!Examples

!!*Learning as Search

!!Bias

!!Weka

Finding patterns

!! Goal: programs that detect patterns and
regularities in the data

!! Strong patterns ! good predictions

!! Problem 1: most patterns are not interesting

!! Problem 2: patterns may be inexact (or
 spurious)

!! Problem 3: data may be garbled or missing

Machine learning techniques

!! Algorithms for acquiring structural descriptions from
examples

!! Structural descriptions represent patterns explicitly

!! Can be used to predict outcome in new situation

!! Can be used to understand and explain how prediction is
derived
(may be even more important)

!! Methods originate from artificial intelligence,
statistics, and research on databases

witten&eibe

Can machines really learn?

!! Definitions of “learning” from dictionary:
To get knowledge of by study,

experience, or being taught

To become aware by information or
from observation

To commit to memory

To be informed of, ascertain; to receive instruction

Difficult to measure

Trivial for computers

Things learn when they change their behavior

in a way that makes them perform better in

the future.

!! Operational definition:

Does a slipper learn?

!! Does learning imply intention?

witten&eibe

Classification

Learn a method for predicting the instance class from
pre-labeled (classified) instances

Many approaches:

Regression,

Decision Trees,

Bayesian,

Neural Networks,

...

Given a set of points from classes

what is the class of new point ?

Classification: Linear Regression

!! Linear Regression

w0 + w1 x + w2 y >= 0

!! Regression computes
wi from data to
minimize squared
error to ‘fit’ the data

!! Not flexible enough

Classification: Decision Trees

X

Y

if X > 5 then blue

else if Y > 3 then blue

else if X > 2 then green

else blue

5 2

3

Classification: Neural Nets

!! Can select more
complex regions

!! Can be more accurate

!! Also can overfit the
data – find patterns in
random noise

Outline

!!Machine learning and Classification

!!Examples

!!*Learning as Search

!!Bias

!!Weka

The weather problem

Outlook Temperature Humidity Windy Play

sunny 85 85 false no

sunny 80 90 true no

overcast 83 86 false yes

rainy 70 96 false yes

rainy 68 80 false yes

rainy 65 70 true no

overcast 64 65 true yes

sunny 72 95 false no

sunny 69 70 false yes

rainy 75 80 false yes

sunny 75 70 true yes

overcast 72 90 true yes

overcast 81 75 false yes

rainy 71 91 true no

Given past data,

Can you come up

with the rules for

Play/Not Play ?

What is the game?

The weather problem

!! Conditions for playing golf

Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild Normal False Yes

… … … … …

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes

witten&eibe

Weather data with mixed attributes

!! Some attributes have numeric values

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 75 80 False Yes

… … … … …

If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes

witten&eibe

The contact lenses data
Age Spectacle prescription Astigmatism Tear production rate Recommended

lenses

Young Myope No Reduced None
Young Myope No Normal Soft
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope No Reduced None
Young Hypermetrope No Normal Soft
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard

Pre-presbyopic Myope No Reduced None
Pre-presbyopic Myope No Normal Soft
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope No Reduced None

Pre-presbyopic Hypermetrope No Normal Soft
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None

Presbyopic Myope No Reduced None

Presbyopic Myope No Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope No Reduced None
Presbyopic Hypermetrope No Normal Soft
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

witten&eibe

A complete and correct rule set

If tear production rate = reduced then recommendation = none

If age = young and astigmatic = no

and tear production rate = normal then recommendation = soft

If age = pre-presbyopic and astigmatic = no

and tear production rate = normal then recommendation = soft

If age = presbyopic and spectacle prescription = myope

and astigmatic = no then recommendation = none

If spectacle prescription = hypermetrope and astigmatic = no

and tear production rate = normal then recommendation = soft

If spectacle prescription = myope and astigmatic = yes

and tear production rate = normal then recommendation = hard

If age young and astigmatic = yes

and tear production rate = normal then recommendation = hard

If age = pre-presbyopic

and spectacle prescription = hypermetrope

and astigmatic = yes then recommendation = none

If age = presbyopic and spectacle prescription = hypermetrope

and astigmatic = yes then recommendation = none

witten&eibe

A decision tree for this problem

witten&eibe

Classifying iris flowers

Sepal length Sepal width Petal length Petal width Type

1 5.1 3.5 1.4 0.2 Iris setosa

2 4.9 3.0 1.4 0.2 Iris setosa

…

51 7.0 3.2 4.7 1.4 Iris versicolor

52 6.4 3.2 4.5 1.5 Iris versicolor

…

101 6.3 3.3 6.0 2.5 Iris virginica

102 5.8 2.7 5.1 1.9 Iris virginica

…

If petal length < 2.45 then Iris setosa

If sepal width < 2.10 then Iris versicolor

...
witten&eibe

!! Example: 209 different computer configurations

!! Linear regression function

Predicting CPU performance

Cycle time

(ns)

Main memory

(Kb)

Cache

(Kb)

Channels Performance

MYCT MMIN MMAX CACH CHMIN CHMAX PRP

1 125 256 6000 256 16 128 198

2 29 8000 32000 32 8 32 269

…

208 480 512 8000 32 0 0 67

209 480 1000 4000 0 0 0 45

PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX

+ 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX

witten&eibe

Soybean classification

Attribute Number of

values

Sample value

Environment Time of occurrence 7 July
Precipitation 3 Above normal

…
Seed Condition 2 Normal

Mold growth 2 Absent
…

Fruit Condition of fruit pods 4 Normal
Fruit spots 5 ?

Leaves Condition 2 Abnormal
Leaf spot size 3 ?

…

Stem Condition 2 Abnormal

Stem lodging 2 Yes

…

Roots Condition 3 Normal

Diagnosis 19 Diaporthe stem canker

witten&eibe

The role of domain knowledge

If leaf condition is normal

and stem condition is abnormal

and stem cankers is below soil line

and canker lesion color is brown

then

diagnosis is rhizoctonia root rot

If leaf malformation is absent

and stem condition is abnormal

and stem cankers is below soil line

and canker lesion color is brown

then

diagnosis is rhizoctonia root rot

But in this domain, “leaf condition is normal” implies
“leaf malformation is absent”!

witten&eibe

Outline

!!Machine learning and Classification

!!Examples

!!*Learning as Search

!!Bias

!!Weka

Learning as search

!! Inductive learning: find a concept description that fits
the data

!! Example: rule sets as description language

!! Enormous, but finite, search space

!! Simple solution:

!! enumerate the concept space

!! eliminate descriptions that do not fit examples

!! surviving descriptions contain target concept

witten&eibe

Enumerating the concept space

!! Search space for weather problem

!! 4 x 4 x 3 x 3 x 2 = 288 possible combinations

!! With 14 rules ! 2.7x1034 possible rule sets

!! Solution: candidate-elimination algorithm

!! Other practical problems:

!! More than one description may survive

!! No description may survive

!! Language is unable to describe target concept

!! or data contains noise

witten&eibe

The version space

!! Space of consistent concept descriptions

!! Completely determined by two sets

!! L: most specific descriptions that cover all positive examples
and no negative ones

!! G: most general descriptions that do not cover any negative
examples and all positive ones

!! Only L and G need be maintained and updated

!! But: still computationally very expensive

!! And: does not solve other practical problems

witten&eibe

*Version space example

!! Given: red or green cows or chicken

 L={} G={<*, *>}

<green,cow>: positive

 L={<green, cow>} G={<*, *>}

<red,chicken>: negative

 L={<green, cow>}
 G={<green,*>,<*,cow>}

<green, chicken>: positive

 L={<green, *>} G={<green, *>}

witten&eibe

*Candidate-elimination algorithm

Initialize L and G

For each example e:

 If e is positive:

 Delete all elements from G that do not cover e

 For each element r in L that does not cover e:

 Replace r by all of its most specific generalizations

 that 1. cover e and

 2. are more specific than some element in G

 Remove elements from L that

 are more general than some other element in L

 If e is negative:

 Delete all elements from L that cover e

 For each element r in G that covers e:

 Replace r by all of its most general specializations

 that 1. do not cover e and

 2. are more general than some element in L

 Remove elements from G that

 are more specific than some other element in G

witten&eibe

Outline

!!Machine learning and Classification

!!Examples

!!*Learning as Search

!!Bias

!!Weka

Bias

!! Important decisions in learning systems:

!! Concept description language

!! Order in which the space is searched

!! Way that overfitting to the particular training data is avoided

!! These form the “bias” of the search:

!! Language bias

!! Search bias

!! Overfitting-avoidance bias

witten&eibe

Language bias

!! Important question:

!! is language universal
or does it restrict what can be learned?

!! Universal language can express arbitrary subsets of
examples

!! If language includes logical or (“disjunction”), it is
universal

!! Example: rule sets

!! Domain knowledge can be used to exclude some
concept descriptions a priori from the search

witten&eibe

Search bias

!! Search heuristic

!! “Greedy” search: performing the best single step

!! “Beam search”: keeping several alternatives

!! …

!! Direction of search

!! General-to-specific

!! E.g. specializing a rule by adding conditions

!! Specific-to-general

!! E.g. generalizing an individual instance into a rule

witten&eibe

Overfitting-avoidance bias

!! Can be seen as a form of search bias

!! Modified evaluation criterion

!! E.g. balancing simplicity and number of errors

!! Modified search strategy

!! E.g. pruning (simplifying a description)

!! Pre-pruning: stops at a simple description before search proceeds

to an overly complex one

!! Post-pruning: generates a complex description first and simplifies

it afterwards

witten&eibe

Weka

Input:

Concepts, Attributes,

Instances

Module Outline

!! Terminology

!! What’s a concept?

!! Classification, association, clustering, numeric prediction

!! What’s in an example?

!! Relations, flat files, recursion

!! What’s in an attribute?

!! Nominal, ordinal, interval, ratio

!! Preparing the input

!! ARFF, attributes, missing values, getting to know data

witten&eibe

Terminology

!! Components of the input:

!! Concepts: kinds of things that can be learned

!! Aim: intelligible and operational concept description

!! Instances: the individual, independent examples of a
concept

!! Note: more complicated forms of input are possible

!! Attributes: measuring aspects of an instance

!! We will focus on nominal and numeric ones

witten&eibe

What’s a concept?

!! Data Mining Tasks (Styles of learning):

!! Classification learning:
predicting a discrete class

!! Association learning:
detecting associations between features

!! Clustering:
grouping similar instances into clusters

!! Numeric prediction:
predicting a numeric quantity

!! Concept: thing to be learned

!! Concept description: output of learning scheme

witten&eibe

Classification learning

!!Example problems: attrition prediction, using DNA data for
diagnosis, weather data to predict play/not play

!!Classification learning is supervised

!! Scheme is being provided with actual outcome

!!Outcome is called the class of the example

!!Success can be measured on fresh data for which class
labels are known (test data)

!! In practice success is often measured subjectively

Association learning

!! Examples: supermarket basket analysis -what items are
bought together (e.g. milk+cereal, chips+salsa)

!! Can be applied if no class is specified and any kind of
structure is considered “interesting”

!! Difference with classification learning:

!! Can predict any attribute’s value, not just the class, and more
than one attribute’s value at a time

!! Hence: far more association rules than classification rules

!! Thus: constraints are necessary

!! Minimum coverage and minimum accuracy

Clustering

!! Examples: customer grouping

!! Finding groups of items that are similar

!! Clustering is unsupervised

!! The class of an example is not known

!! Success often measured subjectively
Sepal length Sepal width Petal length Petal width Type

1 5.1 3.5 1.4 0.2 Iris setosa

2 4.9 3.0 1.4 0.2 Iris setosa

…

51 7.0 3.2 4.7 1.4 Iris versicolor

52 6.4 3.2 4.5 1.5 Iris versicolor

…

101 6.3 3.3 6.0 2.5 Iris virginica

102 5.8 2.7 5.1 1.9 Iris virginica

…

witten&eibe

Numeric prediction

!! Classification learning, but “class” is numeric

!! Learning is supervised

!! Scheme is being provided with target value

!! Measure success on test data

Outlook Temperature Humidity Windy Play-time

Sunny Hot High False 5

Sunny Hot High True 0

Overcast Hot High False 55

Rainy Mild Normal False 40

… … … … …

witten&eibe

What’s in an example?

!! Instance: specific type of example

!! Thing to be classified, associated, or clustered

!! Individual, independent example of target concept

!! Characterized by a predetermined set of attributes

!! Input to learning scheme: set of instances/dataset

!! Represented as a single relation/flat file

!! Rather restricted form of input

!! No relationships between objects

!! Most common form in practical data mining

witten&eibe

A family tree

Peter

M

Peggy

F
=

Steven

M

Graham

M

Pam

F

Grace

F

Ray

M
=

Ian

M

Pippa

F

Brian

M
=

Anna

F

Nikki

F

witten&eibe

Family tree represented as a table

Name Gender Parent1 parent2

Peter Male ? ?

Peggy Female ? ?

Steven Male Peter Peggy

Graham Male Peter Peggy

Pam Female Peter Peggy

Ian Male Grace Ray

Pippa Female Grace Ray

Brian Male Grace Ray

Anna Female Pam Ian

Nikki Female Pam Ian

witten&eibe

The “sister-of” relation

First

person

Second

person

Sister of?

Peter Peggy No

Peter Steven No

… … …

Steven Peter No

Steven Graham No

Steven Pam Yes

… … …

Ian Pippa Yes

… … …

Anna Nikki Yes

… … …

Nikki Anna yes

First

person

Second

person

Sister of?

Steven Pam Yes

Graham Pam Yes

Ian Pippa Yes

Brian Pippa Yes

Anna Nikki Yes

Nikki Anna Yes

All the rest No

Closed-world assumption

witten&eibe

A full representation in one table

First person Second person Sister
of?

Name Gender Parent1 Parent2 Name Gender Parent1 Parent2

Steven Male Peter Peggy Pam Female Peter Peggy Yes

Graham Male Peter Peggy Pam Female Peter Peggy Yes

Ian Male Grace Ray Pippa Female Grace Ray Yes

Brian Male Grace Ray Pippa Female Grace Ray Yes

Anna Female Pam Ian Nikki Female Pam Ian Yes

Nikki Female Pam Ian Anna Female Pam Ian Yes

All the rest No

If second person’s gender = female

and first person’s parent = second person’s parent

then sister-of = yes

witten&eibe

Generating a flat file

!! Process of flattening a file is called “denormalization”

!! Several relations are joined together to make one

!! Possible with any finite set of finite relations

!! Problematic: relationships without pre-specified
number of objects

!! Example: concept of nuclear-family

!! Denormalization may produce spurious regularities
that reflect structure of database

!! Example: “supplier” predicts “supplier address”

witten&eibe

*The “ancestor-of” relation

First person Second person Sister of?

Name Gender Parent1 Parent2 Name Gender Parent1 Parent2

Peter Male ? ? Steven Male Peter Peggy Yes

Peter Male ? ? Pam Female Peter Peggy Yes

Peter Male ? ? Anna Female Pam Ian Yes

Peter Male ? ? Nikki Female Pam Ian Yes

Pam Female Peter Peggy Nikki Female Pam Ian Yes

Grace Female ? ? Ian Male Grace Ray Yes

Grace Female ? ? Nikki Female Pam Ian Yes

Other positive examples here Yes

All the rest No

witten&eibe

*Recursion

!! Appropriate techniques are known as “inductive logic
programming”

!! (e.g. Quinlan’s FOIL)

!! Problems: (a) noise and (b) computational complexity

If person1 is a parent of person2

then person1 is an ancestor of person2

If person1 is a parent of person2

and person2 is an ancestor of person3

then person1 is an ancestor of person3

!! Infinite relations require recursion

witten&eibe

*Multi-instance problems

!! Each example consists of several instances

!! E.g. predicting drug activity

!! Examples are molecules that are active/not active

!! Instances are confirmations of a molecule

!! Molecule active (example positive)
! at least one of its confirmations (instances) is active
(positive)

!! Molecule not active (example negative)
! all of its confirmations (instances) are not active
(negative)

!! Problem:
identifying the “truly” positive instances

witten&eibe

What’s in an attribute?

!! Each instance is described by a fixed predefined set of
features, its “attributes”

!! But: number of attributes may vary in practice

!! Possible solution: “irrelevant value” flag

!! Related problem: existence of an attribute may depend
of value of another one

!! Possible attribute types (“levels of measurement”):

!! Nominal, ordinal, interval and ratio

witten&eibe

Nominal quantities

!! Values are distinct symbols

!! Values themselves serve only as labels or names

!! Nominal comes from the Latin word for name

!! Example: attribute “outlook” from weather data

!! Values: “sunny”,”overcast”, and “rainy”

!! No relation is implied among nominal values (no
ordering or distance measure)

!! Only equality tests can be performed

witten&eibe

Ordinal quantities

!! Impose order on values

!! But: no distance between values defined

!! Example:
attribute “temperature” in weather data

!! Values: “hot” > “mild” > “cool”

!! Note: addition and subtraction don’t make sense

!! Example rule:
 temperature < hot ! play = yes

!! Distinction between nominal and ordinal not
always clear (e.g. attribute “outlook”)

witten&eibe

Interval quantities (Numeric)

!! Interval quantities are not only ordered but measured in
fixed and equal units

!! Example 1: attribute “temperature” expressed in
degrees Fahrenheit

!! Example 2: attribute “year”

!! Difference of two values makes sense

!! Sum or product doesn’t make sense

!! Zero point is not defined!

witten&eibe

Ratio quantities

!! Ratio quantities are ones for which the
measurement scheme defines a zero point

!! Example: attribute “distance”

!! Distance between an object and itself is zero

!! Ratio quantities are treated as real numbers

!! All mathematical operations are allowed

!! But: is there an “inherently” defined zero point?

!! Answer depends on scientific knowledge (e.g. Fahrenheit
knew no lower limit to temperature)

witten&eibe

Attribute types used in practice

!! Most schemes accommodate just two levels of
measurement: nominal and ordinal

!! Nominal attributes are also called “categorical”,
”enumerated”, or “discrete”

!! But: “enumerated” and “discrete” imply order

!! Special case: dichotomy (“boolean” attribute)

!! Ordinal attributes are called “numeric”, or “continuous”

!! But: “continuous” implies mathematical continuity

witten&eibe

Attribute types: Summary

!!Nominal, e.g. eye color=brown, blue, …

!!only equality tests

!! important special case: boolean (True/False)

!!Ordinal, e.g. grade=k,1,2,..,12

!!Continuous (numeric), e.g. year

!! interval quantities – integer

!! ratio quantities -- real

Why specify attribute types?

!!Q: Why Machine Learning algorithms need
to know about attribute type?

!!A: To be able to make right comparisons and
learn correct concepts, e.g.

!!Outlook > “sunny” does not make sense, while

!! Temperature > “cool” or

!! Humidity > 70 does

!!Additional uses of attribute type: check for valid
values, deal with missing, etc.

Transforming ordinal to boolean

!! Simple transformation allows
ordinal attribute with n values
to be coded using n–1 boolean attributes

!! Example: attribute “temperature”

!! Better than coding it as a nominal attribute

Temperature

Cold

Medium

Hot

Temperature > cold Temperature > medium

False False

True False

True True

Original data Transformed data

!

witten&eibe

Metadata

!! Information about the data that encodes background
knowledge

!! Can be used to restrict search space

!! Examples:

!! Dimensional considerations
(i.e. expressions must be dimensionally correct)

!! Circular orderings
(e.g. degrees in compass)

!! Partial orderings
(e.g. generalization/specialization relations)

witten&eibe

Preparing the input

!! Problem: different data sources (e.g. sales department,
customer billing department, …)

!! Differences: styles of record keeping, conventions, time
periods, data aggregation, primary keys, errors

!! Data must be assembled, integrated, cleaned up

!! “Data warehouse”: consistent point of access

!! Denormalization is not the only issue

!! External data may be required (“overlay data”)

!! Critical: type and level of data aggregation

witten&eibe

The ARFF format
%

% ARFF file for weather data with some numeric features

%

@relation weather

@attribute outlook {sunny, overcast, rainy}

@attribute temperature numeric

@attribute humidity numeric

@attribute windy {true, false}

@attribute play? {yes, no}

@data

sunny, 85, 85, false, no

sunny, 80, 90, true, no

overcast, 83, 86, false, yes

...

witten&eibe

Attribute types in Weka

!! ARFF supports numeric and nominal attributes

!! Interpretation depends on learning scheme

!! Numeric attributes are interpreted as

!! ordinal scales if less-than and greater-than are used

!! ratio scales if distance calculations are performed (normalization/

standardization may be required)

!! Instance-based schemes define distance between nominal
values (0 if values are equal, 1 otherwise)

!! Integers: nominal, ordinal, or ratio scale?

witten&eibe

Nominal vs. ordinal

!! Attribute “age” nominal

!! Attribute “age” ordinal

 (e.g. “young” < “pre-presbyopic” < “presbyopic”)

If age = young and astigmatic = no

and tear production rate = normal

then recommendation = soft

If age = pre-presbyopic and astigmatic = no

and tear production rate = normal

then recommendation = soft

If age ! pre-presbyopic and astigmatic = no

and tear production rate = normal

then recommendation = soft

witten&eibe

Missing values

!! Frequently indicated by out-of-range entries

!! Types: unknown, unrecorded, irrelevant

!! Reasons:

!! malfunctioning equipment

!! changes in experimental design

!! collation of different datasets

!! measurement not possible

!! Missing value may have significance in itself (e.g.

missing test in a medical examination)

!! Most schemes assume that is not the case
 ! “missing” may need to be coded as additional value

witten&eibe

Missing values - example

!!Value may be missing
because it is unrecorded or
because it is inapplicable

!! In medical data, value for

Pregnant? attribute for
Jane is missing, while for
Joe or Anna should be
considered Not

applicable

!!Some programs can infer
missing values

Name Age Sex Pregnant? ..

Mary 25 F N

Jane 27 F -

Joe 30 M -

Anna 2 F -

Hospital Check-in Database

Inaccurate values

!! Reason: data has not been collected for mining it

!! Result: errors and omissions that don’t affect original purpose of
data (e.g. age of customer)

!! Typographical errors in nominal attributes " values need to be
checked for consistency

!! Typographical and measurement errors in numeric attributes "
outliers need to be identified

!! Errors may be deliberate (e.g. wrong zip codes)

!! Other problems: duplicates, stale data

witten&eibe

Precision “Illusion”

!!Example: gene expression may be reported as

X83 = 193.3742, but measurement error may be

+/- 20.

!!Actual value is in [173, 213] range, so it is

appropriate to round the data to 190.

!!Don’t assume that every reported digit is

significant!

Getting to know the data

!! Simple visualization tools are very useful

!! Nominal attributes: histograms (Distribution consistent
with background knowledge?)

!! Numeric attributes: graphs
(Any obvious outliers?)

!! 2-D and 3-D plots show dependencies

!! Need to consult domain experts

!! Too much data to inspect? Take a sample!

witten&eibe

Summary

!!Concept: thing to be learned

!!Instance: individual examples of a concept

!!Attributes: Measuring aspects of an instance

!!Note: Don’t confuse learning “Class” and
“Instance” with Java “Class” and “instance”

Knowledge
Representation

Outline:
Output - Knowledge representation

!! Decision tables

!! Decision trees

!! Decision rules

!! Rules involving relations

!! Instance-based representation

!! Prototypes, Clusters

witten&eibe

Output: representing structural
patterns

!! Many different ways of representing patterns

!! Decision trees, rules, instance-based, …

!! Also called “knowledge” representation

!! Representation determines inference method

!! Understanding the output is the key to
understanding the underlying learning methods

!! Different types of output for different learning
problems (e.g. classification, regression, …)

witten&eibe

Decision tables

!! Simplest way of representing output:

!! Use the same format as input!

!! Decision table for the weather problem:

!! Main problem: selecting the right attributes

!! Also, not flexible enough

Outlook Humidity Play

Sunny High No

Sunny Normal Yes

Overcast High Yes

Overcast Normal Yes

Rainy High No

Rainy Normal No

witten&eibe

Decision trees

!! “Divide-and-conquer” approach produces tree

!! Nodes involve testing a particular attribute

!! Usually, attribute value is compared to constant

!! Other possibilities:

!! Comparing values of two attributes

!! Using a function of one or more attributes

!! Leaves assign classification, set of classifications, or

probability distribution to instances

!! Unknown instance is routed down the tree

witten&eibe

Nominal and numeric attributes

!! Nominal:
number of children usually equal to number values
! attribute won’t get tested more than once

!! Other possibility: division into two subsets

!! Numeric:
test whether value is greater or less than constant
! attribute may get tested several times

!! Other possibility: three-way split (or multi-way split)

!! Integer: less than, equal to, greater than

!! Real: below, within, above

witten&eibe

Missing values

!! Does absence of value have some significance?

!! Yes ! “missing” is a separate value

!! No ! “missing” must be treated in a special way

!! Solution A: assign instance to most popular branch

!! Solution B: split instance into pieces

!! Pieces receive weight according to fraction of training

instances that go down each branch

!! Classifications from leave nodes are combined using the

weights that have percolated to them

witten&eibe

Classification rules

!! Popular alternative to decision trees

!! Antecedent (pre-condition): a series of tests (just
like the tests at the nodes of a decision tree)

!! Tests are usually logically ANDed together (but may
also be general logical expressions)

!! Consequent (conclusion): classes, set of classes, or
probability distribution assigned by rule

!! Individual rules are often logically ORed together

!! Conflicts arise if different conclusions apply

witten&eibe

From trees to rules

!! Easy: converting a tree into a set of rules

!! One rule for each leaf:

!! Antecedent contains a condition for every node on the path from
the root to the leaf

!! Consequent is class assigned by the leaf

!! Produces rules that are unambiguous

!! Doesn’t matter in which order they are executed

!! But: resulting rules are unnecessarily complex

!! Pruning to remove redundant tests/rules

witten&eibe

From rules to trees

!! More difficult: transforming a rule set into a tree

!! Tree cannot easily express disjunction between rules

!! Example: rules which test different attributes

!! Symmetry needs to be broken

!! Corresponding tree contains identical subtrees (!
“replicated subtree problem”)

If a and b then x

If c and d then x

witten&eibe

A tree for a simple disjunction

witten&eibe

The exclusive-or problem

If x = 1 and y = 0

then class = a

If x = 0 and y = 1

then class = a

If x = 0 and y = 0

then class = b

If x = 1 and y = 1

then class = b

witten&eibe

A tree with a replicated subtree

If x = 1 and y = 1

then class = a

If z = 1 and w = 1

then class = a

Otherwise class = b

witten&eibe

“Nuggets” of knowledge

!! Are rules independent pieces of knowledge? (It seems
easy to add a rule to an existing rule base.)

!! Problem: ignores how rules are executed

!! Two ways of executing a rule set:

!! Ordered set of rules (“decision list”)

!! Order is important for interpretation

!! Unordered set of rules

!! Rules may overlap and lead to different conclusions for the same

instance

witten&eibe

Interpreting rules

!! What if two or more rules conflict?

!! Give no conclusion at all?

!! Go with rule that is most popular on training data?

!! …

!! What if no rule applies to a test instance?

!! Give no conclusion at all?

!! Go with class that is most frequent in training data?

!! …

witten&eibe

Special case: boolean class

!! Assumption: if instance does not belong to class “yes”, it
belongs to class “no”

!! Trick: only learn rules for class “yes” and use default
rule for “no”

!! Order of rules is not important. No conflicts!

!! Rule can be written in disjunctive normal form

If x = 1 and y = 1 then class = a

If z = 1 and w = 1 then class = a

Otherwise class = b

witten&eibe

Rules involving relations

!! So far: all rules involved comparing an attribute-value to
a constant (e.g. temperature < 45)

!! These rules are called “propositional” because they have
the same expressive power as propositional logic

!! What if problem involves relationships between
examples (e.g. family tree problem from above)?

!! Can’t be expressed with propositional rules

!! More expressive representation required

witten&eibe

The shapes problem

!! Target concept: standing up

!! Shaded: standing
Unshaded: lying

witten&eibe

A propositional solution

Width Height Sides Class

2 4 4 Standing

3 6 4 Standing

4 3 4 Lying

7 8 3 Standing

7 6 3 Lying

2 9 4 Standing

9 1 4 Lying

10 2 3 Lying

If width ! 3.5 and height < 7.0

then lying

If height ! 3.5 then standing

witten&eibe

A relational solution

!!Comparing attributes with each other

!!Generalizes better to new data

!!Standard relations: =, <, >

!!But: learning relational rules is costly

!!Simple solution: add extra attributes

(e.g. a binary attribute is width < height?)

If width > height then lying

If height > width then standing

witten&eibe

Rules with variables
"! Using variables and multiple relations:

"! The top of a tower of blocks is standing:

"! The whole tower is standing:

"! Recursive definition!

If height_and_width_of(x,h,w) and h > w

then standing(x)

If height_and_width_of(z,h,w) and h > w

 and is_top_of(x,z) and standing(y)

 and is_rest_of(x,y)

then standing(x)

If empty(x) then standing(x)

If height_and_width_of(x,h,w) and h > w

 and is_top_of(x,y)

then standing(x)

witten&eibe

Inductive logic programming

"! Recursive definition can be seen as logic program

"! Techniques for learning logic programs stem from the
area of “inductive logic programming” (ILP)

"! But: recursive definitions are hard to learn

"! Also: few practical problems require recursion

"! Thus: many ILP techniques are restricted to non-recursive
definitions to make learning easier

witten&eibe

Instance-based representation

"!Simplest form of learning: rote learning

"!Training instances are searched for instance that most
closely resembles new instance

"!The instances themselves represent the knowledge

"!Also called instance-based learning

"!Similarity function defines what’s “learned”

"!Instance-based learning is lazy learning

"!Methods: k-nearest-neighbor, …

witten&eibe

The distance function

"!Simplest case: one numeric attribute

"!Distance is the difference between the two attribute
values involved (or a function thereof)

"!Several numeric attributes: normally, Euclidean
distance is used and attributes are normalized

"!Nominal attributes: distance is set to 1 if values
are different, 0 if they are equal

"!Are all attributes equally important?

"!Weighting the attributes might be necessary

witten&eibe

Learning prototypes

!!Only those instances involved in a decision need

to be stored

!!Noisy instances should be filtered out

!!Idea: only use prototypical examples

witten&eibe

Rectangular generalizations

!!Nearest-neighbor rule is used outside rectangles

!!Rectangles are rules! (But they can be more
conservative than “normal” rules.)

!!Nested rectangles are rules with exceptions

witten&eibe

Representing clusters I

Simple 2-D representation Venn diagram

Overlapping clusters

witten&eibe

Representing clusters II

Probabilistic assignment

1 2 3

a 0.4 0.1 0.5

b 0.1 0.8 0.1

c 0.3 0.3 0.4

d 0.1 0.1 0.8

e 0.4 0.2 0.4

f 0.1 0.4 0.5

g 0.7 0.2 0.1

h 0.5 0.4 0.1

Dendrogram

NB: dendron is the Greek
word for tree

witten&eibe

Summary

!!Trees

!!Rules

!!Relational representation

!!Instance-based representation

Algorithms for
Classification:

The Basic Methods

Outline

!! Simplicity first: 1R

!! Naïve Bayes

!! Task: Given a set of pre-classified examples,

build a model or classifier to classify new cases.

!! Supervised learning: classes are known for the

examples used to build the classifier.

!! A classifier can be a set of rules, a decision tree,

a neural network, etc.

!! Typical applications: credit approval, direct

marketing, fraud detection, medical diagnosis,
…..

Classification

Simplicity first

!! Simple algorithms often work very well!

!! There are many kinds of simple structure, eg:

!! One attribute does all the work

!! All attributes contribute equally & independently

!! A weighted linear combination might do

!! Instance-based: use a few prototypes

!! Use simple logical rules

!! Success of method depends on the domain

witten&eibe

Inferring rudimentary rules

!! 1R: learns a 1-level decision tree

!! I.e., rules that all test one particular attribute

!! Basic version

!! One branch for each value

!! Each branch assigns most frequent class

!! Error rate: proportion of instances that don’t belong to the
majority class of their corresponding branch

!! Choose attribute with lowest error rate

 (assumes nominal attributes)

witten&eibe

Pseudo-code for 1R

For each attribute,

 For each value of the attribute, make a rule as follows:

 count how often each class appears

 find the most frequent class

 make the rule assign that class to this attribute-value

 Calculate the error rate of the rules

Choose the rules with the smallest error rate

!! Note: “missing” is treated as a separate attribute value

witten&eibe

Evaluating the weather attributes

Attribute Rules Errors Total

errors

Outlook Sunny ! No 2/5 4/14

Overcast ! Yes 0/4

Rainy ! Yes 2/5

Temp Hot ! No* 2/4 5/14

Mild ! Yes 2/6

Cool ! Yes 1/4

Humidity High ! No 3/7 4/14

Normal ! Yes 1/7

Windy False ! Yes 2/8 5/14

True ! No* 3/6

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No
* indicates a tie

witten&eibe

Dealing with
numeric attributes

!! Discretize numeric attributes

!! Divide each attribute’s range into intervals

!! Sort instances according to attribute’s values

!! Place breakpoints where the class changes
(the majority class)

!! This minimizes the total error

!! Example: temperature from weather data

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 75 80 False Yes

… … … … …

witten&eibe

The problem of overfitting

!! This procedure is very sensitive to noise

!! One instance with an incorrect class label will probably
produce a separate interval

!! Also: time stamp attribute will have zero errors

!! Simple solution:
enforce minimum number of instances in majority class
per interval

witten&eibe

Discretization example

!! Example (with min = 3):

!! Final result for temperature attribute

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

witten&eibe

With overfitting avoidance

!! Resulting rule set:

Attribute Rules Errors Total errors

Outlook Sunny ! No 2/5 4/14

Overcast ! Yes 0/4

Rainy ! Yes 2/5

Temperature " 77.5 ! Yes 3/10 5/14

> 77.5 ! No* 2/4

Humidity " 82.5 ! Yes 1/7 3/14

> 82.5 and " 95.5 ! No 2/6

> 95.5 ! Yes 0/1

Windy False ! Yes 2/8 5/14

True ! No* 3/6

witten&eibe

Discussion of 1R
!! 1R was described in a paper by Holte (1993)

!! Contains an experimental evaluation on 16 datasets
(using cross-validation so that results were representative
of performance on future data)

!! Minimum number of instances was set to 6 after some
experimentation

!! 1R’s simple rules performed not much worse than much
more complex decision trees

!! Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly Used

Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

witten&eibe

Bayesian (Statistical) modeling

!! “Opposite” of 1R: use all the attributes

!! Two assumptions: Attributes are

!! equally important

!! statistically independent (given the class value)

!! I.e., knowing the value of one attribute says nothing about
the value of another
(if the class is known)

!! Independence assumption is almost never correct!

!! But … this scheme works well in practice

witten&eibe

Probabilities for weather data
Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5 Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

witten&eibe

Probabilities for weather data

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

!! A new day: Likelihood of the two classes

For “yes” = 2/9 ! 3/9 ! 3/9 ! 3/9 ! 9/14 = 0.0053

For “no” = 3/5 ! 1/5 ! 4/5 ! 3/5 ! 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

witten&eibe

Bayes’s rule
!! Probability of event H given evidence E :

!! A priori probability of H :

!! Probability of event before evidence is seen

!! A posteriori probability of H :

!! Probability of event after evidence is seen

Thomas Bayes

Born: 1702 in London, England

Died: 1761 in Tunbridge Wells, Kent, England

witten&eibe

from Bayes “Essay towards solving a problem in the

doctrine of chances” (1763)

Naïve Bayes for classification

!! Classification learning: what’s the probability of the class
given an instance?

!! Evidence E = instance

!! Event H = class value for instance

!! Naïve assumption: evidence splits into parts (i.e.
attributes) that are independent

witten&eibe

Weather data example

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?
Evidence E

Probability of

class “yes”

witten&eibe

The “zero-frequency problem”

!! What if an attribute value doesn’t occur with every class
value?
(e.g. “Humidity = high” for class “yes”)

!! Probability will be zero!

!! A posteriori probability will also be zero!

(No matter how likely the other values are!)

!! Remedy: add 1 to the count for every attribute value-class
combination (Laplace estimator)

!! Result: probabilities will never be zero!
(also: stabilizes probability estimates)

witten&eibe

*Modified probability estimates

!! In some cases adding a constant different from 1 might
be more appropriate

!! Example: attribute outlook for class yes

!! Weights don’t need to be equal
(but they must sum to 1)

Sunny Overcast Rainy

witten&eibe

Missing values

!! Training: instance is not included in

frequency count for attribute value-class
combination

!! Classification: attribute will be omitted from
calculation

!! Example: Outlook Temp. Humidity Windy Play

? Cool High True ?

Likelihood of “yes” = 3/9 ! 3/9 ! 3/9 ! 9/14 = 0.0238

Likelihood of “no” = 1/5 ! 4/5 ! 3/5 ! 5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

witten&eibe

Numeric attributes
!! Usual assumption: attributes have a normal or

Gaussian probability distribution (given the class)

!! The probability density function for the normal
distribution is defined by two parameters:

!! Sample mean µ

!! Standard deviation !

!! Then the density function f(x) is

witten&eibe

Karl Gauss, 1777-1855
great German mathematician

Statistics for
weather data

!! Example density value:

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 64, 68, 65, 71, 65, 70, 70, 85, False 6 2 9 5

Overcast 4 0 69, 70, 72, 80, 70, 75, 90, 91, True 3 3

Rainy 3 2 72, … 85, … 80, … 95, …

Sunny 2/9 3/5 µ =73 µ =75 µ =79 µ =86 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 ! =6.2 ! =7.9 ! =10.2 ! =9.7 True 3/9 3/5

Rainy 3/9 2/5

witten&eibe

Classifying a new day

!! A new day:

!! Missing values during training are not included in
calculation of mean and standard deviation

Outlook Temp. Humidity Windy Play

Sunny 66 90 true ?

Likelihood of “yes” = 2/9 ! 0.0340 ! 0.0221 ! 3/9 ! 9/14 = 0.000036

Likelihood of “no” = 3/5 ! 0.0291 ! 0.0380 ! 3/5 ! 5/14 = 0.000136

P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%

P(“no”) = 0.000136 / (0.000036 + 0. 000136) = 79.1%

witten&eibe

*Probability densities

!! Relationship between probability and density:

!! But: this doesn’t change calculation of a posteriori
probabilities because ! cancels out

!! Exact relationship:

witten&eibe

Naïve Bayes: discussion

!! Naïve Bayes works surprisingly well (even if
independence assumption is clearly violated)

!! Why? Because classification doesn’t require
accurate probability estimates as long as
maximum probability is assigned to correct class

!! However: adding too many redundant attributes
will cause problems (e.g. identical attributes)

!! Note also: many numeric attributes are not
normally distributed (! kernel density
estimators)

witten&eibe

Naïve Bayes Extensions

!! Improvements:

!! select best attributes (e.g. with greedy search)

!! often works as well or better with just a fraction
of all attributes

!! Bayesian Networks

witten&eibe

Summary

!!OneR – uses rules based on just one attribute

!!Naïve Bayes – use all attributes and Bayes rules
to estimate probability of the class given an

instance.

!!Simple methods frequently work well, but …

!!Complex methods can be better (as we will see)

Classification:

Decision Trees

Outline

!!Top-Down Decision Tree Construction

!!Choosing the Splitting Attribute

!!Information Gain and Gain Ratio

DECISION TREE

!! An internal node is a test on an attribute.

!! A branch represents an outcome of the test, e.g.,
Color=red.

!! A leaf node represents a class label or class label
distribution.

!! At each node, one attribute is chosen to split
training examples into distinct classes as much

as possible

!! A new case is classified by following a matching

path to a leaf node.

Weather Data: Play or not Play?

Outlook Temperature Humidity Windy Play?
sunny hot high false No
sunny hot high true No
overcast hot high false Yes
rain mild high false Yes
rain cool normal false Yes
rain cool normal true No
overcast cool normal true Yes
sunny mild high false No
sunny cool normal false Yes
rain mild normal false Yes
sunny mild normal true Yes
overcast mild high true Yes
overcast hot normal false Yes
rain mild high true No

Note:

Outlook is the

Forecast,

no relation to

Microsoft

email program

overcast

high normal false true

sunny
rain

No No Yes Yes

Yes

Example Tree for “Play?”

Outlook

Humidity
Windy

Building Decision Tree [Q93]

!! Top-down tree construction

!! At start, all training examples are at the root.

!! Partition the examples recursively by choosing one
attribute each time.

!! Bottom-up tree pruning

!! Remove subtrees or branches, in a bottom-up
manner, to improve the estimated accuracy on new
cases.

Choosing the Splitting Attribute

!! At each node, available attributes are evaluated

on the basis of separating the classes of the
training examples. A Goodness function is used

for this purpose.

!! Typical goodness functions:

!! information gain (ID3/C4.5)

!! information gain ratio

!! gini index

witten&eibe

Which attribute to select?

witten&eibe

A criterion for attribute selection

!! Which is the best attribute?

!! The one which will result in the smallest tree

!! Heuristic: choose the attribute that produces the
“purest” nodes

!! Popular impurity criterion: information gain

!! Information gain increases with the average purity of
the subsets that an attribute produces

!! Strategy: choose attribute that results in greatest

information gain

witten&eibe

Computing information

!! Information is measured in bits

!! Given a probability distribution, the info required to
predict an event is the distribution’s entropy

!! Entropy gives the information required in bits (this can
involve fractions of bits!)

!! Formula for computing the entropy:

witten&eibe

Claude Shannon, who has died aged 84, perhaps

more than anyone laid the groundwork for today’s

digital revolution. His exposition of information
theory, stating that all information could be

represented mathematically as a succession of

noughts and ones, facilitated the digital

manipulation of data without which today’s

information society would be unthinkable.

Shannon’s master’s thesis, obtained in 1940 at MIT,

demonstrated that problem solving could be
achieved by manipulating the symbols 0 and 1 in a

process that could be carried out automatically with

electrical circuitry. That dissertation has been hailed

as one of the most significant master’s theses of the

20th century. Eight years later, Shannon published
another landmark paper, A Mathematical Theory of
Communication, generally taken as his most

important scientific contribution.

Born: 30 April 1916

Died: 23 February 2001

“Father of
information theory”

Shannon applied the same radical approach to cryptography research, in which he later

became a consultant to the US government.

Many of Shannon’s pioneering insights were developed before they could be applied in
practical form. He was truly a remarkable man, yet unknown to most of the world.

witten&eibe

*Claude Shannon Example: attribute “Outlook”

!! !Outlook” = “Sunny”:

!! “Outlook” = “Overcast”:

!! “Outlook” = “Rainy”:

!! Expected information for attribute:

Note: log(0) is

not defined, but

we evaluate

0*log(0) as zero

witten&eibe

Computing the information gain

!! Information gain:

(information before split) – (information after split)

!! Information gain for attributes from weather
data:

witten&eibe

Continuing to split

witten&eibe

The final decision tree

!! Note: not all leaves need to be pure; sometimes

identical instances have different classes

! Splitting stops when data can’t be split any further

witten&eibe

*Wish list for a purity measure

!! Properties we require from a purity measure:

!! When node is pure, measure should be zero

!! When impurity is maximal (i.e. all classes equally likely),
measure should be maximal

!! Measure should obey multistage property (i.e. decisions can be
made in several stages):

!! Entropy is a function that satisfies all three properties!

witten&eibe

*Properties of the entropy

!! The multistage property:

!! Simplification of computation:

!! Note: instead of maximizing info gain we could just
minimize information

witten&eibe

Highly-branching attributes

!! Problematic: attributes with a large number of

values (extreme case: ID code)

!! Subsets are more likely to be pure if there is a

large number of values

!!Information gain is biased towards choosing attributes
with a large number of values

!!This may result in overfitting (selection of an attribute
that is non-optimal for prediction)

witten&eibe

Weather Data with ID code

ID Outlook Temperature Humidity Windy Play?
A sunny hot high false No
B sunny hot high true No
C overcast hot high false Yes
D rain mild high false Yes
E rain cool normal false Yes
F rain cool normal true No
G overcast cool normal true Yes
H sunny mild high false No
I sunny cool normal false Yes
J rain mild normal false Yes
K sunny mild normal true Yes
L overcast mild high true Yes
M overcast hot normal false Yes
N rain mild high true No

Split for ID Code Attribute

Entropy of split = 0 (since each leaf node is “pure”, having only

one case.

Information gain is maximal for ID code

witten&eibe

Gain ratio

!! Gain ratio: a modification of the information gain
that reduces its bias on high-branch attributes

!! Gain ratio should be

!! Large when data is evenly spread

!! Small when all data belong to one branch

!! Gain ratio takes number and size of branches
into account when choosing an attribute

!! It corrects the information gain by taking the intrinsic
information of a split into account (i.e. how much info
do we need to tell which branch an instance belongs
to)

witten&eibe

Gain Ratio and Intrinsic Info.

!! Intrinsic information: entropy of distribution of
instances into branches

!! Gain ratio (Quinlan’86) normalizes info gain by:

Computing the gain ratio

!! Example: intrinsic information for ID code

!! Importance of attribute decreases as
intrinsic information gets larger

!! Example of gain ratio:

!! Example:

witten&eibe

Gain ratios for weather data

Outlook Temperature

Info: 0.693 Info: 0.911

Gain: 0.940-0.693 0.247 Gain: 0.940-0.911 0.029

Split info: info([5,4,5]) 1.577 Split info: info([4,6,4]) 1.362

Gain ratio: 0.247/1.577 0.156 Gain ratio: 0.029/1.362 0.021

Humidity Windy

Info: 0.788 Info: 0.892

Gain: 0.940-0.788 0.152 Gain: 0.940-0.892 0.048

Split info: info([7,7]) 1.000 Split info: info([8,6]) 0.985

Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049

witten&eibe

More on the gain ratio

!! !Outlook” still comes out top

!! However: “ID code” has greater gain ratio

!! Standard fix: ad hoc test to prevent splitting on that
type of attribute

!! Problem with gain ratio: it may overcompensate

!! May choose an attribute just because its intrinsic
information is very low

!! Standard fix:

!! First, only consider attributes with greater than average
information gain

!! Then, compare them on gain ratio

witten&eibe

!! If a data set T contains examples from n classes, gini
index, gini(T) is defined as

 where pj is the relative frequency of class j in T.

gini(T) is minimized if the classes in T are skewed.

*CART Splitting Criteria: Gini Index

After splitting T into two subsets T1 and T2 with sizes
N1 and N2, the gini index of the split data is defined
as

!! The attribute providing smallest ginisplit(T) is chosen
to split the node.

*Gini Index Discussion

!! Algorithm for top-down induction of decision

trees (“ID3”) was developed by Ross Quinlan

!! Gain ratio just one modification of this basic algorithm

!! Led to development of C4.5, which can deal with

numeric attributes, missing values, and noisy data

!! There are many other attribute selection criteria!

(But almost no difference in accuracy of result.)

Summary

!!Top-Down Decision Tree Construction

!!Choosing the Splitting Attribute

!!Information Gain biased towards attributes with a
large number of values

!! Gain Ratio takes number and size of branches
into account when choosing an attribute

Machine Learning in

Real World:

C4.5

Outline

!!Handling Numeric Attributes

!!Finding Best Split(s)

!!Dealing with Missing Values

!!Pruning

!!Pre-pruning, Post-pruning, Error Estimates

!!From Trees to Rules

Industrial-strength algorithms

!! For an algorithm to be useful in a wide range of real-
world applications it must:

!! Permit numeric attributes

!! Allow missing values

!! Be robust in the presence of noise

!! Be able to approximate arbitrary concept descriptions (at least
in principle)

!! Basic schemes need to be extended to fulfill these
requirements

witten & eibe

C4.5 History

!! ID3, CHAID – 1960s

!! C4.5 innovations (Quinlan):

!! permit numeric attributes

!! deal sensibly with missing values

!! pruning to deal with for noisy data

!! C4.5 - one of best-known and most widely-used learning
algorithms

!! Last research version: C4.8, implemented in Weka as J4.8 (Java)

!! Commercial successor: C5.0 (available from Rulequest)

Numeric attributes

!! Standard method: binary splits

!! E.g. temp < 45

!! Unlike nominal attributes,
every attribute has many possible split points

!! Solution is straightforward extension:

!! Evaluate info gain (or other measure)
for every possible split point of attribute

!! Choose “best” split point

!! Info gain for best split point is info gain for attribute

!! Computationally more demanding

witten & eibe

Weather data – nominal values
Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild Normal False Yes

… … … … …

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes

witten & eibe

Weather data - numeric
Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 75 80 False Yes

… … … … …

If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes

Example

!! Split on temperature attribute:

!! E.g. temperature < 71.5: yes/4, no/2
 temperature ! 71.5: yes/5, no/3

!! Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3])
= 0.939 bits

!! Place split points halfway between values

!! Can evaluate all split points in one pass!

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

witten & eibe

Avoid repeated sorting!

!! Sort instances by the values of the numeric attribute

!! Time complexity for sorting: O (n log n)

!! Q. Does this have to be repeated at each node of
the tree?

!! A: No! Sort order for children can be derived from sort
order for parent

!! Time complexity of derivation: O (n)

!! Drawback: need to create and store an array of sorted indices
for each numeric attribute

witten & eibe

More speeding up

!!Entropy only needs to be evaluated between points
of different classes (Fayyad & Irani, 1992)

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

Potential optimal breakpoints

Breakpoints between values of the same class cannot
be optimal

value

class

X

Binary vs. multi-way splits

!! Splitting (multi-way) on a nominal attribute
exhausts all information in that attribute

!! Nominal attribute is tested (at most) once on any path
in the tree

!! Not so for binary splits on numeric attributes!

!! Numeric attribute may be tested several times along a
path in the tree

!! Disadvantage: tree is hard to read

!! Remedy:

!! pre-discretize numeric attributes, or

!! use multi-way splits instead of binary ones

witten & eibe

Missing as a separate value

!!Missing value denoted “?” in C4.X

!!Simple idea: treat missing as a separate value

!!Q: When this is not appropriate?

!!A: When values are missing due to different
reasons

!!Example 1: gene expression could be missing when it is
very high or very low

!!Example 2: field IsPregnant=missing for a male
patient should be treated differently (no) than for a
female patient of age 25 (unknown)

Missing values - advanced

Split instances with missing values into pieces

!! A piece going down a branch receives a weight
proportional to the popularity of the branch

!! weights sum to 1

!! Info gain works with fractional instances

!! use sums of weights instead of counts

!! During classification, split the instance into pieces
in the same way

!! Merge probability distribution using weights

witten & eibe

Pruning

!! Goal: Prevent overfitting to noise in the

data

!! Two strategies for “pruning” the decision

tree:

"! Postpruning - take a fully-grown decision tree
and discard unreliable parts

"! Prepruning - stop growing a branch when
information becomes unreliable

!! Postpruning preferred in practice—

prepruning can “stop too early”

Prepruning

!! Based on statistical significance test

!! Stop growing the tree when there is no statistically significant
association between any attribute and the class at a particular
node

!! Most popular test: chi-squared test

!! ID3 used chi-squared test in addition to information gain

!! Only statistically significant attributes were allowed to be
selected by information gain procedure

witten & eibe

Early stopping

!! Pre-pruning may stop the growth process
prematurely: early stopping

!! Classic example: XOR/Parity-problem

!! No individual attribute exhibits any significant
association to the class

!! Structure is only visible in fully expanded tree

!! Pre-pruning won’t expand the root node

!! But: XOR-type problems rare in practice

!! And: pre-pruning faster than post-pruning

a b class

1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

witten & eibe

Post-pruning
!! First, build full tree

!! Then, prune it

!! Fully-grown tree shows all attribute interactions

!! Problem: some subtrees might be due to chance effects

!! Two pruning operations:

1.! Subtree replacement

2.! Subtree raising

!! Possible strategies:

!! error estimation

!! significance testing

!! MDL principle

witten & eibe

Subtree replacement
!! Bottom-up

!! Consider replacing a tree
only after considering all
its subtrees

!! Ex: labor negotiations

witten & eibe

Subtree
replacement

!! Bottom-up

!! Consider replacing a tree
only after considering all
its subtrees

witten & eibe

*Subtree raising
!! Delete node

!! Redistribute instances

!! Slower than subtree
replacement

 (Worthwhile?)

witten & eibe

X

Estimating error rates

!! Prune only if it reduces the estimated error

!! Error on the training data is NOT a useful
estimator
Q: Why it would result in very little pruning?

!! Use hold-out set for pruning
(“reduced-error pruning”)

!! C4.5’s method

!! Derive confidence interval from training data

!! Use a heuristic limit, derived from this, for pruning

!! Standard Bernoulli-process-based method

!! Shaky statistical assumptions (based on training data)

witten & eibe

*Mean and variance

!! Mean and variance for a Bernoulli trial:
p, p (1–p)

!! Expected success rate f=S/N

!! Mean and variance for f : p, p (1–p)/N

!! For large enough N, f follows a Normal
distribution

!! c% confidence interval [–z ! X ! z] for random
variable with 0 mean is given by:

!! With a symmetric distribution:

witten & eibe

*Confidence limits
!! Confidence limits for the normal distribution with 0 mean and

a variance of 1:

!! Thus:

!! To use this we have to reduce our random variable f to have
0 mean and unit variance

Pr[X " z] z

0.1% 3.09

0.5% 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

25% 0.69

40% 0.25
–1 0 1 1.65

witten & eibe

*Transforming f

!! Transformed value for f :

(i.e. subtract the mean and divide by the standard deviation)

!! Resulting equation:

!! Solving for p:

witten & eibe

C4.5’s method

!! Error estimate for subtree is weighted sum of error
estimates for all its leaves

!! Error estimate for a node (upper bound):

!! If c = 25% then z = 0.69 (from normal distribution)

!! f is the error on the training data

!! N is the number of instances covered by the leaf

witten & eibe

Example

f=0.33

e=0.47

f=0.5

e=0.72

f=0.33

e=0.47

f = 5/14

e = 0.46

e < 0.51

so prune!

Combined using ratios 6:2:6 gives 0.51
witten & eibe

*Complexity of tree induction
!! Assume

!! m attributes

!! n training instances

!! tree depth O (log n)

!! Building a tree O (m n log n)

!! Subtree replacement O (n)

!! Subtree raising O (n (log n)2)

!! Every instance may have to be redistributed at every node
between its leaf and the root

!! Cost for redistribution (on average): O (log n)

!! Total cost: O (m n log n) + O (n (log n)2)

witten & eibe

From trees to rules
!! Simple way: one rule for each leaf

!! C4.5rules: greedily prune conditions from each rule
if this reduces its estimated error

!! Can produce duplicate rules

!! Check for this at the end

!! Then

!! look at each class in turn

!! consider the rules for that class

!! find a “good” subset (guided by MDL)

!! Then rank the subsets to avoid conflicts

!! Finally, remove rules (greedily) if this decreases
error on the training data

witten & eibe

C4.5rules: choices and options

!! C4.5rules slow for large and noisy datasets

!! Commercial version C5.0rules uses a different technique

!! Much faster and a bit more accurate

!! C4.5 has two parameters

!! Confidence value (default 25%):
lower values incur heavier pruning

!! Minimum number of instances in the two most popular
branches (default 2)

witten & eibe

*Classification rules

!! Common procedure: separate-and-conquer

!! Differences:

!! Search method (e.g. greedy, beam search, ...)

!! Test selection criteria (e.g. accuracy, ...)

!! Pruning method (e.g. MDL, hold-out set, ...)

!! Stopping criterion (e.g. minimum accuracy)

!! Post-processing step

!! Also: Decision list
 vs. one rule set for each class

witten & eibe

*Test selection criteria
!! Basic covering algorithm:

!! keep adding conditions to a rule to improve its accuracy

!! Add the condition that improves accuracy the most

!! Measure 1: p/t

!! t total instances covered by rule
p number of these that are positive

!! Produce rules that don’t cover negative instances,
as quickly as possible

!! May produce rules with very small coverage
—special cases or noise?

!! Measure 2: Information gain p (log(p/t) – log(P/T))

!! P and T the positive and total numbers before the new condition
was added

!! Information gain emphasizes positive rather than negative
instances

!! These interact with the pruning mechanism used
witten & eibe

*Missing values,
numeric attributes

!! Common treatment of missing values:
for any test, they fail

!! Algorithm must either

!! use other tests to separate out positive instances

!! leave them uncovered until later in the process

!! In some cases it’s better to treat “missing” as a separate

value

!! Numeric attributes are treated just like they are in

decision trees

witten & eibe

*Pruning rules

!! Two main strategies:

!! Incremental pruning

!! Global pruning

!! Other difference: pruning criterion

!! Error on hold-out set (reduced-error pruning)

!! Statistical significance

!! MDL principle

!! Also: post-pruning vs. pre-pruning

witten & eibe

Summary

!! Decision Trees

!! splits – binary, multi-way

!! split criteria – entropy, gini, …

!! missing value treatment

!! pruning

!! rule extraction from trees

!! No method is always superior –
experiment!

witten & eibe

Classification Algorithms –
Continued

Outline

!!Rules

!!Linear Models (Regression)

!!Instance-based (Nearest-neighbor)

Generating Rules

!! Decision tree can be converted into a rule set

!! Straightforward conversion:

!! each path to the leaf becomes a rule – makes an
overly complex rule set

!! More effective conversions are not trivial

!! (e.g. C4.8 tests each node in root-leaf path to see if it

can be eliminated without loss in accuracy)

Covering algorithms

!! Strategy for generating a rule set directly: for

each class in turn find rule set that covers all
instances in it (excluding instances not in the

class)

!! This approach is called a covering approach

because at each stage a rule is identified that
covers some of the instances

Example: generating a rule

If true then class = a

Example: generating a rule, II

If x > 1.2 then class = a

If true then class = a

Example: generating a rule, III

If x > 1.2 then class = a

If x > 1.2 and y > 2.6 then class = a If true then class = a

Example: generating a rule, IV

If x > 1.2 then class = a

If x > 1.2 and y > 2.6 then class = a If true then class = a

!! Possible rule set for class “b”:

!! More rules could be added for “perfect” rule set

If x ! 1.2 then class = b

If x > 1.2 and y ! 2.6 then class = b

Rules vs. trees

!! Corresponding decision tree:

 (produces exactly the same

 predictions)

!! But: rule sets can be more clear when decision

trees suffer from replicated subtrees

!! Also: in multi-class situations, covering algorithm

concentrates on one class at a time whereas
decision tree learner takes all classes into

account

A simple covering algorithm

!! Generates a rule by adding tests that maximize

rule’s accuracy

!! Similar to situation in decision trees: problem of

selecting an attribute to split on

!! But: decision tree inducer maximizes overall purity

!! Each new test reduces

 rule’s coverage:

witten&eibe

Selecting a test

!! Goal: maximize accuracy

!! t total number of instances covered by rule

!! p positive examples of the class covered by rule

!! t – p number of errors made by rule

"! Select test that maximizes the ratio p/t

!! We are finished when p/t = 1 or the set of instances
can’t be split any further

witten&eibe

Example:
contact lens data

!! Rule we seek:

!! Possible tests:
Age = Young 2/8

Age = Pre-presbyopic 1/8

Age = Presbyopic 1/8

Spectacle prescription = Myope 3/12

Spectacle prescription = Hypermetrope 1/12

Astigmatism = no 0/12

Astigmatism = yes 4/12

Tear production rate = Reduced 0/12

Tear production rate = Normal 4/12

If ?

 then recommendation = hard

witten&eibe

Modified rule and resulting data

!! Rule with best test added:

!! Instances covered by modified rule:

Age Spectacle prescription Astigmatism Tear production rate Recommended
lenses

Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

If astigmatism = yes

 then recommendation = hard

witten&eibe

Further refinement

!! Current state:

!! Possible tests:
Age = Young 2/4

Age = Pre-presbyopic 1/4

Age = Presbyopic 1/4

Spectacle prescription = Myope 3/6

Spectacle prescription = Hypermetrope 1/6

Tear production rate = Reduced 0/6

Tear production rate = Normal 4/6

If astigmatism = yes

 and ?

 then recommendation = hard

witten&eibe

Modified rule and resulting data

!! Rule with best test added:

!! Instances covered by modified rule:
Age Spectacle prescription Astigmatism Tear production rate Recommended

lenses

Young Myope Yes Normal Hard
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Normal None

If astigmatism = yes

 and tear production rate = normal

 then recommendation = hard

witten&eibe

Further refinement
!! Current state:

!! Possible tests:

!! Tie between the first and the fourth test

!! We choose the one with greater coverage

Age = Young 2/2

Age = Pre-presbyopic 1/2

Age = Presbyopic 1/2

Spectacle prescription = Myope 3/3

Spectacle prescription = Hypermetrope 1/3

If astigmatism = yes

 and tear production rate = normal

 and ?

then recommendation = hard

witten&eibe

The result

!! Final rule:

!! Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

!! These two rules cover all “hard lenses”:

!! Process is repeated with other two classes

If astigmatism = yes

and tear production rate = normal

and spectacle prescription = myope

then recommendation = hard

If age = young and astigmatism = yes

and tear production rate = normal

then recommendation = hard

witten&eibe

Pseudo-code for PRISM

For each class C

 Initialize E to the instance set

 While E contains instances in class C

 Create a rule R with an empty left-hand side that predicts class C

 Until R is perfect (or there are no more attributes to use) do

 For each attribute A not mentioned in R, and each value v,

 Consider adding the condition A = v to the left-hand side of R

 Select A and v to maximize the accuracy p/t

 (break ties by choosing the condition with the largest p)

 Add A = v to R

 Remove the instances covered by R from E

witten&eibe

Rules vs. decision lists

!! PRISM with outer loop removed generates a

decision list for one class

!! Subsequent rules are designed for rules that are not
covered by previous rules

!! But: order doesn’t matter because all rules predict the
same class

!! Outer loop considers all classes separately

!! No order dependence implied

!! Problems: overlapping rules, default rule required

Separate and conquer

!! Methods like PRISM (for dealing with one class)

are separate-and-conquer algorithms:

!! First, a rule is identified

!! Then, all instances covered by the rule are separated

out

!! Finally, the remaining instances are “conquered”

!! Difference to divide-and-conquer methods:

!! Subset covered by rule doesn’t need to be explored
any further

witten&eibe

Outline

!!Rules

!!Linear Models (Regression)

!!Instance-based (Nearest-neighbor)

Linear models

!! Work most naturally with numeric attributes

!! Standard technique for numeric prediction: linear
regression

!! Outcome is linear combination of attributes

!! Weights are calculated from the training data

!! Predicted value for first training instance a(1)

witten&eibe

Minimizing the squared error

!! Choose k +1 coefficients to minimize the squared error
on the training data

!! Squared error:

!! Derive coefficients using standard matrix operations

!! Can be done if there are more instances than attributes
(roughly speaking)

!! Minimizing the absolute error is more difficult

witten&eibe

Regression for Classification

!! Any regression technique can be used for classification

!! Training: perform a regression for each class, setting the
output to 1 for training instances that belong to class, and 0
for those that don’t

!! Prediction: predict class corresponding to model with largest
output value (membership value)

!! For linear regression this is known as multi-response
linear regression

witten&eibe

*Theoretical justification

Model Instance

Observed target value (either 0 or 1)

True class probability

Constant We want to minimize this

The scheme minimizes this

witten&eibe

*Pairwise regression

!! Another way of using regression for classification:

!! A regression function for every pair of classes, using
only instances from these two classes

!! Assign output of +1 to one member of the pair, –1 to
the other

!! Prediction is done by voting

!! Class that receives most votes is predicted

!! Alternative: “don’t know” if there is no agreement

!! More likely to be accurate but more expensive

witten&eibe

Logistic regression

!! Problem: some assumptions violated when linear
regression is applied to classification problems

!! Logistic regression: alternative to linear regression

!! Designed for classification problems

!! Tries to estimate class probabilities directly

!! Does this using the maximum likelihood method

!! Uses this linear model:

P= Class probability

witten&eibe

Discussion of linear models

!! Not appropriate if data exhibits non-linear dependencies

!! But: can serve as building blocks for more complex
schemes (i.e. model trees)

!! Example: multi-response linear regression defines a
hyperplane for any two given classes:

witten&eibe

Comments on basic methods

!! Minsky and Papert (1969) showed that linear

classifiers have limitations, e.g. can’t learn
XOR

!! But: combinations of them can (! Neural Nets)

witten&eibe

Outline

!!Rules

!!Linear Models (Regression)

!!Instance-based (Nearest-neighbor)

Instance-based representation

!! Simplest form of learning: rote learning

!! Training instances are searched for instance that most
closely resembles new instance

!! The instances themselves represent the knowledge

!! Also called instance-based learning

!! Similarity function defines what’s “learned”

!! Instance-based learning is lazy learning

!! Methods:

!! nearest-neighbor

!! k-nearest-neighbor

!! …
witten&eibe

The distance function
!! Simplest case: one numeric attribute

!! Distance is the difference between the two attribute
values involved (or a function thereof)

!! Several numeric attributes: normally, Euclidean
distance is used and attributes are normalized

!! Nominal attributes: distance is set to 1 if values
are different, 0 if they are equal

!! Are all attributes equally important?

!! Weighting the attributes might be necessary

witten&eibe

Instance-based learning

!! Distance function defines what’s learned

!! Most instance-based schemes use Euclidean distance:

 a(1) and a(2): two instances with k attributes

!! Taking the square root is not required when comparing

distances

!! Other popular metric: city-block (Manhattan) metric

!! Adds differences without squaring them

witten&eibe

Normalization and other issues

!! Different attributes are measured on different scales !
need to be normalized:

 vi : the actual value of attribute i

!! Nominal attributes: distance either 0 or 1

!! Common policy for missing values: assumed to be

maximally distant (given normalized attributes)

or

witten&eibe

Discussion of 1-NN

!! Often very accurate

!! … but slow:

!! simple version scans entire training data to derive a
prediction

!! Assumes all attributes are equally important

!! Remedy: attribute selection or weights

!! Possible remedies against noisy instances:

!! Take a majority vote over the k nearest neighbors

!! Removing noisy instances from dataset (difficult!)

!! Statisticians have used k-NN since early 1950s

!! If n " # and k/n " 0, error approaches minimum

witten&eibe

Summary

!!Simple methods frequently work well

!! robust against noise, errors

!!Advanced methods, if properly used, can improve
on simple methods

!!No method is universally best

Evaluation and
Credibility

How much should we
believe in what was

learned?

Outline

!!Introduction

!!Classification with Train, Test, and Validation sets

!!Handling Unbalanced Data; Parameter Tuning

!!Cross-validation

!!Comparing Data Mining Schemes

Introduction

!!How predictive is the model we learned?

!!Error on the training data is not a good indicator
of performance on future data

!!Q: Why?

!!A: Because new data will probably not be exactly the
same as the training data!

!!Overfitting – fitting the training data too precisely
- usually leads to poor results on new data

Evaluation issues

!!Possible evaluation measures:

!!Classification Accuracy

!!Total cost/benefit – when different errors involve
different costs

!!Lift and ROC curves

!!Error in numeric predictions

!!How reliable are the predicted results ?

Classifier error rate

!!Natural performance measure for classification

problems: error rate

!!Success: instance’s class is predicted correctly

!!Error: instance’s class is predicted incorrectly

!!Error rate: proportion of errors made over the whole
set of instances

!!Training set error rate: is way too optimistic!

!!you can find patterns even in random data

Evaluation on “LARGE” data

!!If many (thousands) of examples are available,

including several hundred examples from each
class, then a simple evaluation is sufficient

!!Randomly split data into training and test sets (usually
2/3 for train, 1/3 for test)

!!Build a classifier using the train set and evaluate
it using the test set.

Classification Step 1:
Split data into train and test sets

Results Known

+
+

-
-
+

THE PAST

Data

Training set

Testing set

Classification Step 2:
Build a model on a training set

Training set

Results Known

+
+

-
-
+

THE PAST

Data

Model Builder

Testing set

Classification Step 3:
 Evaluate on test set (Re-train?)

Data

Predictions

Y N

Results Known

Training set

Testing set

+
+

-
-
+

Model Builder

Evaluate

+

-

+

-

Handling unbalanced data

!!Sometimes, classes have very unequal frequency

!!Attrition prediction: 97% stay, 3% attrite (in a month)

!!medical diagnosis: 90% healthy, 10% disease

!!eCommerce: 99% don’t buy, 1% buy

!!Security: >99.99% of Americans are not terrorists

!!Similar situation with multiple classes

!!Majority class classifier can be 97% correct, but
useless

Balancing unbalanced data

!!With two classes, a good approach is to build

BALANCED train and test sets, and train model
on a balanced set

!! randomly select desired number of minority class
instances

!!add equal number of randomly selected majority class

!!Generalize “balancing” to multiple classes

!!Ensure that each class is represented with

approximately equal proportions in train and test

A note on parameter tuning

!! It is important that the test data is not used in any way to
create the classifier

!!Some learning schemes operate in two stages:

!! Stage 1: builds the basic structure

!! Stage 2: optimizes parameter settings

!!The test data can’t be used for parameter tuning!

!!Proper procedure uses three sets: training data,
validation data, and test data

!! Validation data is used to optimize parameters

witten & eibe

Making the most of the data

!!Once evaluation is complete, all the data can be

used to build the final classifier

!!Generally, the larger the training data the better

the classifier (but returns diminish)

!!The larger the test data the more accurate the

error estimate

witten & eibe

Classification:
Train, Validation, Test split

Data

Predictions

Y N

Results Known

Training set

Validation set

+
+

-
-
+

Model Builder

Evaluate

+

-

+

-

Final Model Final Test Set

+

-

+

-

Final Evaluation

Model

Builder

*Predicting performance

!!Assume the estimated error rate is 25%. How
close is this to the true error rate?

!!Depends on the amount of test data

!!Prediction is just like tossing a biased (!) coin

!! “Head” is a “success”, “tail” is an “error”

!!In statistics, a succession of independent events
like this is called a Bernoulli process

!!Statistical theory provides us with confidence
intervals for the true underlying proportion!

witten & eibe

*Confidence intervals

!! We can say: p lies within a certain specified interval with
a certain specified confidence

!! Example: S=750 successes in N=1000 trials

!! Estimated success rate: 75%

!! How close is this to true success rate p?

!! Answer: with 80% confidence p![73.2,76.7]

!! Another example: S=75 and N=100

!! Estimated success rate: 75%

!! With 80% confidence p![69.1,80.1]

witten & eibe

*Mean and variance (also Mod 7)
!! Mean and variance for a Bernoulli trial:

p, p (1–p)

!! Expected success rate f=S/N

!! Mean and variance for f : p, p (1–p)/N

!! For large enough N, f follows a Normal
distribution

!! c% confidence interval [–z " X " z] for random
variable with 0 mean is given by:

!! With a symmetric distribution:

witten & eibe

*Confidence limits
!! Confidence limits for the normal distribution with 0 mean and

a variance of 1:

!! Thus:

!! To use this we have to reduce our random variable f to have
0 mean and unit variance

Pr[X # z] z

0.1% 3.09

0.5% 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

40% 0.25

–1 0 1 1.65

witten & eibe

*Transforming f

!! Transformed value for f :

(i.e. subtract the mean and divide by the standard deviation)

!! Resulting equation:

!! Solving for p :

witten & eibe

*Examples

!! f = 75%, N = 1000, c = 80% (so that z = 1.28):

!! f = 75%, N = 100, c = 80% (so that z = 1.28):

!! Note that normal distribution assumption is only valid for large N (i.e.
N > 100)

!! f = 75%, N = 10, c = 80% (so that z = 1.28):

 (should be taken with a grain of salt)

witten & eibe

Evaluation on “small” data

!!The holdout method reserves a certain amount
for testing and uses the remainder for training

!!Usually: one third for testing, the rest for training

!!For small or “unbalanced” datasets, samples
might not be representative

!!Few or none instances of some classes

!!Stratified sample: advanced version of balancing
the data

!!Make sure that each class is represented with
approximately equal proportions in both subsets

Repeated holdout method

!!Holdout estimate can be made more reliable by

repeating the process with different subsamples

!! In each iteration, a certain proportion is randomly
selected for training (possibly with stratification)

!!The error rates on the different iterations are averaged
to yield an overall error rate

!!This is called the repeated holdout method

!!Still not optimum: the different test sets overlap

!!Can we prevent overlapping?
witten & eibe

Cross-validation

!!Cross-validation avoids overlapping test sets

!!First step: data is split into k subsets of equal size

!!Second step: each subset in turn is used for testing and
the remainder for training

!!This is called k-fold cross-validation

!!Often the subsets are stratified before the cross-

validation is performed

!!The error estimates are averaged to yield an

overall error estimate
witten & eibe !"

Cross-validation example:

—! Break up data into groups of the same size

—!

—!

—! Hold aside one group for testing and use the rest to build model

—!

—! Repeat

Test

More on cross-validation

!!Standard method for evaluation: stratified ten-

fold cross-validation

!!Why ten? Extensive experiments have shown that

this is the best choice to get an accurate estimate

!!Stratification reduces the estimate’s variance

!!Even better: repeated stratified cross-validation

!!E.g. ten-fold cross-validation is repeated ten times and
results are averaged (reduces the variance)

witten & eibe

Leave-One-Out cross-validation

!! Leave-One-Out:
a particular form of cross-validation:

!! Set number of folds to number of training instances

!! I.e., for n training instances, build classifier n times

!! Makes best use of the data

!! Involves no random subsampling

!! Very computationally expensive

!! (exception: NN)

Leave-One-Out-CV and stratification

!! Disadvantage of Leave-One-Out-CV: stratification is not
possible

!! It guarantees a non-stratified sample because there is only
one instance in the test set!

!! Extreme example: random dataset split equally into two
classes

!! Best inducer predicts majority class

!! 50% accuracy on fresh data

!! Leave-One-Out-CV estimate is 100% error!

*The bootstrap
!! CV uses sampling without replacement

!! The same instance, once selected, can not be selected
again for a particular training/test set

!! The bootstrap uses sampling with replacement to
form the training set

!! Sample a dataset of n instances n times with replacement
to form a new dataset
of n instances

!! Use this data as the training set

!! Use the instances from the original
dataset that don’t occur in the new
training set for testing

*The 0.632 bootstrap

!! Also called the 0.632 bootstrap

!! A particular instance has a probability of 1–1/n of not being
picked

!! Thus its probability of ending up in the test data is:

!! This means the training data will contain approximately 63.2%
of the instances

*Estimating error
with the bootstrap

!! The error estimate on the test data will be very
pessimistic

!! Trained on just ~63% of the instances

!! Therefore, combine it with the resubstitution error:

!! The resubstitution error gets less weight than the error
on the test data

!! Repeat process several times with different replacement
samples; average the results

*More on the bootstrap

!! Probably the best way of estimating performance for
very small datasets

!! However, it has some problems

!! Consider the random dataset from above

!! A perfect memorizer will achieve
 0% resubstitution error and
 ~50% error on test data

!! Bootstrap estimate for this classifier:

!! True expected error: 50%

Comparing data mining schemes

!!Frequent situation: we want to know which one

of two learning schemes performs better

!!Note: this is domain dependent!

!!Obvious way: compare 10-fold CV estimates

!!Problem: variance in estimate

!!Variance can be reduced using repeated CV

!!However, we still don’t know whether the results
are reliable
witten & eibe

Significance tests

!!Significance tests tell us how confident we can be
that there really is a difference

!!Null hypothesis: there is no “real” difference

!!Alternative hypothesis: there is a difference

!!A significance test measures how much evidence
there is in favor of rejecting the null hypothesis

!!Let’s say we are using 10 times 10-fold CV

!!Then we want to know whether the two means of
the 10 CV estimates are significantly different

!!Student’s paired t-test tells us whether the means of two
samples are significantly different

witten & eibe

*Paired t-test
!! Student’s t-test tells whether the means of two

samples are significantly different

!! Take individual samples from the set of all possible
cross-validation estimates

!! Use a paired t-test because the individual samples
are paired

!! The same CV is applied twice

William Gosset

Born: 1876 in Canterbury; Died: 1937 in Beaconsfield, England

Obtained a post as a chemist in the Guinness brewery in Dublin in 1899.

Invented the t-test to handle small samples for quality control in brewing.

Wrote under the name "Student".

*Distribution of the means
!! x1 x2 … xk and y1 y2 … yk are the 2k samples for a k-fold CV

!! mx and my are the means

!! With enough samples, the mean of a set of independent
samples is normally distributed

!! Estimated variances of the means are !x
2/k and !y

2/k

!! If µx and µy are the true means then

are approximately normally distributed with
mean 0, variance 1

*Student’s distribution
!! With small samples (k < 100) the mean follows

Student’s distribution with k–1 degrees of freedom

!! Confidence limits:

Pr[X " z] z

0.1% 4.30

0.5% 3.25

1% 2.82

5% 1.83

10% 1.38

20% 0.88

Pr[X " z] z

0.1% 3.09

0.5% 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

9 degrees of freedom normal distribution

*Distribution of the differences

!! Let md = mx – my

!! The difference of the means (md) also has a Student’s
distribution with k–1 degrees of freedom

!! Let !d
2 be the variance of the difference

!! The standardized version of md is called the t-statistic:

!! We use t to perform the t-test

*Performing the test
1.! Fix a significance level "

!! If a difference is significant at the "% level,
there is a (100-")% chance that there really is a
difference

3.! Divide the significance level by two because the
test is two-tailed

!! I.e. the true difference can be +ve or – ve

5.! Look up the value for z that corresponds to "/2

7.! If t ! –z or t # z then the difference is significant

!! I.e. the null hypothesis can be rejected

Unpaired observations

!! If the CV estimates are from different
randomizations, they are no longer paired

!! (or maybe we used k -fold CV for one scheme, and
j -fold CV for the other one)

!! Then we have to use an un paired t-test with
min(k , j) – 1 degrees of freedom

!! The t-statistic becomes:

*Interpreting the result

!! All our cross-validation estimates are based on the same
dataset

!! Hence the test only tells us whether a complete k-fold
CV for this dataset would show a difference

!! Complete k-fold CV generates all possible partitions of the data
into k folds and averages the results

!! Ideally, should use a different dataset sample for each
of the k-fold CV estimates used in the test to judge
performance across different training sets

*Predicting probabilities
!! Performance measure so far: success rate

!! Also called 0-1 loss function:

!! Most classifiers produces class probabilities

!! Depending on the application, we might want to
check the accuracy of the probability estimates

!! 0-1 loss is not the right thing to use in those cases

*Quadratic loss function

!! p1 … pk are probability estimates for an instance

!! c is the index of the instance’s actual class

!! a1 … ak = 0, except for ac which is 1

!! Quadratic loss is:

!! Want to minimize

!! Can show that this is minimized when pj = pj
*, the true probabilities

*Informational loss function

!! The informational loss function is –log(pc),
where c is the index of the instance’s actual class

!! Number of bits required to communicate the actual class

!! Let p1
* … pk

*
 be the true class probabilities

!! Then the expected value for the loss function is:

!! Justification: minimized when pj = pj
*

!! Difficulty: zero-frequency problem

*Discussion
!! Which loss function to choose?

!! Both encourage honesty

!! Quadratic loss function takes into account all class
probability estimates for an instance

!! Informational loss focuses only on the probability
estimate for the actual class

!! Quadratic loss is bounded:
 it can never exceed 2

!! Informational loss can be infinite

!! Informational loss is related to MDL principle [later]

Evaluation Summary:

!!Use Train, Test, Validation sets for “LARGE” data

!!Balance “un-balanced” data

!!Use Cross-validation for small data

!!Don’t use test data for parameter tuning - use

separate validation data

!!Most Important: Avoid Overfitting

Evaluation – next
steps

Lift and Costs

Outline

!!Lift and Gains charts

!!*ROC

!!Cost-sensitive learning

!!Evaluation for numeric predictions

!!MDL principle and Occam’s razor

Direct Marketing Paradigm

!! Find most likely prospects to contact

!! Not everybody needs to be contacted

!! Number of targets is usually much smaller than number
of prospects

!! Typical Applications

!! retailers, catalogues, direct mail (and e-mail)

!! customer acquisition, cross-sell, attrition prediction

!! ...

Direct Marketing Evaluation

!!Accuracy on the entire dataset is not the

right measure

!!Approach

!!develop a target model

!! score all prospects and rank them by decreasing score

!! select top P% of prospects for action

!!How to decide what is the best selection?

Model-Sorted List

No Score Target CustID Age

1 0.97 Y 1746 …

2 0.95 N 1024 …

3 0.94 Y 2478 …

4 0.93 Y 3820 …

5 0.92 N 4897 …

… … … …

99 0.11 N 2734 …

100 0.06 N 2422

Use a model to assign score to each customer

Sort customers by decreasing score

Expect more targets (hits) near the top of the list

3 hits in top 5% of

the list

If there 15 targets

overall, then top 5

has 3/15=20% of

targets

CPH (Cumulative Pct Hits)

5% of random list have 5% of targets
Pct list

C
u

m
u
la

tiv
e

 %
 H

its

Definition:

CPH(P,M)

= % of all targets

in the first P%

of the list scored

by model M

CPH frequently

called Gains

Q: What is expected value for CPH(P,Random) ?

A: Expected value for CPH(P,Random) = P

CPH: Random List vs Model-
ranked list

5% of random list have 5% of targets,

but 5% of model ranked list have 21% of targets
CPH(5%,model)=21%.

Pct list

C
u
m

u
la

tiv
e
 %

 H
its

Lift
Lift(P,M) = CPH(P,M) / P

P -- percent of the list

Lift (at 5%)

= 21% / 5%

= 4.2

better
than random

Note: Some

(including Witten &

Eibe) use “Lift” for

what we call CPH.

Lift Properties

!!Q: Lift(P,Random) =

!!A: 1 (expected value, can vary)

!!Q: Lift(100%, M) =

!!A: 1 (for any model M)

!!Q: Can lift be less than 1?

!!A: yes, if the model is inverted (all the non-targets
precede targets in the list)

!!Generally, a better model has higher lift

*ROC curves

!! ROC curves are similar to gains charts

!! Stands for “receiver operating characteristic”

!! Used in signal detection to show tradeoff between hit rate and
false alarm rate over noisy channel

!! Differences from gains chart:

!! y axis shows percentage of true positives in sample rather than
absolute number

!! x axis shows percentage of false positives in sample rather

than sample size

witten & eibe

*A sample ROC curve

!! Jagged curve—one set of test data

!! Smooth curve—use cross-validation
witten & eibe

*Cross-validation and ROC curves

!! Simple method of getting a ROC curve using cross-
validation:

!! Collect probabilities for instances in test folds

!! Sort instances according to probabilities

!! This method is implemented in WEKA

!! However, this is just one possibility

!! The method described in the book generates an ROC curve for
each fold and averages them

witten & eibe

*ROC curves for two schemes

!! For a small, focused sample, use method A

!! For a larger one, use method B

!! In between, choose between A and B with appropriate probabilities
witten & eibe

*The convex hull

!! Given two learning schemes we can achieve any point
on the convex hull!

!! TP and FP rates for scheme 1: t1 and f1

!! TP and FP rates for scheme 2: t2 and f2

!! If scheme 1 is used to predict 100!q % of the cases and
scheme 2 for the rest, then

!! TP rate for combined scheme:
q ! t1+(1-q) ! t2

!! FP rate for combined scheme:
q ! f2+(1-q) ! f2

witten & eibe

Cost Sensitive Learning

!!There are two types of errors

!!Machine Learning methods usually minimize FP+FN

!!Direct marketing maximizes TP

Predicted class

Yes No

Actual
class

Yes TP: True
positive

FN: False
negative

No FP: False
positive

TN: True
negative

Different Costs

!!In practice, true positive and false negative errors

often incur different costs

!!Examples:

!!Medical diagnostic tests: does X have leukemia?

!!Loan decisions: approve mortgage for X?

!!Web mining: will X click on this link?

!!Promotional mailing: will X buy the product?

!!…

Cost-sensitive learning

!! Most learning schemes do not perform cost-sensitive
learning

!! They generate the same classifier no matter what costs are
assigned to the different classes

!! Example: standard decision tree learner

!! Simple methods for cost-sensitive learning:

!! Re-sampling of instances according to costs

!! Weighting of instances according to costs

!! Some schemes are inherently cost-sensitive, e.g. naïve
Bayes

*Measures in information retrieval

!! Percentage of retrieved documents that are relevant:
precision=TP/(TP+FP)

!! Percentage of relevant documents that are returned: recall
=TP/(TP+FN)

!! Precision/recall curves have hyperbolic shape

!! Summary measures: average precision at 20%, 50% and
80% recall (three-point average recall)

!! F-measure=(2!recall!precision)/(recall+precision)

witten & eibe

*Summary of measures

Domain Plot Explanation

Lift chart Marketing TP

Subset
size

TP

(TP+FP)/(TP+FP+TN+FN)

ROC curve Communications TP rate

FP rate

TP/(TP+FN)

FP/(FP+TN)

Recall-

precision
curve

Information
retrieval

Recall

Precision

TP/(TP+FN)

TP/(TP+FP)

witten & eibe

Evaluating numeric prediction

!! Same strategies: independent test set, cross-validation,
significance tests, etc.

!! Difference: error measures

!! Actual target values: a1 a2 …an

!! Predicted target values: p1 p2 … pn

!! Most popular measure: mean-squared error

!! Easy to manipulate mathematically

witten & eibe

Other measures
!! The root mean-squared error :

!! The mean absolute error is less sensitive to outliers
than the mean-squared error:

!! Sometimes relative error values are more
appropriate (e.g. 10% for an error of 50 when
predicting 500)

witten & eibe

Improvement on the mean

!! How much does the scheme improve on simply
predicting the average?

!! The relative squared error is (is the average):

!! The relative absolute error is:

witten & eibe

Correlation coefficient

!! Measures the statistical correlation between the predicted
values and the actual values

!! Scale independent, between –1 and +1

!! Good performance leads to large values!
witten & eibe

Which measure?

!! Best to look at all of them

!! Often it doesn’t matter

!! Example:

A B C D

Root mean-squared error 67.8 91.7 63.3 57.4

Mean absolute error 41.3 38.5 33.4 29.2

Root rel squared error 42.2% 57.2% 39.4% 35.8%

Relative absolute error 43.1% 40.1% 34.8% 30.4%

Correlation coefficient 0.88 0.88 0.89 0.91

!! D best
!! C second-best
!! A, B arguable witten & eibe

*The MDL principle

!! MDL stands for minimum description length

!! The description length is defined as:

space required to describe a theory

+

space required to describe the theory’s mistakes

!! In our case the theory is the classifier and the mistakes
are the errors on the training data

!! Aim: we seek a classifier with minimal DL

!! MDL principle is a model selection criterion

witten & eibe

Model selection criteria
!! Model selection criteria attempt to find a good

compromise between:

A.! The complexity of a model

B.! Its prediction accuracy on the training data

!! Reasoning: a good model is a simple model that
achieves high accuracy on the given data

!! Also known as Occam’s Razor :
the best theory is the smallest one
that describes all the facts

William of Ockham, born in the village of Ockham in Surrey

(England) about 1285, was the most influential philosopher of the

14th century and a controversial theologian.

witten & eibe

Elegance vs. errors

!! Theory 1: very simple, elegant theory that explains the
data almost perfectly

!! Theory 2: significantly more complex theory that
reproduces the data without mistakes

!! Theory 1 is probably preferable

!! Classical example: Kepler’s three laws on planetary
motion

!! Less accurate than Copernicus’s latest refinement of the
Ptolemaic theory of epicycles

witten & eibe

*MDL and compression

!! MDL principle relates to data compression:

!! The best theory is the one that compresses the data the most

!! I.e. to compress a dataset we generate a model and then store
the model and its mistakes

!! We need to compute
(a) size of the model, and
(b) space needed to encode the errors

!! (b) easy: use the informational loss function

!! (a) need a method to encode the model

witten & eibe

*MDL and Bayes’s theorem

!! L[T]=“length” of the theory

!! L[E|T]=training set encoded wrt the theory

!! Description length= L[T] + L[E|T]

!! Bayes’ theorem gives a posteriori probability of a theory
given the data:

!! Equivalent to:

constant witten & eibe

*MDL and MAP

!! MAP stands for maximum a posteriori probability

!! Finding the MAP theory corresponds to finding the MDL theory

!! Difficult bit in applying the MAP principle: determining the prior
probability Pr[T] of the theory

!! Corresponds to difficult part in applying the MDL principle: coding
scheme for the theory

!! I.e. if we know a priori that a particular theory is more likely we
need less bits to encode it

witten & eibe

*Discussion of MDL principle

!! Advantage: makes full use of the training data when
selecting a model

!! Disadvantage 1: appropriate coding scheme/prior
probabilities for theories are crucial

!! Disadvantage 2: no guarantee that the MDL theory is the one
which minimizes the expected error

!! Note: Occam’s Razor is an axiom!

!! Epicurus’ principle of multiple explanations: keep all theories
that are consistent with the data

witten & eibe

*Bayesian model averaging

!! Reflects Epicurus’ principle: all theories are used for prediction
weighted according to P[T|E]

!! Let I be a new instance whose class we must predict

!! Let C be the random variable denoting the class

!! Then BMA gives the probability of C given

!! I

!! training data E

!! possible theories Tj

witten & eibe

*MDL and clustering
!! Description length of theory:

bits needed to encode the clusters

!! e.g. cluster centers

!! Description length of data given theory:
encode cluster membership and position relative to
cluster

!! e.g. distance to cluster center

!! Works if coding scheme uses less code space for

small numbers than for large ones

!! With nominal attributes, must communicate

probability distributions for each cluster

witten & eibe

Evaluation Summary:

!!Avoid Overfitting

!!Use Cross-validation for small data

!!Don’t use test data for parameter tuning - use
separate validation data

!!Consider costs when appropriate

Data

Preparation

for

Knowledge

Discovery

Outline: Data Preparation

!! Data Understanding

!! Data Cleaning

!! Metadata

!! Missing Values

!! Unified Date Format

!! Nominal to Numeric

!! Discretization

!! Field Selection and “False Predictors”

!! Unbalanced Target Distribution

Knowledge Discovery Process
flow, according to CRISP-DM

Monitoring

see

www.crisp-dm.org

for more

information

Knowledge Discovery Process,
in practice

Data Preparation

estimated to take

70-80% of the

time and effort

Monitoring

Data

Preparation

Data Understanding:
Relevance

!!What data is available for the task?

!!Is this data relevant?

!!Is additional relevant data available?

!!How much historical data is available?

!!Who is the data expert ?

Data Understanding:
Quantity

!!Number of instances (records)

!! Rule of thumb: 5,000 or more desired

!! if less, results are less reliable; use special methods (boosting, …)

!!Number of attributes (fields)

!! Rule of thumb: for each field, 10 or more instances

!! If more fields, use feature reduction and selection

!!Number of targets

!! Rule of thumb: >100 for each class

!! if very unbalanced, use stratified sampling

Data Cleaning Steps

!! Data acquisition and metadata

!! Missing values

!! Unified date format

!! Converting nominal to numeric

!! Discretization of numeric data

!! Data validation and statistics

Data Cleaning: Acquisition

!!Data can be in DBMS

!!ODBC, JDBC protocols

!!Data in a flat file

!!Fixed-column format

!!Delimited format: tab, comma “,” , other

!!E.g. C4.5 and Weka “arff” use comma-delimited data

!!Attention: Convert field delimiters inside strings

!!Verify the number of fields before and after

Data Cleaning: Example

!! Original data (fixed column format)

!! Clean data

0000000001,199706,1979.833,8014,5722 , ,#000310 …. ,
111,03,000101,0,04,0300,0

,0300,0300.00

Data Cleaning: Metadata

!!Field types:

!! binary, nominal (categorical), ordinal, numeric, …

!! For nominal fields: tables translating codes to full descriptions

!!Field role:

!! input : inputs for modeling

!! target : output

!! id/auxiliary : keep, but not use for modeling

!! ignore : don’t use for modeling

!! weight : instance weight

!! …

!!Field descriptions

Data Cleaning: Reformatting

Convert data to a standard format (e.g. arff or csv)

!! Missing values

!! Unified date format

!! Binning of numeric data

!! Fix errors and outliers

!! Convert nominal fields whose values have order
to numeric.

!! Q: Why? A: to be able to use “>” and “<“
comparisons on these fields)

Data Cleaning: Missing Values

!! Missing data can appear in several forms:

!! <empty field> “0” “.” “999” “NA” …

!! Standardize missing value code(s)

!! Dealing with missing values:

!! ignore records with missing values

!! treat missing value as a separate value

!! Imputation: fill in with mean or median values

Data Cleaning:
Unified Date Format

!! We want to transform all dates to the same format internally

!! Some systems accept dates in many formats

!! e.g. “Sep 24, 2003” , 9/24/03, 24.09.03, etc

!! dates are transformed internally to a standard value

!! Frequently, just the year (YYYY) is sufficient

!! For more details, we may need the month, the day, the hour, etc

!! Representing date as YYYYMM or YYYYMMDD can be OK, but has
problems

!! Q: What are the problems with YYYYMMDD dates?

!! A: Ignoring for now the Looming Y10K (year 10,000 crisis …)

!! YYYYMMDD does not preserve intervals:

!! 20040201 - 20040131 /= 20040131 – 20040130

!! This can introduce bias into models

Unified Date Format Options

!!To preserve intervals, we can use

!!Unix system date: Number of seconds since 1970

!!Number of days since Jan 1, 1960 (SAS)

!!Problem:

!!values are non-obvious

!!don’t help intuition and knowledge discovery

!!harder to verify, easier to make an error

KSP Date Format

 days_starting_Jan_1 - 0.5

KSP Date = YYYY + ----------------------------------

 365 + 1_if_leap_year

!!Preserves intervals (almost)

!!The year and quarter are obvious

!! Sep 24, 2003 is 2003 + (267-0.5)/365= 2003.7301 (round to 4
digits)

!!Consistent with date starting at noon

!!Can be extended to include time

Y2K issues: 2 digit Year

!!2-digit year in old data – legacy of Y2K

!!E.g. Q: Year 02 – is it 1902 or 2002 ?

!!A: Depends on context (e.g. child birthday or year of
house construction)

!!Typical approach: CUTOFF year, e.g. 30

!! if YY < CUTOFF , then 20YY, else 19YY

Conversion: Nominal to Numeric

!!Some tools can deal with nominal values
internally

!!Other methods (neural nets, regression, nearest
neighbor) require only numeric inputs

!!To use nominal fields in such methods need to
convert them to a numeric value

!!Q: Why not ignore nominal fields altogether?

!!A: They may contain valuable information

!!Different strategies for binary, ordered, multi-
valued nominal fields

Conversion: Binary to Numeric

!!Binary fields

!!E.g. Gender=M, F

!!Convert to Field_0_1 with 0, 1 values

!!e.g. Gender = M " Gender_0_1 = 0

!! Gender = F " Gender_0_1 = 1

Conversion: Ordered to Numeric

!!Ordered attributes (e.g. Grade) can be converted
to numbers preserving natural order, e.g.

!!A " 4.0

!!A- " 3.7

!!B+ " 3.3

!!B " 3.0

!!Q: Why is it important to preserve natural order?

!!A: To allow meaningful comparisons, e.g. Grade
> 3.5

Conversion: Nominal, Few Values

!!Multi-valued, unordered attributes with small (rule
of thumb < 20) no. of values

!! e.g. Color=Red, Orange, Yellow, …, Violet

!! for each value v create a binary “flag” variable C_v ,
which is 1 if Color=v, 0 otherwise

ID Color …

371 red

433 yellow

ID C_red C_orange C_yellow …

371 1 0 0

433 0 0 1

Conversion: Nominal, Many Values

!!Examples:

!! US State Code (50 values)

!! Profession Code (7,000 values, but only few frequent)

!!Q: How to deal with such fields ?

!!A: Ignore ID-like fields whose values are unique for each
record

!!For other fields, group values “naturally”:

!! e.g. 50 US States " 3 or 5 regions

!! Profession – select most frequent ones, group the rest

!!Create binary flag-fields for selected values

Data Cleaning: Discretization

!!Some methods require discrete values, e.g. most

versions of Naïve Bayes, CHAID

!!Discretization is very useful for generating a

summary of data

!!Also called “binning”

Discretization: Equal-Width

Equal Width, bins Low <= value < High

[64,67) [67,70) [70,73) [73,76) [76,79) [79,82) [82,85]

Temperature values:

64 65 68 69 70 71 72 72 75 75 80 81 83 85

2 2

Count

4
2 2 2 0

Discretization: Equal-Width
may produce clumping

[0 – 200,000) … ….

1

Count

Salary in a corporation

[1,800,000 –

2,000,000]

Discretization: Equal-Height

Equal Height = 4, except for the last bin

[64 69] [70 .. 72] [73 81] [83 .. 85]

Temperature values:

64 65 68 69 70 71 72 72 75 75 80 81 83 85

4

Count

4 4
2

Discretization: Equal-height
advantages

!!Generally preferred because avoids clumping

!!In practice, “almost-equal” height binning is used
which avoids clumping and gives more intuitive

breakpoints

!!Additional considerations:

!!don’t split frequent values across bins

!! create separate bins for special values (e.g. 0)

!! readable breakpoints (e.g. round breakpoints)

Discretization: Class Dependent

64 85

Eibe – min of 3 values per bucket

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

Discretization considerations

!!Equal Width is simplest, good for many classes

!! can fail miserably for unequal distributions

!!Equal Height gives better results

!!Class-dependent can be better for classification

!!Note: decision trees build discretization on the fly

!!Naïve Bayes requires initial discretization

!!Many other methods exist …

Outliers and Errors

!!Outliers are values thought to be out of range.

!!Approaches:

!!do nothing

!!enforce upper and lower bounds

!! let binning handle the problem

Examine Data Statistics

Data Cleaning: Field Selection

First: Remove fields with no or little variability

!!Examine the number of distinct field values

!!Rule of thumb: remove a field where almost all values
are the same (e.g. null), except possibly in minp % or
less of all records.

!!minp could be 0.5% or more generally less than 5% of
the number of targets of the smallest class

False Predictors or Information
“Leakers”

!! False predictors are fields correlated to target behavior,
which describe events that happen at the same time or
after the target behavior

!! If databases don’t have the event dates, a false predictor

will appear as a good predictor

!! Example: Service cancellation date is a leaker when

predicting attriters.

!! Q: Give another example of a false predictor

!! A: e.g. student final grade, for the task of predicting
whether the student passed the course

False Predictors:
Find “suspects”

!! Build an initial decision-tree model

!! Consider very strongly predictive fields as
“suspects”

!! strongly predictive – if a field by itself provides close
to 100% accuracy, at the top or a branch below

!! Verify “suspects” using domain knowledge or
with a domain expert

!! Remove false predictors and build an initial
model

(Almost) Automated False Predictor
Detection

!!For each field

!!Build 1-field decision trees for each field

!! (or compute correlation with the target field)

!!Rank all suspects by 1-field prediction accuracy
(or correlation)

!!Remove suspects whose accuracy is close to
100% (Note: the threshold is domain dependent)

!!Verify top “suspects” with domain expert

Selecting Most Relevant Fields

!!If there are too many fields, select a subset that

is most relevant.

!!Can select top N fields using 1-field predictive

accuracy as computed earlier.

!!What is good N?

!!Rule of thumb -- keep top 50 fields

Field Reduction Improves
Classification

!!most learning algorithms look for non-linear

combinations of fields -- can easily find many
spurious combinations given small # of records

and large # of fields

!!Classification accuracy improves if we first reduce

number of fields

!!Multi-class heuristic: select equal # of fields from

each class

Derived Variables

!! Better to have a fair modeling method and good

variables, than to have the best modeling
method and poor variables.

!! Insurance Example: People are eligible for
pension withdrawal at age 59 !. Create it as a

separate Boolean variable!

!! *Advanced methods exists for automatically

examining variable combinations, but it is very
computationally expensive!

Unbalanced Target Distribution

!!Sometimes, classes have very unequal frequency

!!Attrition prediction: 97% stay, 3% attrite (in a month)

!!medical diagnosis: 90% healthy, 10% disease

!!eCommerce: 99% don’t buy, 1% buy

!!Security: >99.99% of Americans are not terrorists

!!Similar situation with multiple classes

!!Majority class classifier can be 97% correct, but
useless

Handling Unbalanced Data

!! With two classes: let positive targets be a minority

!! Separate raw held-aside set (e.g. 30% of data) and raw
train

!! put aside raw held-aside and don’t use it till the final model

!! Select remaining positive targets (e.g. 70% of all
targets) from raw train

!! Join with equal number of negative targets from raw
train, and randomly sort it.

!! Separate randomized balanced set into balanced train
and balanced test

Building Balanced Train Sets

Y

..

..

N

N

N

..

..

..

..

..
Raw Held

Targets

Non-Targets
Balanced set

Balanced Train

Balanced Test

Learning with Unbalanced Data

!!Build models on balanced train/test sets

!!Estimate the final results (lift curve) on the raw
held set

!!Can generalize “balancing” to multiple classes

!! stratified sampling

!!Ensure that each class is represented with
approximately equal proportions in train and test

Data Preparation Key Ideas

!! Use meta-data

!! Inspect data for anomalies and errors

!! Eliminate “false positives”

!! Develop small, reusable software components

!! Plan for verification - verify the results after
each step

Summary

Good data preparation is
key to producing valid
and reliable models

Clustering

Outline

!! Introduction

!! K-means clustering

!! Hierarchical clustering: COBWEB

Classification vs. Clustering

Classification: Supervised learning:

Learns a method for predicting the
instance class from pre-labeled
(classified) instances

Clustering

Unsupervised learning:

Finds “natural” grouping of
instances given un-labeled data

Clustering Methods

!! Many different method and algorithms:

!! For numeric and/or symbolic data

!! Deterministic vs. probabilistic

!! Exclusive vs. overlapping

!! Hierarchical vs. flat

!! Top-down vs. bottom-up

Clusters:
exclusive vs. overlapping

Simple 2-D representation

Non-overlapping

Venn diagram

Overlapping

a

k
j

i

h

g
f

e d

c

b

Clustering Evaluation

!!Manual inspection

!!Benchmarking on existing labels

!!Cluster quality measures

!!distance measures

!!high similarity within a cluster, low across clusters

The distance function

!! Simplest case: one numeric attribute A

!! Distance(X,Y) = A(X) – A(Y)

!! Several numeric attributes:

!! Distance(X,Y) = Euclidean distance between X,Y

!! Nominal attributes: distance is set to 1 if values

are different, 0 if they are equal

!! Are all attributes equally important?

!! Weighting the attributes might be necessary

Simple Clustering: K-means

Works with numeric data only

1)! Pick a number (K) of cluster centers (at
random)

2)! Assign every item to its nearest cluster center
(e.g. using Euclidean distance)

3)! Move each cluster center to the mean of its
assigned items

4)! Repeat steps 2,3 until convergence (change in
cluster assignments less than a threshold)

K-means example, step 1

k1

k2

k3

X

Y

Pick 3

initial

cluster

centers

(randomly)

K-means example, step 2

k1

k2

k3

X

Y

Assign

each point

to the closest

cluster

center

K-means example, step 3

X

Y

Move

each cluster

center

to the mean

of each cluster

k1

k2

k2

k1

k3

k3

K-means example, step 4

X

Y

Reassign

points

closest to a

different new

cluster center

Q: Which

points are

reassigned?

k1

k2

k3

K-means example, step 4 …

X

Y

A: three

points with

animation

k1

k3
k2

K-means example, step 4b

X

Y

re-compute

cluster

means

k1

k3
k2

K-means example, step 5

X

Y

move cluster

centers to

cluster means

k2

k1

k3

Discussion

!! Result can vary significantly depending on initial
choice of seeds

!! Can get trapped in local minimum

!! Example:

!! To increase chance of finding global optimum: restart
with different random seeds

instances

initial
cluster

centers

K-means clustering summary

Advantages

!! Simple, understandable

!! items automatically
assigned to clusters

Disadvantages

!! Must pick number of
clusters before hand

!! All items forced into a
cluster

!! Too sensitive to outliers

K-means variations

!!K-medoids – instead of mean, use medians of

each cluster

!!Mean of 1, 3, 5, 7, 9 is

!!Mean of 1, 3, 5, 7, 1009 is

!!Median of 1, 3, 5, 7, 1009 is

!!Median advantage: not affected by extreme values

!!For large databases, use sampling

5

205

5

*Hierarchical clustering
!! Bottom up

!! Start with single-instance clusters

!! At each step, join the two closest clusters

!! Design decision: distance between clusters

!! E.g. two closest instances in clusters
 vs. distance between means

!! Top down

!! Start with one universal cluster

!! Find two clusters

!! Proceed recursively on each subset

!! Can be very fast

!! Both methods produce a
dendrogram

*Incremental clustering

!! Heuristic approach (COBWEB/CLASSIT)

!! Form a hierarchy of clusters incrementally

!! Start:

!! tree consists of empty root node

!! Then:

!! add instances one by one

!! update tree appropriately at each stage

!! to update, find the right leaf for an instance

!! May involve restructuring the tree

!! Base update decisions on category utility

*Clustering weather data
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot High False

D Rainy Mild High False

E Rainy Cool Normal False

F Rainy Cool Normal True

G Overcast Cool Normal True

H Sunny Mild High False

I Sunny Cool Normal False

J Rainy Mild Normal False

K Sunny Mild Normal True

L Overcast Mild High True

M Overcast Hot Normal False

N Rainy Mild High True

1

2

3

*Clustering weather data
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot High False

D Rainy Mild High False

E Rainy Cool Normal False

F Rainy Cool Normal True

G Overcast Cool Normal True

H Sunny Mild High False

I Sunny Cool Normal False

J Rainy Mild Normal False

K Sunny Mild Normal True

L Overcast Mild High True

M Overcast Hot Normal False

N Rainy Mild High True

4

3

Merge best host

and runner-up

5

Consider splitting the best

host if merging doesn’t help

*Final hierarchy
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot High False

D Rainy Mild High False

Oops! a and b are

actually very similar

*Example: the iris data (subset)
*Clustering with cutoff

*Category utility

!! Category utility: quadratic loss function
defined on conditional probabilities:

!! Every instance in different category !

numerator becomes

maximum

number of attributes

*Overfitting-avoidance heuristic

!! If every instance gets put into a different category

the numerator becomes (maximal):

 Where n is number of all possible attribute values.

!! So without k in the denominator of the CU-

formula, every cluster would consist of one
instance!

Maximum value of CU

Levels of Clustering Hierarchical Clustering

!! Clusters are created in levels actually creating sets of
clusters at each level.

!! Agglomerative

!! Initially each item in its own cluster

!! Iteratively clusters are merged together

!! Bottom Up

!! Divisive

!! Initially all items in one cluster

!! Large clusters are successively divided

!! Top Down

Dendrogram

!! Dendrogram: a tree data structure
which illustrates hierarchical
clustering techniques.

!! Each level shows clusters for that
level.

!! Leaf – individual clusters

!! Root – one cluster

!! A cluster at level i is the union of its
children clusters at level i+1.

Agglomerative Example
A B C D E

A 0 1 2 2 3

B 1 0 2 4 3

C 2 2 0 1 5

D 2 4 1 0 3

E 3 3 5 3 0

B A

E C

D

4

Threshold of

 2 3 5 1

A B C D E

Distance Between Clusters

!! Single Link: smallest distance between points

!! Complete Link: largest distance between points

!! Average Link: average distance between points

!! Centroid: distance between centroids

Single Link Clustering

Other Clustering Approaches

!!EM – probability based clustering

!!Bayesian clustering

!!SOM – self-organizing maps

!!…

Self-Organizing Map

Self Organizing Map

!! Unsupervised learning

!! Competitive learning

output

input (n-dimensional)

winner

Self Organizing Map

!! Determine the winner (the neuron of which

the weight vector has the smallest distance to
the input vector)

!! Move the weight vector w of the winning
neuron towards the input i

Before learning

i

w

After learning

i
w

Self Organizing Map

!! Impose a topological order onto the
competitive neurons (e.g., rectangular

map)

!! Let neighbors of the winner share the
“prize” (The “postcode lottery” principle)

!! After learning, neurons with similar
weights tend to cluster on the map

Self Organizing Map

input

Self Organizing Map Self Organizing Map

!! Input: uniformly randomly distributed points

!! Output: Map of 202 neurons

!! Training

!! Starting with a large learning rate and neighborhood

size, both are gradually decreased to facilitate
convergence

Self Organizing Map Self Organizing Map

Self Organizing Map

Self Organizing Map Self Organizing Map

Discussion

!! Can interpret clusters by using supervised learning

!! learn a classifier based on clusters

!! Decrease dependence between attributes?

!! pre-processing step

!! E.g. use principal component analysis

!! Can be used to fill in missing values

!! Key advantage of probabilistic clustering:

!! Can estimate likelihood of data

!! Use it to compare different models objectively

Examples of Clustering
Applications

!! Marketing: discover customer groups and use them for

targeted marketing and re-organization

!! Astronomy: find groups of similar stars and galaxies

!! Earth-quake studies: Observed earth quake epicenters

should be clustered along continent faults

!! Genomics: finding groups of gene with similar

expressions

!! …

Clustering Summary

!!unsupervised

!!many approaches

!!K-means – simple, sometimes useful

!! K-medoids is less sensitive to outliers

!!Hierarchical clustering – works for symbolic attributes

!!Evaluation is a problem

Associations and

Frequent Item

Analysis

Outline

!! Transactions

!! Frequent itemsets

!! Subset Property

!! Association rules

!! Applications

Transactions Example Transaction database: Example

ITEMS:

A = milk

B= bread

C= cereal

D= sugar

E= eggs

Instances = Transactions

Transaction database: Example
Attributes converted to binary flags

Definitions

!! Item: attribute=value pair or simply value

!! usually attributes are converted to binary flags for
each value, e.g. product=“A” is written as “A”

!! Itemset I : a subset of possible items

!! Example: I = {A,B,E} (order unimportant)

!! Transaction: (TID, itemset)

!! TID is transaction ID

Support and Frequent Itemsets

!! Support of an itemset

!! sup(I) = no. of transactions t that support (i.e.
contain) I

!! In example database:

!! sup ({A,B,E}) = 2, sup ({B,C}) = 4

!! Frequent itemset I is one with at least the

minimum support count

!! sup(I) >= minsup

SUBSET PROPERTY

Association Rules

!!Association rule R : Itemset1 => Itemset2

!! Itemset1, 2 are disjoint and Itemset2 is non-empty

!!meaning: if transaction includes Itemset1 then it also
has Itemset2

!!Examples

!!A,B => E,C

!!A => B,C

From Frequent Itemsets to Association
Rules

!!Q: Given frequent set {A,B,E}, what are
possible association rules?

!! A => B, E

!! A, B => E

!! A, E => B

!! B => A, E

!! B, E => A

!! E => A, B

!! __ => A,B,E (empty rule), or true => A,B,E

Classification vs Association Rules

Classification Rules

!!Focus on one target field

!!Specify class in all cases

!!Measures: Accuracy

Association Rules

!!Many target fields

!!Applicable in some cases

!!Measures: Support,
Confidence, Lift

Rule Support and Confidence

!! Suppose R : I => J is an association rule

!! sup (R) = sup (I ! J) is the support count

!! support of itemset I ! J (I or J)

!! conf (R) = sup(J) / sup(R) is the confidence of R

!! fraction of transactions with I ! J that have J

!! Association rules with minimum support and count are
sometimes called “strong” rules

Association Rules Example:

!! Q: Given frequent set {A,B,E}, what
association rules have minsup = 2 and
minconf= 50% ?

 A, B => E : conf=2/4 = 50%

 A, E => B : conf=2/2 = 100%

 B, E => A : conf=2/2 = 100%

 E => A, B : conf=2/2 = 100%

Don’t qualify

 A =>B, E : conf=2/6 =33%< 50%

 B => A, E : conf=2/7 = 28% < 50%

 __ => A,B,E : conf: 2/9 = 22% < 50%

Find Strong Association Rules

!!A rule has the parameters minsup and minconf:

!! sup(R) >= minsup and conf (R) >= minconf

!!Problem:

!!Find all association rules with given minsup and
minconf

!!First, find all frequent itemsets

Finding Frequent Itemsets

!! Start by finding one-item sets (easy)

!! Q: How?

!! A: Simply count the frequencies of all items

Finding itemsets: next level

!!Apriori algorithm (Agrawal & Srikant)

!!Idea: use one-item sets to generate two-item
sets, two-item sets to generate three-item sets, …

!! If (A B) is a frequent item set, then (A) and (B) have to
be frequent item sets as well!

!! In general: if X is frequent k-item set, then all (k-1)-
item subsets of X are also frequent

!!Compute k-item set by merging (k-1)-item sets

An example

!! Given: five three-item sets

!(A B C), (A B D), (A C D), (A C E), (B C D)!

!! Lexicographic order improves efficiency

!! Candidate four-item sets:

 (A B C D) ! Q: OK? !

A: yes, because all 3-item subsets are frequent

!(A C D E) Q: OK? !

A: No, because (C D E) is not frequent

Generating Association Rules

!! Two stage process:

!! Determine frequent itemsets e.g. with the Apriori
algorithm.

!! For each frequent item set I

!! for each subset J of I

!! determine all association rules of the form: I-J => J

!! Main idea used in both stages : subset property

Example: Generating Rules
from an Itemset

!! Frequent itemset from golf data:

!! Seven potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)!

If Humidity = Normal and Windy = False then Play = Yes!

If Humidity = Normal and Play = Yes then Windy = False!

If Windy = False and Play = Yes then Humidity = Normal!

If Humidity = Normal then Windy = False and Play = Yes!

If Windy = False then Humidity = Normal and Play = Yes!

If Play = Yes then Humidity = Normal and Windy = False!

If True then Humidity = Normal and Windy = False and Play = Yes!

4/4!

4/6!

4/6!

4/7!

4/8!

4/9!

4/12!

Rules for the weather data

!! Rules with support > 1 and confidence = 100%:

!! In total: 3 rules with support four, 5 with support
three, and 50 with support two

Association rule! Sup.! Conf.!

1! Humidity=Normal Windy=False! !Play=Yes! 4! 100%!

2! Temperature=Cool! !Humidity=Normal! 4! 100%!

3! Outlook=Overcast! !Play=Yes! 4! 100%!

4! Temperature=Cold Play=Yes! !Humidity=Normal! 3! 100%!

...! ...! ...! ...! ...!

58! Outlook=Sunny Temperature=Hot! !Humidity=High! 2! 100%!

Weka associations
File: weather.nominal.arff

MinSupport: 0.2

Weka associations: output

Filtering Association Rules

!!Problem: any large dataset can lead to very large

number of association rules, even with reasonable
Min Confidence and Support

!!Confidence by itself is not sufficient

!!e.g. if all transactions include Z, then

!!any rule I => Z will have confidence 100%.

!!Other measures to filter rules

Association Rule LIFT

!! The lift of an association rule I => J is defined as:

!! lift = P(J|I) / P(J)

!! Note, P(I) = (support of I) / (no. of transactions)

!! ratio of confidence to expected confidence

!! Interpretation:

!! if lift > 1, then I and J are positively correlated

 lift < 1, then I are J are negatively correlated.

 lift = 1, then I and J are independent.

Other issues

!! ARFF format very inefficient for typical market
basket data

!! Attributes represent items in a basket and most items
are usually missing

!! Interestingness of associations

!! find unusual associations: Milk usually goes with
bread, but soy milk does not.

Beyond Binary Data

!!Hierarchies

!!drink " milk " low-fat milk " Stop&Shop low-fat milk
…

!! find associations on any level

!!Sequences over time

!!…

Sampling

!! Large databases

!! Sample the database and apply Apriori to the sample.

!! Potentially Large Itemsets (PL): Large itemsets
from sample

!! Negative Border (BD -):

!! Generalization of Apriori-Gen applied to itemsets of
varying sizes.

!! Minimal set of itemsets which are not in PL, but
whose subsets are all in PL.

Negative Border Example

PL PL !BD-(PL)

Sampling Algorithm

1.! Ds = sample of Database D;

2.! PL = Large itemsets in Ds using smalls;

3.! C = PL ! BD-(PL);

4.! Count C in Database using s;

5.! ML = large itemsets in BD-(PL);

6.! If ML = " then done

7.! else C = repeated application of BD-;

8.! Count C in Database;

Sampling Example

!! Find AR assuming s = 20%

!! Ds = { t1,t2}

!! Smalls = 10%

!! PL = {{Bread}, {Jelly}, {PeanutButter},
{Bread,Jelly}, {Bread,PeanutButter}, {Jelly,
PeanutButter}, {Bread,Jelly,PeanutButter}}

!! BD-(PL)={{Beer},{Milk}}

!! ML = {{Beer}, {Milk}}

!! Repeated application of BD- generates all remaining
itemsets

Sampling Adv/Disadv

!! Advantages:

!! Reduces number of database scans to one in the best
case and two in worst.

!! Scales better.

!! Disadvantages:

!! Potentially large number of candidates in second pass

Partitioning

!! Divide database into partitions D1,D2,…,Dp

!! Apply Apriori to each partition

!! Any large itemset must be large in at least one
partition.

Partitioning Algorithm

1.! Divide D into partitions D1,D2,…,Dp;

2.! For I = 1 to p do

3.! Li = Apriori(Di);

4.! C = L1 ! … ! Lp;

5.! Count C on D to generate L;

Partitioning Example

D1

D2

S=10%

Partitioning Adv/Disadv

!! Advantages:

!! Adapts to available main memory

!! Easily parallelized

!! Maximum number of database scans is two.

!! Disadvantages:

!! May have many candidates during second scan.

 Count Distribution Algorithm(CDA)
1.! Place data partition at each site.

2.! In Parallel at each site do

3.! C1 = Itemsets of size one in I;

4.! Count C1;

5.! Broadcast counts to all sites;

6.! Determine global large itemsets of size 1, L1;

7.! i = 1;

8.! Repeat

9.! i = i + 1;

10.! Ci = Apriori-Gen(Li-1);

11.! Count Ci;

12.! Broadcast counts to all sites;

13.! Determine global large itemsets of size i, Li;

14.! until no more large itemsets found;

CDA Example Data Distribution Algorithm(DDA)
1.! Place data partition at each site.

2.! In Parallel at each site do

3.! Determine local candidates of size 1 to count;

4.! Broadcast local transactions to other sites;

5.! Count local candidates of size 1 on all data;

6.! Determine large itemsets of size 1 for local
 candidates;

7.! Broadcast large itemsets to all sites;

8.! Determine L1;

9.! i = 1;

10.! Repeat

11.! i = i + 1;

12.! Ci = Apriori-Gen(Li-1);

13.! Determine local candidates of size i to count;

14.! Count, broadcast, and find Li;

15.! until no more large itemsets found;

DDA Example Applications

!! Market basket analysis

!! Store layout, client offers

!! …

Application Difficulties

!!Wal-Mart knows that customers who buy Barbie dolls have
a 60% likelihood of buying one of three types of candy
bars.

!!What does Wal-Mart do with information like that? 'I don't

have a clue,' says Wal-Mart's chief of merchandising, Lee
Scott

!!See - KDnuggets 98:01 for many ideas

www.kdnuggets.com/news/98/n01.html

!!Diapers and beer urban legend

Summary

!!Frequent itemsets

!!Association rules

!!Subset property

!!Apriori algorithm

!!Application difficulties

Controversial Issues

!!Data mining (or simple analysis) on people may come with
a profile that would raise controversial issues of

!! Discrimination

!! Privacy

!! Security

!!Examples:

!! Should males between 18 and 35 from countries that produced
terrorists be singled out for search before flight?

!! Can people be denied mortgage based on age, sex, race?

!! Women live longer. Should they pay less for life insurance?

Data Mining and Discrimination

!!Can discrimination be based on features like sex,

age, national origin?

!!In some areas (e.g. mortgages, employment),

some features cannot be used for decision
making

!!In other areas, these features are needed to
assess the risk factors

!!E.g. people of African descent are more susceptible to
sickle cell anemia

Data Mining and Privacy

!!Can information collected for one purpose be

used for mining data for another purpose

!! In Europe, generally no, without explicit consent

!! In US, generally yes

!!Companies routinely collect information about
customers and use it for marketing, etc.

!!People may be willing to give up some of their
privacy in exchange for some benefits

Data Mining with Privacy

!!Data Mining looks for patterns, not people!

!!Technical solutions can limit privacy invasion

!!Replacing sensitive personal data with anon. ID

!!Give randomized outputs

!! return salary + random()

!! …

Data Mining and Security
Controversy in the News

!!TIA: Terrorism (formerly Total) Information

Awareness Program –

!!DARPA program closed by Congress, Sep 2003

!! some functions transferred to intelligence agencies

!!CAPPS II – screen all airline passengers

!! controversial

!!…

!!Invasion of Privacy or Defensive Shield?

Criticism of analytic approach
to Threat Detection:

Data Mining will

!!invade privacy

!!generate millions of false positives

But can it be effective?

Is criticism sound ?

!!Criticism: Databases have 5% errors, so analyzing
100 million suspects will generate 5 million false
positives

!!Reality: Analytical models correlate many items of
information to reduce false positives.

!!Example: Identify one biased coin from 1,000.

!! After one throw of each coin, we cannot

!! After 30 throws, one biased coin will stand out with
high probability.

!! Can identify 19 biased coins out of 100 million with
sufficient number of throws

Another Approach: Link Analysis

Can Find Unusual Patterns in the Network Structure

Analytic technology can be effective

!!Combining multiple models and link analysis can

reduce false positives

!!Today there are millions of false positives with

manual analysis

!!Data mining is just one additional tool to help

analysts

!!Analytic technology has the potential to reduce

the current high rate of false positives

Data Mining and Society

!!No easy answers to controversial questions

!!Society and policy-makers need to make an
educated choice

!!Benefits and efficiency of data mining programs vs. cost
and erosion of privacy

Data Mining Future Directions

!!Currently, most data mining is on flat tables

!!Richer data sources

!! text, links, web, images, multimedia, knowledge bases

!!Advanced methods

!!Link mining, Stream mining, …

!!Applications

!!Web, Bioinformatics, Customer modeling, …

Challenges for Data Mining

!!Technical

!! tera-bytes and peta-bytes

!! complex, multi-media, structured data

!! integration with domain knowledge

!!Business

!! finding good application areas

!!Societal

!!Privacy issues

Data Mining Central Quest

Find true patterns

and avoid overfitting

(false patterns due

to randomness)

Knowledge Discovery Process

Monitoring

Start with

Business

(Problem)

Understanding

Data Preparation

usually takes

the most effort

Knowledge

Discovery is

an Iterative

Process

Data

Preparation

Key Ideas
!!Avoid Overfitting!

!!Data Preparation

!! catch false predictors

!!evaluation: train, validate, test subset

!!Classification: C4.5, Bayes, …

!!Evaluation: Lift, ROC, …

!!Clustering, Association, Other tasks

!!Knowledge Discovery is a Process

Visualization

and

Data Mining

Napoleon Invasion of Russia, 1812

Napoleon

Marley, 1885

Snow’s Cholera

Map, 1855 Asia at night

South and North Korea at night

Seoul,

South Korea

North Korea

Notice how dark

it is

Visualization Role

!!Support interactive exploration

!!Help in result presentation

!!Disadvantage: requires human eyes

!!Can be misleading

Bad Visualization:
Spreadsheet with misleading Y -axis

Year Sales

1999 2110

2000 2105

2001 2120

2002 2121

2003 2124

Y-Axis scale gives WRONG

impression of big change

Better Visualization

Year Sales

1999 2110

2000 2105

2001 2120

2002 2121

2003 2124

Axis from 0 to 2000 scale gives

correct impression of small change

Lie Factor=14.8

Lie Factor

Tufte requirement: 0.95<Lie Factor<1.05

Tufte’s Principles of
Graphical Excellence

!! Give the viewer

!! the greatest number of ideas

!! in the shortest time

!! with the least ink in the smallest space.

!! Tell the truth about the data!

Visualization Methods

!!Visualizing in 1-D, 2-D and 3-D

!!well-known visualization methods

!!Visualizing more dimensions

!!Parallel Coordinates

!!Other ideas

1-D (Univariate) Data

!! Representations

7

5

3

1

0 20

Mean

low high Middle 50%

Tukey box plot

Histogram

2-D (Bivariate) Data

!! Scatter plot, …

price

mileage

3-D Data (projection)

price

3-D image
(requires 3-D blue and red glasses)

Taken by Mars Rover Spirit, Jan 2004

Visualizing in 4+ Dimensions

!! Scatterplots

!! Parallel Coordinates

!! Chernoff faces

!! …

Multiple Views

Give each variable its own display

 A B C D E

1 4 1 8 3 5

2 6 3 4 2 1

3 5 7 2 4 3

4 2 6 3 1 5

A B C D E

1

2

3

4

Problem: does not show correlations

Scatterplot Matrix

Represent each possible
pair of variables in their
own 2-D scatterplot
(car data)

Q: Useful for what?
 A: linear correlations
 (e.g. horsepower & weight)

Q: Misses what?
 A: multivariate effects

Parallel Coordinates

•! Encode variables along a horizontal row
•! Vertical line specifies values

Dataset in a Cartesian coordinates

Same dataset in parallel coordinates

Invented by

Alfred Inselberg

while at IBM, 1985

Example: Visualizing Iris Data

Iris setosa

Iris versicolor

Iris virginica

Flower Parts

Petal, a non-reproductive

part of the flower

Sepal, a non-reproductive

part of the flower

Parallel Coordinates

Sepal

Length

5.1

Parallel Coordinates: 2 D

Sepal

Length

5.1

Sepal

Width

3.5

Parallel Coordinates: 4 D

Sepal

Length

5.1

Sepal

Width

Petal

length

Petal

Width

3.5

1.4
0.2

5.1

3.5

1.4
0.2

Parallel Visualization of Iris data

Parallel Visualization Summary

!!Each data point is a line

!!Similar points correspond to similar lines

!!Lines crossing over correspond to negatively
correlated attributes

!!Interactive exploration and clustering

!!Problems: order of axes, limit to ~20 dimensions

Chernoff Faces

Encode different variables’ values in characteristics
of human face

http://www.cs.uchicago.edu/~wiseman/chernoff/

http://hesketh.com/schampeo/projects/Faces/chernoff.html
Cute applets:

Interactive Face Chernoff faces, example

Visualization Summary

!!Many methods

!!Visualization is possible in more than 3-D

!!Aim for graphical excellence

41Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Extending linear classification

! Linear classifiers can’t model nonlinear
class boundaries

! Simple trick:
♦ Map attributes into new space consisting of

combinations of attribute values
♦ E.g.: all products of n factors that can be

constructed from the attributes
! Example with two attributes and n = 3:

!""#$#
%#"&$#

&$&#"%$#$&
&#"'$&

%

42Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Problems with this approach

! 1st problem: speed
♦ 10 attributes, and n = 5 ⇒ >2000 coefficients
♦ Use linear regression with attribute selection
♦ Run time is cubic in number of attributes

! 2nd problem: overfitting
♦ Number of coefficients is large relative to the

number of training instances
♦ Curse of dimensionality kicks in

43Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Support vector machines

! Support vector machines are algorithms for
learning linear classifiers

! Resilient to overfitting because they learn a
particular linear decision boundary:

♦ The maximum margin hyperplane
! Fast in the nonlinear case

♦ Use a mathematical trick to avoid creating
“pseudo-attributes”

♦ The nonlinear space is created implicitly

44Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

The maximum margin hyperplane

! The instances closest to the maximum margin
hyperplane are called support vectors

45Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Support vectors

! This means the hyperplane
can be written as

!The support vectors define the maximum margin hyperplane
! All other instances can be deleted without changing its position and orientation

!""##"$%$#"&%&

!"'#$()(*)*+,,-)./0123 %(4(&%'(()&%

46Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Finding support vectors

! Support vector: training instance for which αi > 0
! Determine αi and b ?—

A constrained quadratic optimization problem
♦ Off-the-shelf tools for solving these problems
♦ However, special-purpose algorithms are faster
♦ Example: Platt’s sequential minimal optimization

algorithm (implemented in WEKA)
! Note: all this assumes separable data!

!""#$#$#%$%&''($)*+,-. %# /#
&0 '#()&0

47Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Nonlinear SVMs

! “Pseudo attributes” represent attribute
combinations

! Overfitting not a problem because the
maximum margin hyperplane is stable

♦ There are usually few support vectors relative to
the size of the training set

! Computation time still an issue
♦ Each time the dot product is computed, all the

“pseudo attributes” must be included

48Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

A mathematical trick

! Avoid computing the “pseudo attributes”
! Compute the dot product before doing the

nonlinear mapping
! Example:

! Corresponds to a map into the instance space
spanned by all products of n attributes

!""#$#$#%$%&''($)*+,-. %# /# &'0 &#()'0(
1

49Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Other kernel functions

! Mapping is called a “kernel function”
! Polynomial kernel

! We can use others:

! Only requirement:
! Examples:

!""#$#$#%$%&''($)*+,-. %# /#&'0&#()'0(
1

!""#$#$#%$%&''($)*+,-. %# /#2 &'0 &#()'0(

2 & '!# 3 '! 4("*& '!#()*& '! 4(

2 & '!# 3 '! 4("& '!#)'! 4#5(
6

2 & '!# 3 '!4("*!'&
+& '!#+ '!4(

7

7,7 (

2 & '!# 3 '! 4(",018 &- '!#)'! 4#"(
*

52Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Applications

! Machine vision: e.g face identification
! Outperforms alternative approaches (1.5% error)

! Handwritten digit recognition: USPS data
! Comparable to best alternative (0.8% error)

! Bioinformatics: e.g. prediction of protein
secondary structure

! Text classifiation
! Can modify SVM technique for numeric

prediction problems

58Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Multilayer perceptrons

! Using kernels is only one way to build nonlinear
classifier based on perceptrons

! Can create network of perceptrons to approximate
arbitrary target concepts

! Multilayer perceptron is an example of an artificial
neural network

♦ Consists of: input layer, hidden layer(s), and
output layer

! Structure of MLP is usually found by experimentation
! Parameters can be found using backpropagation

59Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Examples

60Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Backpropagation

! How to learn weights given network structure?
♦ Cannot simply use perceptron learning rule because

we have hidden layer(s)
♦ Function we are trying to minimize: error
♦ Can use a general function minimization technique

called gradient descent
! Need differentiable activation function: use sigmoid

function instead of threshold function

! Need differentiable error function: can't use zero-one
loss, but can use squared error

! "" #$ #

#%$"% "&" #

&$ #

'
"(&! ""##'

61Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

The two activation functions

62Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Gradient descent example

! Function: x2+1
! Derivative: 2x
! Learning rate: 0.1
! Start value: 4

Can only find a local minimum!

63Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Minimizing the error I

! Need to find partial derivative of error
function for each parameter (i.e. weight)
!"

!#$

"#%$& #' %% !& #'%
!#$

!& #' %

!'
"& #' %#($& #'%%

'"&$ #$ & #'$%

!& #' %

!#$

"&)#' %& #'$%

!"

!#$

"#%$& #'%%&)#'% & #'$%

64Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Minimizing the error II

! What about the weights for the connections from
the input to the hidden layer?

!"

!#$%

" !"

!&

!&

!#$%

"#'$(#&%%()#&% !&

!#$%

&"&$ #$ (#&$%

!&

!#$%

"#$

!(#&$%

!#$%

!"

!#$%

"#'$(#&%%()#&%#$()#&$%*$

!(#&$ %

!#$%

"()#&$%
!&$

!#$%

"()#&$%*$

65Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Remarks
! Same process works for multiple hidden layers and

multiple output units (eg. for multiple classes)
! Can update weights after all training instances have been

processed or incrementally:
♦ batch learning vs. stochastic backpropagation
♦ Weights are initialized to small random values

! How to avoid overfitting?
♦ Early stopping: use validation set to check when to stop
♦ Weight decay: add penalty term to error function

! How to speed up learning?
♦ Momentum: re-use proportion of old weight change
♦ Use optimization method that employs 2nd derivative

66Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Radial basis function networks

! Another type of feedforward network with
two layers (plus the input layer)

! Hidden units represent points in instance
space and activation depends on distance

♦ To this end, distance is converted into
similarity: Gaussian activation function

! Width may be different for each hidden unit
♦ Points of equal activation form hypersphere

(or hyperellipsoid) as opposed to hyperplane
! Output layer same as in MLP

67Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Learning RBF networks
! Parameters: centers and widths of the RBFs + weights in

output layer
! Can learn two sets of parameters independently and still

get accurate models
♦ Eg.: clusters from k-means can be used to form basis

functions
♦ Linear model can be used based on fixed RBFs
♦ Makes learning RBFs very efficient

! Disadvantage: no built-in attribute weighting based on
relevance

! RBF networks are related to RBF SVMs

113Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

From naïve Bayes to Bayesian Networks

! Naïve Bayes assumes:
attributes conditionally independent given
the class

! Doesn’t hold in practice but classification
accuracy often high

! However: sometimes performance much
worse than e.g. decision tree

! Can we eliminate the assumption?

114Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Enter Bayesian networks

! Graphical models that can represent any
probability distribution

! Graphical representation: directed acyclic
graph, one node for each attribute

! Overall probability distribution factorized
into component distributions

! Graph’s nodes hold component
distributions (conditional distributions)

115Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

N
et

w
ork

 fo
r t

he

w
ea

th
er

 d
at

a

116Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

N
et

w
ork

 fo
r t

he

w
ea

th
er

 d
at

a

117Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Computing the class probabilities

! Two steps: computing a product of
probabilities for each class and normalization

♦ For each class value
! Take all attribute values and class value
! Look up corresponding entries in conditional

probability distribution tables
! Take the product of all probabilities

♦ Divide the product for each class by the sum of
the products (normalization)

118Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Why can we do this? (Part I)

! Single assumption: values of a node’s
parents completely determine
probability distribution for current node

• Means that node/attribute is
conditionally independent of other
ancestors given parents

!" "#$%&'(#)&*+$"*#$!" "#$%&',("&#+*#

119Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Why can we do this? (Part II)

! Chain rule from probability theory:

• Because of our assumption from the previous slide:

!" "#$%#&%''' %#(#$%)$$
(!" "#)*#)&$% ''' %#$#

!" "#$%#&%''' %#(#$%)$$
(!" "#)*#)&$% ''' %#$#$

%)$$
(!" "#) *#) +,-#".(/,#

120Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Learning Bayes nets
! Basic components of algorithms for learning

Bayes nets:
♦ Method for evaluating the goodness of a given

network
! Measure based on probability of training data

given the network (or the logarithm thereof)
♦ Method for searching through space of possible

networks
! Amounts to searching through sets of edges

because nodes are fixed

3Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Just apply a learner? NO!

! Scheme/parameter selection
treat selection process as part of the learning

process
! Modifying the input:

♦ Data engineering to make learning possible or
easier

! Modifying the output
♦ Combining models to improve performance

18Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Data transformations
! Simple transformations can often make a large difference

in performance
! Example transformations (not necessarily for

performance improvement):
♦ Difference of two date attributes
♦ Ratio of two numeric (ratio-scale) attributes
♦ Concatenating the values of nominal attributes
♦ Encoding cluster membership
♦ Adding noise to data
♦ Removing data randomly or selectively
♦ Obfuscating the data

19Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Principal component analysis
! Method for identifying the important “directions”

in the data
! Can rotate data into (reduced) coordinate system

that is given by those directions
! Algorithm:

1. Find direction (axis) of greatest variance
2. Find direction of greatest variance that is perpendicular

to previous direction and repeat
! Implementation: find eigenvectors of covariance

matrix by diagonalization
! Eigenvectors (sorted by eigenvalues) are the directions

20Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Example: 10-dimensional data

! Can transform data into space given by components
! Data is normally standardized for PCA
! Could also apply this recursively in tree learner

28Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Combining multiple models

! Basic idea:
build different “experts”, let them vote

! Advantage:
♦ often improves predictive performance

! Disadvantage:
♦ usually produces output that is very hard to

analyze
♦ but: there are approaches that aim to produce

a single comprehensible structure

29Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Bagging
! Combining predictions by voting/averaging

! Simplest way
! Each model receives equal weight

! “Idealized” version:
! Sample several training sets of size n

(instead of just having one training set of size n)
! Build a classifier for each training set
! Combine the classifiers’ predictions

! Learning scheme is unstable ⇒
almost always improves performance

! Small change in training data can make big
change in model (e.g. decision trees)

30Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Bias-variance decomposition

! Used to analyze how much selection of any
specific training set affects performance

! Assume infinitely many classifiers,
built from different training sets of size n

! For any learning scheme,
♦ Bias = expected error of the combined

classifier on new data
♦ Variance= expected error due to the

particular training set used
! Total expected error ≈ bias + variance

31Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

More on bagging

! Bagging works because it reduces variance by
voting/averaging

♦ Note: in some pathological hypothetical situations the
overall error might increase

♦ Usually, the more classifiers the better
! Problem: we only have one dataset!
! Solution: generate new ones of size n by sampling

from it with replacement
! Can help a lot if data is noisy
! Can also be applied to numeric prediction

♦ Aside: bias-variance decomposition originally only
known for numeric prediction

32Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Bagging classifiers

Let n be the number of instances in the training data
For each of t iterations:

Sample n instances from training set
(with replacement)

Apply learning algorithm to the sample
Store resulting model

For each of the t models:
Predict class of instance using model

Return class that is predicted most often

Model generation

Classification

34Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Randomization
! Can randomize learning algorithm instead of input
! Some algorithms already have a random component:

eg. initial weights in neural net
! Most algorithms can be randomized, eg. greedy

algorithms:
♦ Pick from the N best options at random instead of

always picking the best options
♦ Eg.: attribute selection in decision trees

! More generally applicable than bagging: e.g. random
subsets in nearest-neighbor scheme

! Can be combined with bagging

35Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Boosting

! Also uses voting/averaging
! Weights models according to performance
! Iterative: new models are influenced by

performance of previously built ones
♦ Encourage new model to become an “expert”

for instances misclassified by earlier models
♦ Intuitive justification: models should be

experts that complement each other
! Several variants

36Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

AdaBoost.M1

Assign equal weight to each training instance
For t iterations:
 Apply learning algorithm to weighted dataset,

store resulting model
 Compute model’s error e on weighted dataset
 If e = 0 or e ≥ 0.5:
 Terminate model generation
 For each instance in dataset:
 If classified correctly by model:
 Multiply instance’s weight by e/(1-e)
 Normalize weight of all instances

Model generation

Classification
Assign weight = 0 to all classes
For each of the t (or less) models:

For the class this model predicts
add –log e/(1-e) to this class’s weight

Return class with highest weight

37Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

More on boosting I
! Boosting needs weights … but
! Can adapt learning algorithm ... or
! Can apply boosting without weights

! resample with probability determined by weights
! disadvantage: not all instances are used
! advantage: if error > 0.5, can resample again

! Stems from computational learning theory
! Theoretical result:

! training error decreases exponentially
! Also:

! works if base classifiers are not too complex, and
! their error doesn’t become too large too quickly

44Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Example

! Can be learned by modifying tree learner:
♦ Create option node if there are several equally promising

splits (within user-specified interval)
♦ When pruning, error at option node is average error of

options

49Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

Stacking

! To combine predictions of base learners, don’t vote,
use meta learner

♦ Base learners: level-0 models
♦ Meta learner: level-1 model
♦ Predictions of base learners are input to meta learner

! Base learners are usually different schemes
! Can’t use predictions on training data to generate

data for level-1 model!
♦ Instead use cross-validation-like scheme

! Hard to analyze theoretically: “black magic”

50Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

More on stacking

! If base learners can output probabilities,
use those as input to meta learner instead

! Which algorithm to use for meta learner?
♦ In principle, any learning scheme
♦ Prefer “relatively global, smooth” model

! Base learners do most of the work
! Reduces risk of overfitting

! Stacking can be applied to numeric
prediction too

