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Trends leading to Data Flood 

!!More data is generated: 

!! Bank, telecom, other 
business transactions ... 

!! Scientific data: astronomy, 
biology, etc 

!! Web, text, and e-commerce  

Big Data Examples 

!!Europe's Very Long Baseline Interferometry 

(VLBI) has 16 telescopes, each of which produces 
1 Gigabit/second of astronomical data over a 

25-day observation session  

!! storage and analysis a big problem 

!!AT&T handles billions of calls per day 

!! so much data, it cannot be all stored -- analysis has to 
be done “on the fly”, on streaming data 

Largest databases in 2003 

!!Commercial databases: 

!!Winter Corp. 2003 Survey: France Telecom has largest 
decision-support DB, ~30TB; AT&T ~ 26 TB 

!!Web 

!!Alexa internet archive: 7 years of data, 500 TB 

!!Google searches 4+ Billion pages, many hundreds TB  

!! IBM WebFountain, 160 TB (2003) 

!! Internet  Archive (www.archive.org),~ 300 TB 

5 million terabytes created in 2002 

!!UC Berkeley 2003 estimate: 5 exabytes (5 million 

terabytes) of new data was created in 2002. 

www.sims.berkeley.edu/research/projects/how-much-info-2003/ 

!!US produces ~40% of new stored data worldwide 



Data Growth Rate 

!!Twice as much information was created in 2002 

as in 1999 (~30% growth rate) 

!!Other growth rate estimates even higher 

!!Very little data will ever be looked at by a human 

!!Knowledge Discovery is NEEDED to make sense 
and use of data. 
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Machine Learning / Data Mining  
Application areas 

!!Science 

!! astronomy, bioinformatics, drug discovery, … 

!!Business 

!! advertising, CRM (Customer Relationship management), 
investments, manufacturing, sports/entertainment, telecom, e-
Commerce, targeted marketing, health care, … 

!!Web:  

!! search engines, bots, … 

!!Government 

!! law enforcement, profiling tax cheaters, anti-terror(?) 

Data Mining for Customer Modeling 

!!Customer Tasks: 

!!attrition prediction 

!! targeted marketing:  

!! cross-sell, customer acquisition 

!! credit-risk 

!! fraud detection 

!!Industries 

!!banking, telecom, retail sales, … 

Customer Attrition: Case Study 

!!Situation: Attrition rate at for mobile phone customers 
is around 25-30% a year!  

Task:  

!!Given customer information for the past N months, 

predict who is likely to attrite next month.   

!!Also, estimate customer value and what is the cost-

effective offer to be made to this customer. 

Customer Attrition Results 

!!Verizon Wireless built a customer data warehouse   

!!Identified potential attriters 

!!Developed multiple, regional models 

!!Targeted customers with high propensity to 
accept the offer 

!!Reduced attrition rate from over 2%/month to 
under 1.5%/month (huge impact, with >30 M 
subscribers) 

(Reported in 2003) 



Assessing Credit Risk: Case Study 

!!Situation: Person applies for a loan 

!!Task: Should a bank approve the loan? 

!!Note: People who have the best credit don’t need 
the loans, and people with worst credit are not 

likely to repay.  Bank’s best customers are in the 

middle  

Credit Risk - Results 

!!Banks develop credit models using variety of 

machine learning methods.   

!!Mortgage and credit card proliferation are the 

results of being able to successfully predict if a 
person is likely to default on a loan  

!!Widely deployed in many countries 

Successful e-commerce – Case Study 

!!A person buys a book (product) at Amazon.com. 

!!Task: Recommend other books (products) this 
person is likely to buy 

!!Amazon does clustering based on books bought: 

!! customers who bought “Advances in Knowledge 
Discovery and Data Mining”,  also bought “Data 
Mining: Practical Machine Learning Tools and 
Techniques with Java Implementations”  

!!Recommendation program is quite successful 

Problems Suitable for Data-Mining  

!! require knowledge-based decisions 

!! have a changing environment 

!! have sub-optimal current methods  

!! have accessible, sufficient, and relevant data 

!! provides high payoff for the right decisions! 

Privacy considerations important if personal data 
is involved 

Lesson Outline 

!!Introduction: Data Flood 

!!Data Mining Application Examples 

!!Data Mining & Knowledge 
Discovery 

!!Data Mining Tasks 

Knowledge Discovery Definition 
Knowledge Discovery in Data is the  

non-trivial  process of identifying  

!!valid 

!!novel 

!!potentially useful 

!!and ultimately understandable patterns in data. 

from Advances in Knowledge Discovery and Data 
Mining, Fayyad, Piatetsky-Shapiro, Smyth, and 
Uthurusamy, (Chapter 1), AAAI/MIT Press 1996 



Related Fields 

Statistics 

Machine 
Learning 

Databases 

Visualization 

Data Mining and  

Knowledge Discovery 

Statistics, Machine Learning and 
Data Mining 

!! Statistics:  

!! more theory-based 

!! more focused on testing hypotheses 

!! Machine learning 

!! more heuristic 

!! focused on improving performance of a learning agent 

!! also looks at real-time learning and robotics – areas not part of data 
mining 

!! Data Mining and Knowledge Discovery 

!! integrates theory and heuristics 

!! focus on the entire process of knowledge discovery, including data 
cleaning, learning, and integration and visualization of results 

!! Distinctions are fuzzy 
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Knowledge Discovery Process 
flow, according to CRISP-DM  

Monitoring  

see  

www.crisp-dm.org 

for more  

information 

Historical Note:  
Many Names of Data Mining   

!!Data Fishing, Data Dredging: 1960- 

!!used by Statistician  (as bad name) 

!!Data Mining :1990  --  

!!used DB, business  

!! in 2003 – bad image because of TIA 

!!Knowledge Discovery in Databases (1989-) 

!!used by AI, Machine Learning Community 

!!also Data Archaeology, Information Harvesting, 
Information Discovery, Knowledge Extraction, ...  

Currently: Data Mining and Knowledge Discovery  

are used interchangeably  

Lesson Outline 
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!!Data Mining Tasks 

Major Data Mining Tasks 

!! Classification: predicting an item class 

!! Clustering: finding clusters in data 

!! Associations: e.g. A & B & C occur frequently 

!! Visualization: to facilitate human discovery 

!! Summarization: describing a group 

!! Deviation Detection: finding changes 

!! Estimation: predicting a continuous value 

!! Link Analysis:  finding relationships 

!! … 



Data Mining Tasks: Classification 

Learn a method for predicting the instance class from 
pre-labeled (classified)  instances 

Many approaches: 

Statistics,  

Decision Trees, 

Neural Networks,  

...  

Data Mining Tasks: Clustering 

Find “natural” grouping of 
instances given un-labeled data 

Summary: 

!!Technology trends lead to data flood  

!!data mining is needed to make sense of data 

!!Data Mining has many applications, successful 
and not 

!!Knowledge Discovery Process 

!!Data Mining Tasks 

!! classification, clustering, … 

More on Data Mining   
and Knowledge Discovery 

KDnuggets.com 

!!News, Publications 

!!Software, Solutions 

!!Courses, Meetings, Education 

!!Publications, Websites, Datasets 

!!Companies, Jobs 

!!… 



Machine Learning: 
finding patterns 

Outline 

!!Machine learning and 
Classification 

!!Examples 

!!*Learning as Search  

!!Bias 

!!Weka 

Finding patterns 

!! Goal: programs that detect patterns and 
regularities in the data 

!! Strong patterns ! good predictions 

!! Problem 1: most patterns are not interesting 

!! Problem 2: patterns may be inexact (or   
 spurious) 

!! Problem 3: data may be garbled or missing 

Machine learning techniques 

!! Algorithms for acquiring structural descriptions from 
examples 

!! Structural descriptions represent patterns explicitly 

!! Can be used to predict outcome in new situation 

!! Can be used to understand and explain how prediction is 
derived 
(may be even more important) 

!! Methods originate from artificial intelligence, 
statistics, and research on databases 
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Can machines really learn? 

!! Definitions of “learning” from dictionary: 
To get knowledge of by study, 

experience, or being taught 

To become aware by information or 
from observation 

To commit to memory 

To be informed of, ascertain; to receive instruction 

Difficult to measure 

Trivial for computers 

Things learn when they change their behavior 

in a way that makes them perform better in 

the future. 

!! Operational definition: 

Does a slipper learn? 

!! Does learning imply intention? 
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Classification 

Learn a method for predicting the instance class from 
pre-labeled (classified)  instances 

Many approaches: 

Regression,  

Decision Trees, 

Bayesian, 

Neural Networks,  

...  

Given a set of points from classes   

what is the class of new point    ? 



Classification: Linear Regression 

!! Linear Regression 

w0  + w1 x  + w2 y >= 0 

!! Regression computes 
wi  from data to 
minimize squared 
error to ‘fit’ the data 

!! Not flexible enough 

Classification: Decision Trees 

X 

Y 

if X > 5 then blue 

else if Y > 3 then blue 

else if X > 2 then green 

else blue 

5 2 

3 

Classification: Neural Nets 

!! Can select more 
complex regions 

!! Can be more accurate 

!! Also can overfit the 
data – find patterns in 
random noise 

Outline 

!!Machine learning and Classification 

!!Examples 

!!*Learning as Search  

!!Bias 

!!Weka 

The weather problem 

Outlook Temperature Humidity Windy Play 

sunny 85 85 false no 

sunny 80 90 true no 

overcast 83 86 false yes 

rainy 70 96 false yes 

rainy 68 80 false yes 

rainy 65 70 true no 

overcast 64 65 true yes 

sunny 72 95 false no 

sunny 69 70 false yes 

rainy 75 80 false yes 

sunny 75 70 true yes 

overcast 72 90 true yes 

overcast 81 75 false yes 

rainy 71 91 true no 

Given past data, 

Can you come up 

with the rules for  

Play/Not Play ? 

What is the game? 

The weather problem 

!! Conditions for playing golf 

Outlook Temperature Humidity Windy Play 

Sunny Hot High False No 

Sunny Hot  High  True No 

Overcast  Hot   High False Yes 

Rainy Mild Normal False Yes 

… … … … … 

If outlook = sunny and humidity = high then play = no 

If outlook = rainy and windy = true then play = no 

If outlook = overcast then play = yes 

If humidity = normal then play = yes 

If none of the above then play = yes 
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Weather data with mixed attributes 

!! Some attributes have numeric values 

Outlook Temperature Humidity Windy Play 

Sunny 85 85 False No 

Sunny 80 90 True No 

Overcast  83 86 False Yes 

Rainy 75 80 False Yes 

… … … … … 

If outlook = sunny and humidity > 83 then play = no 

If outlook = rainy and windy = true then play = no 

If outlook = overcast then play = yes 

If humidity < 85 then play = yes 

If none of the above then play = yes 
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The contact lenses data 
Age Spectacle prescription Astigmatism Tear production rate Recommended 

lenses 

Young Myope No Reduced None 
Young Myope No Normal Soft 
Young  Myope Yes Reduced None 
Young Myope Yes Normal Hard 
Young Hypermetrope No Reduced None 
Young Hypermetrope No Normal Soft 
Young Hypermetrope Yes Reduced None 
Young Hypermetrope Yes Normal hard 

Pre-presbyopic Myope No Reduced None 
Pre-presbyopic Myope No Normal Soft 
Pre-presbyopic Myope Yes Reduced None 
Pre-presbyopic Myope Yes Normal Hard 
Pre-presbyopic Hypermetrope No Reduced None 

Pre-presbyopic Hypermetrope No Normal Soft 
Pre-presbyopic  Hypermetrope Yes Reduced None 
Pre-presbyopic Hypermetrope Yes Normal None 

Presbyopic Myope No Reduced None 

Presbyopic Myope No Normal None 
Presbyopic Myope Yes Reduced None 
Presbyopic Myope Yes Normal Hard 
Presbyopic Hypermetrope No Reduced None 
Presbyopic Hypermetrope No Normal Soft 
Presbyopic Hypermetrope Yes Reduced None 
Presbyopic Hypermetrope Yes Normal None 
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A complete and correct rule set 

If tear production rate = reduced then recommendation = none 

If age = young and astigmatic = no 

and tear production rate = normal then recommendation = soft 

If age = pre-presbyopic and astigmatic = no 

and tear production rate = normal then recommendation = soft 

If age = presbyopic and spectacle prescription = myope 

and astigmatic = no  then recommendation = none 

If spectacle prescription = hypermetrope and astigmatic = no 

and tear production rate = normal then recommendation = soft 

If spectacle prescription = myope and astigmatic = yes 

and tear production rate = normal then recommendation = hard 

If age young and astigmatic = yes  

and tear production rate = normal then recommendation = hard 

If age = pre-presbyopic 

and spectacle prescription = hypermetrope 

and astigmatic = yes then recommendation = none 

If age = presbyopic and spectacle prescription = hypermetrope 

and astigmatic = yes then recommendation = none 
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A decision tree for this problem 
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Classifying iris flowers 

Sepal length Sepal width Petal length Petal width Type 

1 5.1 3.5 1.4 0.2 Iris setosa 

2 4.9 3.0 1.4 0.2 Iris setosa 

… 

51 7.0 3.2 4.7 1.4 Iris versicolor 

52 6.4 3.2 4.5 1.5 Iris versicolor 

… 

101 6.3 3.3 6.0 2.5 Iris virginica 

102 5.8 2.7 5.1 1.9 Iris virginica 

… 

If petal length < 2.45 then Iris setosa 

If sepal width < 2.10 then Iris versicolor 

... 
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!! Example: 209 different computer configurations 

!! Linear regression function 

Predicting CPU performance 

Cycle time 

(ns) 

Main memory 

(Kb) 

Cache 

(Kb) 

Channels Performance 

MYCT MMIN MMAX CACH CHMIN CHMAX PRP 

1 125 256 6000 256 16 128 198 

2 29 8000 32000 32 8 32 269 

… 

208 480 512 8000 32 0 0 67 

209 480 1000 4000 0 0 0 45 

PRP =  -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX 

+ 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX 
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Soybean classification 

Attribute Number of 

values 

Sample value 

Environment Time of occurrence 7 July 
Precipitation 3 Above normal 

… 
Seed Condition 2 Normal 

Mold growth 2 Absent 
… 

Fruit Condition of fruit pods 4 Normal 
Fruit spots 5 ? 

Leaves Condition 2 Abnormal 
Leaf spot size 3 ? 

… 

Stem Condition 2 Abnormal 

Stem lodging 2 Yes 

… 

Roots Condition 3 Normal 

Diagnosis 19 Diaporthe stem canker 
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The role of domain knowledge 

If leaf condition is normal 

and stem condition is abnormal 

and stem cankers is below soil line 

and canker lesion color is brown 

then 

diagnosis is rhizoctonia root rot 

If leaf malformation is absent 

and stem condition is abnormal 

and stem cankers is below soil line 

and canker lesion color is brown 

then 

diagnosis is rhizoctonia root rot 

But in this domain, “leaf condition is normal” implies 
“leaf malformation is absent”! 
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Outline 

!!Machine learning and Classification 

!!Examples 

!!*Learning as Search  

!!Bias 

!!Weka 

Learning as search 

!! Inductive learning: find a concept description that fits 
the data 

!! Example: rule sets as description language  

!! Enormous, but finite, search space 

!! Simple solution: 

!! enumerate the concept space 

!! eliminate descriptions that do not fit examples 

!! surviving descriptions contain target concept 
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Enumerating the concept space 

!! Search space for weather problem 

!! 4 x 4 x 3 x 3 x 2 = 288 possible combinations 

!! With 14 rules ! 2.7x1034 possible rule sets 

!! Solution: candidate-elimination algorithm 

!! Other practical problems: 

!! More than one description may survive 

!! No description may survive 

!! Language is unable to describe target concept 

!! or  data contains noise 
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The version space 

!! Space of consistent concept descriptions 

!! Completely determined by two sets 

!! L: most specific descriptions that cover all positive examples 
and no negative ones 

!! G: most general descriptions that do not cover any negative 
examples and all positive ones 

!! Only L and G need be maintained and updated 

!! But: still computationally very expensive 

!! And: does not solve other practical problems 
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*Version space example 

!! Given: red or green cows or chicken       

 L={}  G={<*, *>} 

<green,cow>: positive 

 L={<green, cow>}  G={<*, *>} 

<red,chicken>: negative 

 L={<green, cow>}
 G={<green,*>,<*,cow>} 

<green, chicken>: positive 

  L={<green, *>}  G={<green, *>} 
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*Candidate-elimination algorithm 

Initialize L and G 

For each example e: 

 If e is positive: 

  Delete all elements from G that do not cover e 

  For each element r in L that does not cover e: 

   Replace r by all of its most specific generalizations 

    that  1. cover e and 

     2. are more specific than some element in G 

  Remove elements from L that 

   are more general than some other element in L 

 If e is negative: 

  Delete all elements from L that cover e 

  For each element r in G that covers e: 

   Replace r by all of its most general specializations  

    that  1. do not cover e and  

     2. are more general than some element in L  

  Remove elements from G that 

   are more specific than some other element in G 
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Outline 

!!Machine learning and Classification 

!!Examples 

!!*Learning as Search  

!!Bias 

!!Weka 

Bias 

!! Important decisions in learning systems: 

!! Concept description language 

!! Order in which the space is searched 

!! Way that overfitting to the particular training data is avoided 

!! These form the “bias” of the search: 

!! Language bias 

!! Search bias 

!! Overfitting-avoidance bias 
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Language bias 

!! Important question: 

!! is language universal 
or does it restrict what can be learned? 

!! Universal language can express arbitrary subsets of 
examples 

!! If language includes logical or (“disjunction”), it is 
universal 

!! Example: rule sets 

!! Domain knowledge can be used to exclude some 
concept descriptions a priori from the search 
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Search bias 

!! Search heuristic 

!! “Greedy” search: performing the best single step 

!! “Beam search”: keeping several alternatives 

!! … 

!! Direction of search 

!! General-to-specific 

!! E.g. specializing a rule by adding conditions 

!! Specific-to-general 

!! E.g. generalizing an individual instance into a rule 
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Overfitting-avoidance bias 

!! Can be seen as a form of search bias 

!! Modified evaluation criterion 

!! E.g. balancing simplicity and number of errors 

!! Modified search strategy 

!! E.g. pruning (simplifying a description) 

!! Pre-pruning: stops at a simple description before search proceeds 

to an overly complex one 

!! Post-pruning: generates a complex description first and simplifies 

it afterwards 
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Weka 



Input:  

Concepts, Attributes,  

Instances  

Module Outline 

!! Terminology 

!! What’s a concept? 

!! Classification, association, clustering, numeric prediction 

!! What’s in an example? 

!! Relations, flat files, recursion 

!! What’s in an attribute? 

!! Nominal, ordinal, interval, ratio 

!! Preparing the input 

!! ARFF, attributes, missing values, getting to know data 
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Terminology 

!! Components of the input: 

!! Concepts: kinds of things that can be learned 

!! Aim: intelligible and operational concept description 

!! Instances: the individual, independent examples of a 
concept 

!! Note: more complicated forms of input are possible 

!! Attributes: measuring aspects of an instance 

!! We will focus on nominal and numeric ones 
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What’s a concept? 

!! Data Mining Tasks (Styles of learning): 

!! Classification learning: 
predicting a discrete class 

!! Association learning: 
detecting associations between features 

!! Clustering: 
grouping similar instances into clusters 

!! Numeric prediction: 
predicting a numeric quantity 

!! Concept: thing to be learned 

!! Concept description: output of learning scheme 
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Classification learning 

!!Example problems: attrition prediction, using DNA data for 
diagnosis, weather data to predict play/not play  

!!Classification learning is supervised 

!! Scheme is being provided with actual outcome 

!!Outcome is called the class of the example 

!!Success can be measured on fresh data for which class 
labels are known ( test data) 

!! In practice success is often measured subjectively 

Association learning 

!! Examples: supermarket basket analysis -what items are 
bought together (e.g. milk+cereal, chips+salsa) 

!! Can be applied if no class is specified and any kind of 
structure is considered “interesting” 

!! Difference with classification learning: 

!! Can predict any attribute’s value, not just the class, and more 
than one attribute’s value at a time 

!! Hence: far more association rules than classification rules 

!! Thus: constraints are necessary 

!! Minimum coverage and minimum accuracy 



Clustering 

!! Examples: customer grouping 

!! Finding groups of items that are similar 

!! Clustering is unsupervised 

!! The class of an example is not known 

!! Success often measured subjectively 
Sepal length Sepal width Petal length Petal width Type 

1 5.1 3.5 1.4 0.2 Iris setosa 

2 4.9 3.0 1.4 0.2 Iris setosa 

… 

51 7.0 3.2 4.7 1.4 Iris versicolor 

52 6.4 3.2 4.5 1.5 Iris versicolor 

… 

101 6.3 3.3 6.0 2.5 Iris virginica 

102 5.8 2.7 5.1 1.9 Iris virginica 

… 
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Numeric prediction 

!! Classification learning, but “class” is numeric 

!! Learning is supervised 

!! Scheme is being provided with target value 

!! Measure success on test data 

Outlook Temperature Humidity Windy Play-time 

Sunny Hot High False 5 

Sunny Hot  High  True 0 

Overcast  Hot   High False 55 

Rainy Mild Normal False 40 

… … … … … 
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What’s in an example? 

!! Instance: specific type of example 

!! Thing to be classified, associated, or clustered 

!! Individual, independent example of target concept 

!! Characterized by a predetermined set of attributes 

!! Input to learning scheme: set of instances/dataset 

!! Represented as a single relation/flat file 

!! Rather restricted form of input  

!! No relationships between objects 

!! Most common form in practical data mining 
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A family tree 

Peter  

M 

Peggy 

F 
= 

Steven  

M 

Graham  

M 

Pam  

F 

Grace  

F 

Ray 

M 
= 

Ian  

M 

Pippa  

F 

Brian  

M 
= 

Anna  

F 

Nikki  

F 

witten&eibe 

Family tree represented as a table 

Name Gender Parent1 parent2 

Peter Male ? ? 

Peggy Female ? ? 

Steven Male Peter Peggy 

Graham Male Peter Peggy 

Pam Female Peter Peggy 

Ian Male Grace Ray 

Pippa Female Grace Ray 

Brian Male Grace Ray 

Anna Female Pam Ian 

Nikki Female Pam Ian 
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The “sister-of” relation 

First  

person 

Second 

person 

Sister of? 

Peter Peggy No 

Peter Steven No 

… … … 

Steven Peter No 

Steven Graham No 

Steven Pam Yes 

… … … 

Ian Pippa Yes 

… … … 

Anna Nikki Yes 

… … … 

Nikki Anna yes 

First  

person 

Second 

person 

Sister of? 

Steven Pam Yes 

Graham Pam Yes 

Ian Pippa Yes 

Brian Pippa Yes 

Anna Nikki Yes 

Nikki Anna Yes 

All the rest No 

Closed-world assumption 
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A full representation in one table 

First person Second person Sister 
of? 

Name Gender Parent1 Parent2 Name Gender Parent1 Parent2 

Steven Male Peter Peggy Pam Female Peter Peggy Yes 

Graham Male Peter Peggy Pam Female Peter Peggy Yes 

Ian Male Grace Ray Pippa Female Grace Ray Yes 

Brian Male Grace Ray Pippa Female Grace Ray Yes 

Anna Female Pam Ian Nikki Female Pam Ian Yes 

Nikki Female Pam Ian Anna Female Pam Ian Yes 

All the rest No 

If second person’s gender = female 

and first person’s parent = second person’s parent 

then sister-of = yes 
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Generating a flat file 

!! Process of flattening a file is called “denormalization” 

!! Several relations are joined together to make one 

!! Possible with any finite set of finite relations 

!! Problematic: relationships without pre-specified 
number of objects 

!! Example: concept of nuclear-family 

!! Denormalization may produce spurious regularities 
that reflect structure of database 

!! Example: “supplier” predicts “supplier address” 
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*The “ancestor-of” relation 

First person Second person Sister of? 

Name Gender Parent1 Parent2 Name Gender Parent1 Parent2 

Peter Male ? ? Steven Male Peter Peggy Yes 

Peter Male ? ? Pam Female Peter Peggy Yes 

Peter Male ? ? Anna Female Pam Ian Yes 

Peter Male ? ? Nikki Female Pam Ian Yes 

Pam Female Peter Peggy Nikki Female Pam Ian Yes 

Grace Female ? ? Ian Male Grace Ray Yes 

Grace Female ? ? Nikki Female Pam Ian Yes 

Other positive examples here Yes 

All the rest No 
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*Recursion 

!! Appropriate techniques are known as “inductive logic 
programming” 

!! (e.g. Quinlan’s FOIL) 

!! Problems: (a) noise and (b) computational complexity 

If person1 is a parent of person2 

then person1 is an ancestor of person2 

If person1 is a parent of person2 

and person2 is an ancestor of person3 

then person1 is an ancestor of person3 

!! Infinite relations require recursion 

witten&eibe 

*Multi-instance problems 

!! Each example consists of several instances 

!! E.g. predicting drug activity 

!! Examples are molecules that are active/not active 

!! Instances are confirmations of a molecule 

!! Molecule active (example positive) 
! at least one of its confirmations (instances) is active 
(positive) 

!! Molecule not active (example negative) 
! all of its confirmations (instances) are not active 
(negative) 

!! Problem: 
identifying the “truly” positive instances 
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What’s in an attribute? 

!! Each instance is described by a fixed predefined set of 
features, its “attributes” 

!! But: number of attributes may vary in practice 

!! Possible solution: “irrelevant value” flag 

!! Related problem: existence of an attribute may depend 
of value of another one 

!! Possible attribute types (“levels of measurement”): 

!! Nominal, ordinal, interval and ratio 
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Nominal quantities 

!! Values are distinct symbols 

!! Values themselves serve only as labels or names 

!! Nominal comes from the Latin word for name 

!! Example: attribute “outlook” from weather data 

!! Values: “sunny”,”overcast”, and “rainy” 

!! No relation is implied among nominal values (no 
ordering or distance measure) 

!! Only equality tests can be performed 
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Ordinal quantities 

!! Impose order on values 

!! But: no distance between values defined 

!! Example: 
attribute “temperature” in weather data 

!! Values: “hot” > “mild” > “cool” 

!! Note: addition and subtraction don’t make sense 

!! Example rule: 
 temperature < hot ! play = yes 

!! Distinction between nominal and ordinal not 
always clear (e.g. attribute “outlook”) 
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Interval quantities (Numeric) 

!! Interval quantities are not only ordered but measured in 
fixed and equal units 

!! Example 1: attribute “temperature” expressed in 
degrees Fahrenheit 

!! Example 2: attribute “year” 

!! Difference of two values makes sense 

!! Sum or product doesn’t make sense 

!! Zero point is not defined! 
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Ratio quantities 

!! Ratio quantities are ones for which the 
measurement scheme defines a zero point 

!! Example: attribute “distance” 

!! Distance between an object and itself is zero 

!! Ratio quantities are treated as real numbers 

!! All mathematical operations are allowed 

!! But: is there an “inherently” defined zero point? 

!! Answer depends on scientific knowledge (e.g. Fahrenheit 
knew no lower limit to temperature) 
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Attribute types used in practice 

!! Most schemes accommodate just two levels of 
measurement: nominal and ordinal 

!! Nominal attributes are also called “categorical”, 
”enumerated”, or “discrete” 

!! But: “enumerated” and “discrete” imply order 

!! Special case: dichotomy (“boolean” attribute) 

!! Ordinal attributes are called “numeric”, or “continuous” 

!! But: “continuous” implies mathematical continuity 
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Attribute types: Summary 

!!Nominal, e.g. eye color=brown, blue, … 

!!only equality tests 

!! important special case: boolean (True/False) 

!!Ordinal, e.g. grade=k,1,2,..,12 

!!Continuous (numeric), e.g. year 

!! interval quantities – integer 

!! ratio quantities -- real 



Why specify attribute types? 

!!Q: Why Machine Learning algorithms need 
to know about attribute type? 

!!A: To be able to make right comparisons and 
learn correct concepts, e.g.  

!!Outlook > “sunny”  does not make sense, while 

!!  Temperature > “cool” or  

!!  Humidity > 70 does 

!!Additional uses of attribute type: check for valid 
values, deal with missing, etc. 

Transforming ordinal to boolean 

!! Simple transformation allows 
ordinal attribute with n values 
to be coded using n–1 boolean attributes 

!! Example: attribute “temperature” 

!! Better than coding it as a nominal attribute 

Temperature 

Cold 

Medium 

Hot 

Temperature > cold Temperature > medium 

False False 

True False 

True True 

Original data Transformed data 

! 
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Metadata 

!! Information about the data that encodes background 
knowledge 

!! Can be used to restrict search space 

!! Examples: 

!! Dimensional considerations 
(i.e. expressions must be dimensionally correct) 

!! Circular orderings 
(e.g. degrees in compass) 

!! Partial orderings 
(e.g. generalization/specialization relations) 
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Preparing the input 

!! Problem: different data sources (e.g. sales department, 
customer billing department, …) 

!! Differences: styles of record keeping, conventions, time 
periods, data aggregation, primary keys, errors 

!! Data must be assembled, integrated, cleaned up 

!! “Data warehouse”: consistent point of access 

!! Denormalization is not the only issue 

!! External data may be required (“overlay data”) 

!! Critical: type and level of data aggregation 
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The ARFF format 
% 

% ARFF file for weather data with some numeric features 

% 

@relation weather 

@attribute outlook {sunny, overcast, rainy} 

@attribute temperature numeric 

@attribute humidity numeric 

@attribute windy {true, false} 

@attribute play? {yes, no} 

@data 

sunny, 85, 85, false, no 

sunny, 80, 90, true, no 

overcast, 83, 86, false, yes 

... 
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Attribute types in Weka 

!! ARFF supports numeric and nominal attributes 

!! Interpretation depends on learning scheme 

!! Numeric attributes are interpreted as 

!! ordinal scales if less-than and greater-than are used 

!! ratio scales if distance calculations are performed (normalization/

standardization may be required) 

!! Instance-based schemes define distance between nominal 
values (0 if values are equal, 1 otherwise) 

!! Integers: nominal, ordinal, or ratio scale? 
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Nominal vs. ordinal 

!! Attribute “age” nominal 

!! Attribute “age” ordinal 

    (e.g. “young” < “pre-presbyopic” < “presbyopic”) 

If age = young and astigmatic = no 

and tear production rate = normal 

then recommendation = soft 

If age = pre-presbyopic and astigmatic = no  

and tear production rate = normal  

then recommendation = soft 

If age ! pre-presbyopic and astigmatic = no 

and tear production rate = normal 

then recommendation = soft 
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Missing values 

!! Frequently indicated by out-of-range entries 

!! Types: unknown, unrecorded, irrelevant 

!! Reasons: 

!! malfunctioning equipment 

!! changes in experimental design 

!! collation of different datasets 

!! measurement not possible  

!! Missing value may have significance in itself (e.g. 

missing test in a medical examination) 

!! Most schemes assume that is not the case 
 ! “missing” may need to be coded as additional value  
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Missing values - example 

!!Value may be missing 
because it is unrecorded or 
because it is inapplicable 

!! In medical data, value for 

Pregnant? attribute for 
Jane is missing, while for 
Joe or Anna should be 
considered Not 

applicable 

!!Some programs can infer 
missing values 

Name Age Sex Pregnant? .. 

Mary 25 F N 

Jane 27 F - 

Joe 30 M - 

Anna 2 F - 

Hospital Check-in Database 

Inaccurate values 

!! Reason: data has not been collected for mining it 

!! Result: errors and omissions that don’t affect original purpose of 
data (e.g. age of customer) 

!! Typographical errors in nominal attributes " values need to be 
checked for consistency 

!! Typographical and measurement errors in numeric attributes " 
outliers need to be identified 

!! Errors may be deliberate (e.g. wrong zip codes) 

!! Other problems: duplicates, stale data 
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Precision “Illusion” 

!!Example: gene expression may be reported as 

X83 = 193.3742, but measurement error may be  

+/- 20.    

!!Actual value is in [173, 213] range, so it is 

appropriate to round the data to 190. 

!!Don’t assume that every reported digit is 

significant!  

Getting to know the data 

!! Simple visualization tools are very useful 

!! Nominal attributes: histograms (Distribution consistent 
with background knowledge?) 

!! Numeric attributes: graphs 
(Any obvious outliers?) 

!! 2-D and 3-D plots show dependencies  

!! Need to consult domain experts  

!! Too much data to inspect? Take a sample! 
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Summary 

!!Concept: thing to be learned 

!!Instance: individual examples of a concept 

!!Attributes: Measuring aspects of an instance 

!!Note: Don’t confuse learning “Class” and 
“Instance” with Java “Class” and “instance”  



Knowledge 
Representation 

Outline:  
Output - Knowledge representation 

!! Decision tables 

!! Decision trees 

!! Decision rules 

!! Rules involving relations 

!! Instance-based representation 

!! Prototypes, Clusters 
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Output: representing structural 
patterns 

!! Many different ways of representing patterns 

!! Decision trees, rules, instance-based, … 

!! Also called “knowledge” representation 

!! Representation determines inference method 

!! Understanding the output is the key to 
understanding the underlying learning methods 

!! Different types of output for different learning 
problems (e.g. classification, regression, …) 
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Decision tables 

!! Simplest way of representing output: 

!! Use the same format as input! 

!! Decision table for the weather problem: 

!! Main problem: selecting the right attributes 

!! Also, not flexible enough 

Outlook Humidity Play 

Sunny High No 

Sunny Normal Yes 

Overcast  High Yes 

Overcast Normal Yes 

Rainy High No 

Rainy Normal No 
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Decision trees 

!! “Divide-and-conquer” approach produces tree 

!! Nodes involve testing a particular attribute 

!! Usually, attribute value is compared to constant 

!! Other possibilities:  

!! Comparing values of two attributes 

!! Using a function of one or more attributes 

!! Leaves assign classification, set of classifications, or 

probability distribution to instances 

!! Unknown instance is routed down the tree  
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Nominal and numeric attributes 

!! Nominal: 
number of children usually equal to number values 
! attribute won’t get tested more than once 

!! Other possibility: division into two subsets 

!! Numeric: 
test whether value is greater or less than constant 
! attribute may get tested several times 

!! Other possibility: three-way split (or multi-way split) 

!! Integer: less than, equal to, greater than 

!! Real: below, within, above 
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Missing values 

!! Does absence of value have some significance? 

!! Yes ! “missing” is a separate value   

!! No ! “missing” must be treated in a special way 

!! Solution A: assign instance to most popular branch 

!! Solution B: split instance into pieces 

!! Pieces receive weight according to fraction of training 

instances that go down each branch 

!! Classifications from leave nodes are combined using the 

weights that have percolated to them 
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Classification rules 

!! Popular alternative to decision trees 

!! Antecedent (pre-condition): a series of tests (just 
like the tests at the nodes of a decision tree) 

!! Tests are usually logically ANDed together (but may 
also be general logical expressions) 

!! Consequent (conclusion): classes, set of classes, or 
probability distribution assigned by rule 

!! Individual rules are often logically ORed together 

!! Conflicts arise if different conclusions apply  
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From trees to rules 

!! Easy: converting a tree into a set of rules 

!! One rule for each leaf: 

!! Antecedent contains a condition for every node on the path from 
the root to the leaf 

!! Consequent is class assigned by the leaf 

!! Produces rules that are unambiguous 

!! Doesn’t matter in which order they are executed 

!! But: resulting rules are unnecessarily complex 

!! Pruning to remove redundant tests/rules  
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From rules to trees 

!! More difficult: transforming a rule set into a tree 

!! Tree cannot easily express disjunction between rules 

!! Example: rules which test different attributes 

!! Symmetry needs to be broken 

!! Corresponding tree contains identical subtrees (! 
“replicated subtree problem”) 

If a and b then x 

If c and d then x 

witten&eibe 

A tree for a simple disjunction 
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The exclusive-or problem 

If x = 1 and y = 0 

then class = a 

If x = 0 and y = 1 

then class = a 

If x = 0 and y = 0 

then class = b 

If x = 1 and y = 1 

then class = b 
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A tree with a replicated subtree 

If x = 1 and y = 1 

then class = a 

If z = 1 and w = 1 

then class = a 

Otherwise class = b 
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“Nuggets” of knowledge 

!! Are rules independent pieces of knowledge? (It seems 
easy to add a rule to an existing rule base.) 

!! Problem: ignores how rules are executed 

!! Two ways of executing a rule set: 

!! Ordered set of rules (“decision list”) 

!! Order is important for interpretation 

!! Unordered set of rules 

!! Rules may overlap and lead to different conclusions for the same 

instance 
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Interpreting rules 

!! What if two or more rules conflict? 

!! Give no conclusion at all? 

!! Go with rule that is most popular on training data? 

!! … 

!! What if no rule applies to a test instance? 

!! Give no conclusion at all? 

!! Go with class that is most frequent in training data? 

!! … 
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Special case: boolean class 

!! Assumption: if instance does not belong to class “yes”, it 
belongs to class “no” 

!! Trick: only learn rules for class “yes” and use default 
rule for “no” 

!! Order of rules is not important. No conflicts! 

!! Rule can be written in disjunctive normal form 

If x = 1 and y = 1 then class = a 

If z = 1 and w = 1 then class = a 

Otherwise class = b 
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Rules involving relations 

!! So far: all rules involved comparing an attribute-value to 
a constant (e.g. temperature < 45) 

!! These rules are called “propositional” because they have 
the same expressive power as propositional logic 

!! What if problem involves relationships between 
examples (e.g. family tree problem from above)? 

!! Can’t be expressed with propositional rules 

!! More expressive representation required 
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The shapes problem 

!! Target concept: standing up 

!! Shaded: standing 
Unshaded: lying 

witten&eibe 



A propositional solution 

Width Height Sides Class 

2 4 4 Standing 

3 6 4 Standing 

4 3 4 Lying 

7 8 3 Standing 

7 6 3 Lying 

2 9 4 Standing 

9 1 4 Lying 

10 2 3 Lying 

If width ! 3.5 and height < 7.0 

then lying 

If height ! 3.5 then standing 
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A relational solution 

!!Comparing attributes with each other 

!!Generalizes better to new data 

!!Standard relations: =, <, > 

!!But: learning relational rules is costly 

!!Simple solution: add extra attributes 

(e.g. a binary attribute is width < height?) 

If width > height then lying 

If height > width then standing 
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Rules with variables 
"! Using variables and multiple relations: 

"! The top of a tower of blocks is standing: 

"! The whole tower is standing: 

"! Recursive definition! 

If height_and_width_of(x,h,w) and h > w 

then standing(x) 

If height_and_width_of(z,h,w) and h > w 

  and is_top_of(x,z) and standing(y) 

  and is_rest_of(x,y) 

then standing(x) 

If empty(x) then standing(x) 

If height_and_width_of(x,h,w) and h > w 

  and is_top_of(x,y) 

then standing(x) 
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Inductive logic programming 

"! Recursive definition can be seen as logic program 

"! Techniques for learning logic programs stem from the 
area of “inductive logic programming” (ILP) 

"! But: recursive definitions are hard to learn 

"! Also: few practical problems require recursion 

"! Thus: many ILP techniques are restricted to non-recursive 
definitions to make learning easier 
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Instance-based representation 

"!Simplest form of learning: rote learning 

"!Training instances are searched for instance that most 
closely resembles new instance 

"!The instances themselves represent the knowledge 

"!Also called instance-based learning 

"!Similarity function defines what’s “learned” 

"!Instance-based learning is lazy learning 

"!Methods: k-nearest-neighbor,  … 
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The distance function 

"!Simplest case: one numeric attribute 

"!Distance is the difference between the two attribute 
values involved (or a function thereof) 

"!Several numeric attributes: normally, Euclidean 
distance is used and attributes are normalized 

"!Nominal attributes: distance is set to 1 if values 
are different, 0 if they are equal 

"!Are all attributes equally important? 

"!Weighting the attributes might be necessary 
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Learning prototypes 

!!Only those instances involved in a decision need 

to be stored 

!!Noisy instances should be filtered out 

!!Idea: only use prototypical examples 
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Rectangular generalizations 

!!Nearest-neighbor rule is used outside rectangles 

!!Rectangles are rules! (But they can be more 
conservative than “normal” rules.) 

!!Nested rectangles are rules with exceptions 
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Representing clusters I 

Simple 2-D representation Venn diagram 

Overlapping clusters 
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Representing clusters II 

Probabilistic assignment 

1 2 3 

a 0.4 0.1 0.5 

b 0.1 0.8 0.1 

c 0.3 0.3 0.4 

d 0.1 0.1 0.8 

e 0.4 0.2 0.4 

f 0.1 0.4 0.5 

g 0.7 0.2 0.1 

h 0.5 0.4 0.1 

Dendrogram 

NB: dendron is the Greek 
word for tree 
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Summary 

!!Trees  

!!Rules 

!!Relational representation 

!!Instance-based representation 



Algorithms for  
Classification: 

The Basic Methods 



Outline 

!! Simplicity first: 1R 

!! Naïve Bayes 



!! Task: Given a set of pre-classified examples, 

build a model or classifier to classify new cases. 

!! Supervised learning: classes are known for the 

examples used to build the classifier. 

!! A classifier can be a set of rules, a decision tree, 

a neural network, etc. 

!! Typical applications: credit approval, direct 

marketing, fraud detection, medical diagnosis,  
….. 

Classification 



Simplicity first 

!! Simple algorithms often work very well!  

!! There are many kinds of simple structure, eg: 

!! One attribute does all the work 

!! All attributes contribute equally & independently 

!! A weighted linear combination might do 

!! Instance-based: use a few prototypes 

!! Use simple logical rules 

!! Success of method depends on the domain 
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Inferring rudimentary rules 

!! 1R: learns a 1-level decision tree 

!! I.e., rules that all test one particular attribute 

!! Basic version 

!! One branch for each value 

!! Each branch assigns most frequent class 

!! Error rate: proportion of instances that don’t belong to the 
majority class of their corresponding branch 

!! Choose attribute with lowest error rate 

 (assumes nominal attributes) 
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Pseudo-code for 1R 

For each attribute, 

 For each value of the attribute, make a rule as follows: 

  count how often each class appears 

  find the most frequent class 

  make the rule assign that class to this attribute-value 

 Calculate the error rate of the rules 

Choose the rules with the smallest error rate 

!! Note: “missing” is treated as a separate attribute value 
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Evaluating the weather attributes 

Attribute  Rules Errors Total 

errors 

Outlook Sunny ! No 2/5 4/14 

Overcast ! Yes 0/4 

Rainy ! Yes 2/5 

Temp Hot ! No* 2/4 5/14 

Mild !  Yes 2/6 

Cool !  Yes 1/4 

Humidity High !  No 3/7 4/14 

Normal ! Yes 1/7 

Windy False ! Yes 2/8 5/14 

True ! No* 3/6 

Outlook Temp Humidity Windy Play 

Sunny Hot High False No 

Sunny Hot  High  True No 

Overcast  Hot   High False Yes 

Rainy Mild High False Yes 

Rainy Cool Normal False Yes 

Rainy Cool Normal True No 

Overcast Cool Normal True Yes 

Sunny Mild High False No 

Sunny Cool Normal False Yes 

Rainy Mild Normal False Yes 

Sunny Mild Normal True Yes 

Overcast Mild High True Yes 

Overcast Hot Normal False Yes 

Rainy Mild High True No 
*  indicates a tie 
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Dealing with 
numeric attributes 

!! Discretize numeric attributes 

!! Divide each attribute’s range into intervals 

!! Sort instances according to attribute’s values 

!! Place breakpoints where the class changes 
(the majority class) 

!! This minimizes the total error 

!! Example: temperature from weather data 

 64       65       68     69    70       71   72   72       75    75        80      81      83        85 

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes  Yes | No 

Outlook Temperature Humidity Windy Play 

Sunny 85 85 False No 

Sunny 80 90 True No 

Overcast  83 86 False Yes 

Rainy 75 80 False Yes 

… … … … … 
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The problem of overfitting 

!! This procedure is very sensitive to noise 

!! One instance with an incorrect class label will probably 
produce a separate interval 

!! Also: time stamp attribute will have zero errors 

!! Simple solution: 
enforce minimum number of instances in majority class 
per interval 

witten&eibe 



Discretization example 

!! Example (with min = 3): 

!! Final result for temperature attribute 

64        65       68     69    70       71   72   72       75    75        80      81       83       85 

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes  Yes | No 

64        65       68     69    70       71   72   72       75     75       80      81       83       85 

Yes   No   Yes Yes Yes | No No Yes   Yes Yes | No   Yes  Yes   No 
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With overfitting avoidance 

!! Resulting rule set: 

Attribute  Rules Errors Total errors 

Outlook Sunny ! No 2/5 4/14 

Overcast ! Yes 0/4 

Rainy ! Yes 2/5 

Temperature " 77.5  ! Yes 3/10 5/14 

> 77.5 !  No* 2/4 

Humidity " 82.5 !  Yes 1/7 3/14 

> 82.5 and " 95.5 ! No 2/6 

> 95.5 ! Yes 0/1 

Windy False ! Yes 2/8 5/14 

True ! No* 3/6 

witten&eibe 



Discussion of 1R 
!! 1R was described in a paper by Holte (1993) 

!! Contains an experimental evaluation on 16 datasets 
(using cross-validation so that results were representative 
of performance on future data) 

!! Minimum number of instances was set to 6 after some 
experimentation 

!! 1R’s simple rules performed not much worse than much 
more complex decision trees 

!! Simplicity first pays off!  

Very Simple Classification Rules Perform Well on Most Commonly Used 

Datasets 

Robert C. Holte, Computer Science Department, University of Ottawa 
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Bayesian (Statistical) modeling 

!! “Opposite” of 1R: use all the attributes 

!! Two assumptions: Attributes are 

!! equally important 

!! statistically independent (given the class value) 

!! I.e., knowing the value of one attribute says nothing about 
the value of another 
(if the class is known) 

!! Independence assumption is almost never correct! 

!! But … this scheme works well in practice 
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Probabilities for weather data 
Outlook Temperature Humidity Windy Play 

Yes No Yes No Yes No Yes No Yes No 

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5 

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3 

Rainy 3 2 Cool 3 1 

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14 

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5 

Rainy 3/9 2/5 Cool 3/9 1/5 Outlook Temp Humidity Windy Play 

Sunny Hot High False No 

Sunny Hot  High  True No 

Overcast  Hot   High False Yes 

Rainy Mild High False Yes 

Rainy Cool Normal False Yes 

Rainy Cool Normal True No 

Overcast Cool Normal True Yes 

Sunny Mild High False No 

Sunny Cool Normal False Yes 

Rainy Mild Normal False Yes 

Sunny Mild Normal True Yes 

Overcast Mild High True Yes 

Overcast Hot Normal False Yes 

Rainy Mild High True No 
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Probabilities for weather data 

Outlook Temp. Humidity Windy Play 

Sunny Cool High True ? 

!! A new day: Likelihood of the two classes 

For “yes” = 2/9 ! 3/9 ! 3/9 !  3/9 ! 9/14 = 0.0053 

For “no” = 3/5 ! 1/5 ! 4/5 ! 3/5 ! 5/14 = 0.0206 

Conversion into a probability by normalization: 

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205 

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795 

Outlook Temperature Humidity Windy Play 

Yes No Yes No Yes No Yes No Yes No 

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5 

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3 

Rainy 3 2 Cool 3 1 

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14 

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5 

Rainy 3/9 2/5 Cool 3/9 1/5 

witten&eibe 



Bayes’s rule 
!! Probability of event H given evidence E : 

!! A priori probability of H : 

!! Probability of event before evidence is seen 

!! A posteriori probability of H : 

!! Probability of event after evidence is seen 

Thomas Bayes 

Born:  1702 in London, England 

Died:  1761 in Tunbridge Wells, Kent, England 
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from Bayes “Essay towards solving a problem in the 

doctrine of chances” (1763) 



Naïve Bayes for classification 

!! Classification learning: what’s the probability of the class 
given an instance?  

!! Evidence E = instance 

!! Event H = class value for instance 

!! Naïve assumption: evidence splits into parts (i.e. 
attributes) that are independent 
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Weather data example 

Outlook Temp. Humidity Windy Play 

Sunny Cool High True ? 
Evidence E 

Probability of 

class “yes” 
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The “zero-frequency problem” 

!! What if an attribute value doesn’t occur with every class 
value? 
(e.g. “Humidity = high” for class “yes”) 

!! Probability will be zero! 

!! A posteriori probability will also be zero! 

(No matter how likely the other values are!)  

!! Remedy: add 1 to the count for every attribute value-class 
combination (Laplace estimator) 

!! Result: probabilities will never be zero! 
(also: stabilizes probability estimates) 
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*Modified probability estimates 

!! In some cases adding a constant different from 1 might 
be more appropriate 

!! Example: attribute outlook for class yes 

!! Weights don’t need to be equal  
(but they must sum to 1) 

Sunny Overcast Rainy 

witten&eibe 



Missing values 

!! Training: instance is not included in 

frequency count for attribute value-class 
combination 

!! Classification: attribute will be omitted from 
calculation 

!! Example: Outlook Temp. Humidity Windy Play 

? Cool High True ? 

Likelihood of “yes” = 3/9 ! 3/9 !  3/9 ! 9/14 = 0.0238 

Likelihood of “no” = 1/5 ! 4/5 ! 3/5 ! 5/14 = 0.0343 

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41% 

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59% 
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Numeric attributes 
!! Usual assumption: attributes have a normal or 

Gaussian probability distribution (given the class) 

!! The probability density function for the normal 
distribution is defined by two parameters: 

!! Sample mean µ  

!! Standard deviation ! 

!! Then the density function f(x) is  
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Karl Gauss, 1777-1855 
great German mathematician 



Statistics for 
weather data 

!! Example density value: 

Outlook Temperature Humidity Windy Play 

Yes No Yes No Yes No Yes No Yes No 

Sunny 2 3 64, 68, 65, 71, 65, 70, 70, 85, False 6 2 9 5 

Overcast 4 0 69, 70, 72, 80, 70, 75, 90, 91, True 3 3 

Rainy 3 2 72,  … 85,  … 80,  … 95,  … 

Sunny 2/9 3/5 µ =73 µ =75 µ =79 µ =86 False 6/9 2/5 9/14 5/14 

Overcast 4/9 0/5 ! =6.2 ! =7.9 ! =10.2 ! =9.7 True 3/9 3/5 

Rainy 3/9 2/5 
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Classifying a new day 

!! A new day: 

!! Missing values during training are not included in 
calculation of mean and standard deviation 

Outlook Temp. Humidity Windy Play 

Sunny 66 90 true ? 

Likelihood of “yes” = 2/9 ! 0.0340 ! 0.0221 ! 3/9 ! 9/14 = 0.000036 

Likelihood of “no”  = 3/5 ! 0.0291 ! 0.0380 ! 3/5 ! 5/14 = 0.000136 

P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9% 

P(“no”)  = 0.000136 / (0.000036 + 0. 000136) = 79.1% 
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*Probability densities 

!! Relationship between probability and density: 

!! But: this doesn’t change calculation of a posteriori 
probabilities because ! cancels out 

!! Exact relationship: 
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Naïve Bayes: discussion 

!! Naïve Bayes works surprisingly well (even if 
independence assumption is clearly violated) 

!! Why? Because classification doesn’t require 
accurate probability estimates as long as 
maximum probability is assigned to correct class 

!! However: adding too many redundant attributes 
will cause problems (e.g. identical attributes) 

!! Note also: many numeric attributes are not 
normally distributed (! kernel density 
estimators) 
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Naïve Bayes Extensions 

!! Improvements: 

!! select best attributes (e.g. with greedy search) 

!! often works as well or better with just a fraction 
of all attributes 

!! Bayesian Networks 
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Summary 

!!OneR – uses rules based on just one attribute 

!!Naïve Bayes – use all attributes and Bayes rules 
to estimate probability of the class given an 

instance. 

!!Simple methods frequently work well, but … 

!!Complex methods can be better (as we will see) 



Classification:  

Decision Trees  

Outline 

!!Top-Down Decision Tree Construction 

!!Choosing the Splitting Attribute 

!!Information Gain and Gain Ratio 

DECISION TREE 

!! An internal node is a test on an attribute. 

!! A branch represents an outcome of the test, e.g., 
Color=red. 

!! A leaf node represents a class label or class label 
distribution. 

!! At each node, one attribute is chosen to split 
training examples into distinct classes as much 

as possible 

!! A new case is classified by following a matching 

path to a leaf node.  

Weather Data: Play or not Play? 

Outlook Temperature Humidity Windy Play? 
sunny hot high false No 
sunny hot high true No 
overcast hot high false Yes 
rain mild high false Yes 
rain cool normal false Yes 
rain cool normal true No 
overcast cool normal true Yes 
sunny mild high false No 
sunny cool normal false Yes 
rain mild normal false Yes 
sunny mild normal true Yes 
overcast mild high true Yes 
overcast hot normal false Yes 
rain mild high true No 

Note: 

Outlook is the 

Forecast, 

no relation to  

Microsoft 

email program 

overcast 

high normal false true 

sunny 
rain 

No No Yes Yes 

Yes 

Example Tree for “Play?” 

Outlook 

Humidity 
Windy 

Building Decision Tree [Q93] 

!! Top-down tree construction 

!! At start, all training examples are at the root. 

!! Partition the examples recursively by choosing one 
attribute each time. 

!! Bottom-up tree pruning 

!! Remove subtrees or branches, in a bottom-up 
manner, to improve the estimated accuracy on new 
cases. 



Choosing the Splitting Attribute  

!! At each node, available attributes are evaluated 

on the basis of separating the classes of the 
training examples. A Goodness function is used 

for this purpose. 

!! Typical goodness functions: 

!! information gain (ID3/C4.5) 

!! information gain ratio 

!! gini index 
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Which attribute to select? 

witten&eibe 

A criterion for attribute selection 

!! Which is the best attribute? 

!! The one which will result in the smallest tree 

!! Heuristic: choose the attribute that produces the 
“purest” nodes 

!! Popular impurity criterion: information gain 

!! Information gain increases with the average purity of 
the subsets that an attribute produces 

!! Strategy: choose attribute that results in greatest 

information gain 
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Computing information 

!! Information is measured in bits 

!! Given a probability distribution, the info required to 
predict an event is the distribution’s entropy 

!! Entropy gives the information required in bits (this can 
involve fractions of bits!) 

!! Formula for computing the entropy: 
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Claude Shannon, who has died aged 84, perhaps 

more than anyone laid the groundwork for today’s 

digital revolution. His exposition of information 
theory, stating that all information could be 

represented mathematically as a succession of 

noughts and ones, facilitated the digital 

manipulation of data without which today’s 

information society would be unthinkable. 

Shannon’s master’s thesis, obtained in 1940 at MIT, 

demonstrated that problem solving could be 
achieved by manipulating the symbols 0 and 1 in a 

process that could be carried out automatically with 

electrical circuitry. That dissertation has been hailed 

as one of the most significant master’s theses of the 

20th century. Eight years later, Shannon published 
another landmark paper, A Mathematical Theory of 
Communication, generally taken as his most 

important scientific contribution. 

Born: 30 April 1916 

Died: 23 February 2001 

“Father of 
information theory” 

Shannon applied the same radical approach to cryptography research, in which he later 

became a consultant to the US government. 

Many of Shannon’s pioneering insights were developed before they could be applied in 
practical form. He was truly a remarkable man, yet unknown to most of the world. 
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*Claude Shannon Example: attribute “Outlook”  

!! !Outlook” = “Sunny”: 

!! “Outlook” = “Overcast”: 

!! “Outlook” = “Rainy”: 

!! Expected information for attribute: 

Note: log(0) is 

not defined, but 

we evaluate 

0*log(0) as zero 
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Computing the information gain 

!! Information gain:  

(information before split) – (information after split) 

!! Information gain for attributes from weather 
data: 
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Continuing to split 
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The final decision tree 

!! Note: not all leaves need to be pure; sometimes 

identical instances have different classes 

! Splitting stops when data can’t be split any further 
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*Wish list for a purity measure 

!! Properties we require from a purity measure: 

!! When node is pure, measure should be zero 

!! When impurity is maximal (i.e. all classes equally likely), 
measure should be maximal 

!! Measure should obey multistage property (i.e. decisions can be 
made in several stages): 

!! Entropy is a function that satisfies all three properties! 
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*Properties of the entropy 

!! The multistage property: 

!! Simplification of computation: 

!! Note: instead of maximizing info gain we could just 
minimize information 
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Highly-branching attributes 

!! Problematic: attributes with a large number of 

values (extreme case: ID code) 

!! Subsets are more likely to be pure if there is a 

large number of values 

!!Information gain is biased towards choosing attributes 
with a large number of values 

!!This may result in overfitting (selection of an attribute 
that is non-optimal for prediction) 
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Weather Data with ID code 

ID Outlook Temperature Humidity Windy Play? 
A sunny hot high false No 
B sunny hot high true No 
C overcast hot high false Yes 
D rain mild high false Yes 
E rain cool normal false Yes 
F rain cool normal true No 
G overcast cool normal true Yes 
H sunny mild high false No 
I sunny cool normal false Yes 
J rain mild normal false Yes 
K sunny mild normal true Yes 
L overcast mild high true Yes 
M overcast hot normal false Yes 
N rain mild high true No 

Split for ID Code Attribute 

Entropy of split = 0 (since each leaf node is “pure”, having only 

one case. 

Information gain is maximal for ID code 
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Gain ratio 

!! Gain ratio: a modification of the information gain 
that reduces its bias on high-branch attributes 

!! Gain ratio should be  

!! Large when data is evenly spread 

!! Small when all data belong to one branch 

!! Gain ratio takes number and size of branches 
into account when choosing an attribute 

!! It corrects the information gain by taking the intrinsic 
information of a split into account (i.e. how much info 
do we need to tell which branch an instance belongs 
to) 
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Gain Ratio and Intrinsic Info. 

!! Intrinsic information: entropy of distribution of 
instances into branches  

!! Gain ratio (Quinlan’86) normalizes info gain by: 

Computing the gain ratio 

!! Example: intrinsic information for ID code 

!! Importance of attribute decreases as 
intrinsic information gets larger 

!! Example of gain ratio: 

!! Example: 
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Gain ratios for weather data 

Outlook Temperature 

Info: 0.693 Info: 0.911 

Gain: 0.940-0.693 0.247  Gain: 0.940-0.911  0.029 

Split info: info([5,4,5]) 1.577   Split info: info([4,6,4]) 1.362 

Gain ratio: 0.247/1.577 0.156 Gain ratio: 0.029/1.362 0.021 

Humidity Windy 

Info: 0.788 Info: 0.892 

Gain: 0.940-0.788 0.152 Gain: 0.940-0.892  0.048 

Split info: info([7,7]) 1.000   Split info: info([8,6]) 0.985 

Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049 
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More on the gain ratio 

!! !Outlook” still comes out top 

!! However: “ID code” has greater gain ratio 

!! Standard fix: ad hoc test to prevent splitting on that 
type of attribute 

!! Problem with gain ratio: it may overcompensate 

!! May choose an attribute just because its intrinsic 
information is very low 

!! Standard fix:  

!! First, only consider attributes with greater than average 
information gain 

!! Then, compare them on gain ratio 
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!! If a data set T contains examples from n classes, gini 
index, gini(T) is defined as 

    where pj is the relative frequency of class j in T. 

gini(T) is minimized if the classes in T are skewed. 

*CART Splitting Criteria: Gini Index 

After splitting T into two subsets T1 and T2 with sizes 
N1 and N2, the gini index of the split data is defined 
as 

!! The attribute providing smallest ginisplit(T) is chosen 
to split the node. 

*Gini Index Discussion 

!! Algorithm for top-down induction of decision 

trees (“ID3”) was developed by Ross Quinlan 

!! Gain ratio just one modification of this basic algorithm 

!! Led to development of C4.5, which can deal with 

numeric attributes, missing values, and noisy data 

!! There are many other attribute selection criteria! 

(But almost no difference in accuracy of result.) 

Summary 

!!Top-Down Decision Tree Construction 

!!Choosing the Splitting Attribute 

!!Information Gain biased towards attributes with a 
large number of values 

!! Gain Ratio takes number and size of branches 
into account when choosing an attribute 



Machine  Learning in 

Real World: 

C4.5 

Outline 

!!Handling Numeric Attributes 

!!Finding Best Split(s) 

!!Dealing with Missing Values 

!!Pruning 

!!Pre-pruning, Post-pruning, Error Estimates 

!!From Trees to Rules 

Industrial-strength algorithms 

!! For an algorithm to be useful in a wide range of real-
world applications it must: 

!! Permit numeric attributes 

!! Allow missing values 

!! Be robust in the presence of noise 

!! Be able to approximate arbitrary concept descriptions (at least 
in principle)  

!! Basic schemes need to be extended to fulfill these 
requirements 
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C4.5 History 

!! ID3, CHAID – 1960s 

!! C4.5 innovations (Quinlan): 

!! permit numeric attributes 

!! deal sensibly with missing values 

!! pruning to deal with for noisy data 

!! C4.5 - one of best-known and most widely-used learning 
algorithms 

!! Last research version: C4.8, implemented in Weka as J4.8 (Java) 

!! Commercial successor: C5.0 (available from Rulequest) 

Numeric attributes 

!! Standard method: binary splits 

!! E.g. temp < 45 

!! Unlike nominal attributes, 
every attribute has many possible split points 

!! Solution is straightforward extension:  

!! Evaluate info gain (or other measure) 
for every possible split point of attribute 

!! Choose “best” split point 

!! Info gain for best split point is info gain for attribute 

!! Computationally more demanding 
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Weather data – nominal values 
Outlook Temperature Humidity Windy Play 

Sunny Hot High False No 

Sunny Hot  High  True No 

Overcast  Hot   High False Yes 

Rainy Mild Normal False Yes 

… … … … … 

If outlook = sunny and humidity = high then play = no 

If outlook = rainy and windy = true then play = no 

If outlook = overcast then play = yes 

If humidity = normal then play = yes 

If none of the above then play = yes 
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Weather data - numeric 
Outlook Temperature Humidity Windy Play 

Sunny 85 85 False No 

Sunny 80  90  True No 

Overcast  83   86 False Yes 

Rainy 75 80 False Yes 

… … … … … 

If outlook = sunny and humidity > 83 then play = no 

If outlook = rainy and windy = true then play = no 

If outlook = overcast then play = yes 

If humidity < 85 then play = yes 

If none of the above then play = yes 

Example 

!! Split on temperature attribute: 

!! E.g.  temperature < 71.5: yes/4, no/2 
 temperature ! 71.5: yes/5, no/3 

!! Info([4,2],[5,3]) 
= 6/14 info([4,2]) + 8/14 info([5,3])  
= 0.939 bits 

!! Place split points halfway between values 

!! Can evaluate all split points in one pass! 

 64     65     68     69     70     71     72     72     75     75     80     81     83     85 

Yes  No  Yes Yes  Yes  No  No  Yes Yes  Yes  No  Yes  Yes No 
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Avoid repeated sorting! 

!! Sort instances by the values of the numeric attribute 

!! Time complexity for sorting: O (n log n)  

!! Q. Does this have to be repeated at each node of 
the tree? 

!! A: No! Sort order for children can be derived from sort 
order for parent 

!! Time complexity of derivation: O (n) 

!! Drawback: need to create and store an array of sorted indices 
for each numeric attribute  
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More speeding up  

!!Entropy only needs to be evaluated between points 
of different classes (Fayyad & Irani, 1992) 

 64     65     68     69     70     71     72     72     75     75     80     81     83     85 

Yes  No  Yes Yes  Yes  No  No  Yes Yes  Yes  No  Yes  Yes No 

Potential optimal breakpoints 

Breakpoints between values of the same class cannot 
be optimal 

value 

class 

X 

Binary vs. multi-way splits 

!! Splitting (multi-way) on a nominal attribute 
exhausts all information in that attribute 

!! Nominal attribute is tested (at most) once on any path 
in the tree 

!! Not so for binary splits on numeric attributes! 

!! Numeric attribute may be tested several times along a 
path in the tree 

!! Disadvantage: tree is hard to read 

!! Remedy: 

!! pre-discretize numeric attributes, or 

!! use multi-way splits instead of binary ones 
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Missing as a separate value 

!!Missing value denoted “?” in C4.X 

!!Simple idea: treat missing as a separate value 

!!Q: When this is not appropriate? 

!!A: When values are missing due to different 
reasons  

!!Example 1: gene expression could be missing when it is 
very high or very low   

!!Example 2: field IsPregnant=missing for a male 
patient should be treated differently (no) than for a 
female patient of age 25 (unknown) 



Missing values - advanced 

Split instances with missing values into pieces 

!! A piece going down a branch receives a weight 
proportional to the popularity of the branch 

!! weights sum to 1 

!! Info gain works with fractional instances 

!! use sums of weights instead of counts 

!! During classification, split the instance into pieces 
in the same way 

!! Merge probability distribution using weights 
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Pruning 

!! Goal: Prevent overfitting to noise in the 

data 

!! Two strategies for “pruning” the decision 

tree: 

"! Postpruning - take a fully-grown decision tree 
and discard unreliable parts 

"! Prepruning - stop growing a branch when 
information becomes unreliable 

!! Postpruning preferred in practice—

prepruning can “stop too early” 

Prepruning 

!! Based on statistical significance test 

!! Stop growing the tree when there is no statistically significant 
association between any attribute and the class at a particular 
node 

!! Most popular test: chi-squared test 

!! ID3 used chi-squared test in addition to information gain 

!! Only statistically significant attributes were allowed to be 
selected by information gain procedure 
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Early stopping 

!! Pre-pruning may stop the growth process 
prematurely: early stopping 

!! Classic example: XOR/Parity-problem 

!! No individual attribute exhibits any significant 
association to the class 

!! Structure is only visible in fully expanded tree 

!! Pre-pruning won’t expand the root node 

!! But: XOR-type problems rare in practice 

!! And: pre-pruning faster than post-pruning 

a b class 

1 0 0 0 

2 0 1 1 

3 1 0 1 

4 1 1 0 
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Post-pruning 
!! First, build full tree 

!! Then, prune it 

!! Fully-grown tree shows all attribute interactions  

!! Problem: some subtrees might be due to chance effects 

!! Two pruning operations:  

1.! Subtree replacement 

2.! Subtree raising 

!! Possible strategies: 

!! error estimation 

!! significance testing 

!! MDL principle 
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Subtree replacement 
!! Bottom-up 

!! Consider replacing a tree 
only after considering all 
its subtrees 

!! Ex: labor negotiations  
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Subtree 
replacement 

!! Bottom-up 

!! Consider replacing a tree 
only after considering all 
its subtrees 
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*Subtree raising 
!! Delete node 

!! Redistribute instances 

!! Slower than subtree 
replacement 

 (Worthwhile?) 
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X

Estimating error rates 

!! Prune only if it reduces the estimated error 

!! Error on the training data is NOT a useful 
estimator 
Q: Why it would result in very little pruning? 

!! Use hold-out set for pruning 
(“reduced-error pruning”) 

!! C4.5’s method 

!! Derive confidence interval from training data 

!! Use a heuristic limit, derived from this, for pruning 

!! Standard Bernoulli-process-based method 

!! Shaky statistical assumptions (based on training data) 
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*Mean and variance 

!! Mean and variance for a Bernoulli trial: 
p, p (1–p) 

!! Expected success rate f=S/N 

!! Mean and variance for f : p, p (1–p)/N 

!! For large enough N, f  follows a Normal 
distribution 

!! c% confidence interval [–z ! X ! z] for random 
variable with 0 mean is given by: 

!! With a symmetric distribution: 
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*Confidence limits 
!! Confidence limits for the normal distribution with 0 mean and 

a variance of 1: 

!! Thus: 

!! To use this we have to reduce our random variable f  to have 
0 mean and unit variance 

Pr[X " z] z 

0.1% 3.09 

0.5% 2.58 

1% 2.33 

5% 1.65 

10% 1.28 

20% 0.84 

25% 0.69 

40% 0.25 
–1     0     1   1.65 
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*Transforming f 

!! Transformed value for f : 

(i.e. subtract the mean and divide by the standard deviation) 

!! Resulting equation: 

!! Solving for p: 
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C4.5’s method 

!! Error estimate for subtree is weighted sum of error 
estimates for all its leaves 

!! Error estimate for a node (upper bound): 

!! If c = 25% then z = 0.69 (from normal distribution) 

!! f  is the error on the training data 

!! N  is the number of instances covered by the leaf 
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Example 

f=0.33 

e=0.47 

f=0.5 

e=0.72 

f=0.33 

e=0.47 

f = 5/14  

e = 0.46 

e < 0.51 

so prune! 

Combined using ratios 6:2:6 gives 0.51 
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*Complexity of tree induction 
!! Assume 

!! m attributes 

!! n training instances 

!! tree depth O (log n) 

!! Building a tree  O (m n log n) 

!! Subtree replacement  O (n) 

!! Subtree raising  O (n (log n)2) 

!! Every instance may have to be redistributed at every node 
between its leaf and the root 

!! Cost for redistribution (on average): O (log n) 

!! Total cost: O (m n log n) + O (n (log n)2) 
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From trees to rules 
!! Simple way: one rule for each leaf 

!! C4.5rules: greedily prune conditions from each rule 
if this reduces its estimated error 

!! Can produce duplicate rules 

!! Check for this at the end 

!! Then 

!! look at each class in turn 

!! consider the rules for that class 

!! find a “good” subset (guided by MDL) 

!! Then rank the subsets to avoid conflicts 

!! Finally, remove rules (greedily) if this decreases 
error on the training data 
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C4.5rules: choices and options 

!! C4.5rules slow for large and noisy datasets 

!! Commercial version C5.0rules uses a different technique 

!! Much faster and a bit more accurate 

!! C4.5 has two parameters 

!! Confidence value (default 25%): 
lower values incur heavier pruning 

!! Minimum number of instances in the two most popular 
branches (default 2) 
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*Classification rules 

!! Common procedure: separate-and-conquer  

!! Differences: 

!! Search method (e.g. greedy, beam search, ...) 

!! Test selection criteria (e.g. accuracy, ...) 

!! Pruning method (e.g. MDL, hold-out set, ...) 

!! Stopping criterion (e.g. minimum accuracy) 

!! Post-processing step 

!! Also: Decision list 
  vs.  one rule set for each class 
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*Test selection criteria 
!! Basic covering algorithm: 

!! keep adding conditions to a rule to improve its accuracy 

!! Add the condition that improves accuracy the most 

!! Measure 1: p/t 

!! t  total instances covered by rule 
p  number of these that are positive 

!! Produce rules that don’t cover negative instances, 
as quickly as possible 

!! May produce rules with very small coverage 
—special cases or noise? 

!! Measure 2: Information gain p (log(p/t) – log(P/T)) 

!! P and T the positive and total numbers before the new condition 
was added 

!! Information gain emphasizes positive rather than negative 
instances 

!! These interact with the pruning mechanism used 
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*Missing values, 
numeric attributes 

!! Common treatment of missing values: 
for any test, they fail 

!! Algorithm must either 

!! use other tests to separate out positive instances 

!! leave them uncovered until later in the process 

!! In some cases it’s better to treat “missing” as a separate 

value 

!! Numeric attributes are treated just like they are in 

decision trees 
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*Pruning rules 

!! Two main strategies: 

!! Incremental pruning 

!! Global pruning 

!! Other difference: pruning criterion 

!! Error on hold-out set (reduced-error pruning) 

!! Statistical significance 

!! MDL principle 

!! Also: post-pruning vs. pre-pruning 
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Summary  

!! Decision Trees 

!! splits – binary, multi-way 

!! split criteria – entropy, gini, … 

!! missing value treatment 

!! pruning  

!! rule extraction from trees 

!! No method is always superior – 
experiment! 
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Classification Algorithms –  
Continued 

Outline 

!!Rules 

!!Linear Models (Regression) 

!!Instance-based (Nearest-neighbor) 

Generating Rules 

!! Decision tree can be converted into a rule set 

!! Straightforward conversion:  

!! each path to the leaf becomes a rule – makes an 
overly complex rule set 

!! More effective conversions are not trivial 

!! (e.g. C4.8 tests each node in root-leaf path to see if it 

can be eliminated without loss in accuracy) 

Covering algorithms 

!! Strategy for generating a rule set directly: for 

each class in turn find rule set that covers all 
instances in it (excluding instances not in the 

class) 

!! This approach is called a covering approach 

because at each stage a rule is identified that 
covers some of the instances 

Example: generating a rule 

If true then class = a 

Example: generating a rule, II 

If x > 1.2 then class = a 

If true then class = a 



Example: generating a rule, III 

If x > 1.2 then class = a 

If x > 1.2 and y > 2.6 then class = a If true then class = a 

Example: generating a rule, IV 

If x > 1.2 then class = a 

If x > 1.2 and y > 2.6 then class = a If true then class = a 

!! Possible rule set for class “b”: 

!! More rules could be added for “perfect” rule set 

If x ! 1.2 then class = b 

If x > 1.2 and y ! 2.6 then class = b 

Rules vs. trees 

!! Corresponding decision tree: 

 (produces exactly the same 

 predictions) 

!! But: rule sets can be more clear when decision 

trees suffer from replicated subtrees 

!! Also: in multi-class situations, covering algorithm 

concentrates on one class at a time whereas 
decision tree learner takes all classes into 

account 

A simple covering algorithm 

!! Generates a rule by adding tests that maximize 

rule’s accuracy 

!! Similar to situation in decision trees: problem of 

selecting an attribute to split on 

!! But: decision tree inducer maximizes overall purity 

!! Each new test reduces 

 rule’s coverage: 
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Selecting a test 

!! Goal: maximize accuracy 

!! t  total number of instances covered by rule 

!! p positive examples of the class covered by rule 

!! t – p number of errors made by rule 

"! Select test that maximizes the ratio p/t 

!! We are finished when p/t = 1 or the set of instances 
can’t be split any further 
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Example: 
contact lens data 

!! Rule we seek: 

!! Possible tests: 
Age = Young 2/8 

Age = Pre-presbyopic 1/8 

Age = Presbyopic 1/8 

Spectacle prescription = Myope 3/12 

Spectacle prescription = Hypermetrope 1/12 

Astigmatism = no 0/12 

Astigmatism = yes 4/12 

Tear production rate = Reduced 0/12 

Tear production rate = Normal 4/12 

If ? 

    then recommendation = hard 
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Modified rule and resulting data 

!! Rule with best test added: 

!! Instances covered by modified rule: 

Age Spectacle prescription Astigmatism Tear production rate Recommended 
lenses 

Young  Myope Yes Reduced None 
Young Myope Yes Normal Hard 
Young Hypermetrope Yes Reduced None 
Young Hypermetrope Yes Normal hard 
Pre-presbyopic Myope Yes Reduced None 
Pre-presbyopic Myope Yes Normal Hard 
Pre-presbyopic  Hypermetrope Yes Reduced None 
Pre-presbyopic Hypermetrope Yes Normal None 
Presbyopic Myope Yes Reduced None 
Presbyopic Myope Yes Normal Hard 
Presbyopic Hypermetrope Yes Reduced None 
Presbyopic Hypermetrope Yes Normal None 

If astigmatism = yes  

    then recommendation = hard 
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Further refinement 

!! Current state: 

!! Possible tests: 
Age = Young 2/4 

Age = Pre-presbyopic 1/4 

Age = Presbyopic 1/4 

Spectacle prescription = Myope 3/6 

Spectacle prescription = Hypermetrope 1/6 

Tear production rate = Reduced 0/6 

Tear production rate = Normal 4/6 

If astigmatism = yes 

    and ?  

  then recommendation = hard 

witten&eibe 

Modified rule and resulting data 

!! Rule with best test added: 

!! Instances covered by modified rule: 
Age Spectacle prescription Astigmatism Tear production rate Recommended 

lenses 

Young Myope Yes Normal Hard 
Young Hypermetrope Yes Normal hard 
Pre-presbyopic Myope Yes Normal Hard 
Pre-presbyopic Hypermetrope Yes Normal None 
Presbyopic Myope Yes Normal Hard 
Presbyopic Hypermetrope Yes Normal None 

If astigmatism = yes 

    and tear production rate = normal  

  then recommendation = hard 
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Further refinement 
!! Current state: 

!! Possible tests: 

!! Tie between the first and the fourth test 

!! We choose the one with greater coverage 

Age = Young 2/2 

Age = Pre-presbyopic 1/2 

Age = Presbyopic 1/2 

Spectacle prescription = Myope 3/3 

Spectacle prescription = Hypermetrope 1/3 

If astigmatism = yes  

  and tear production rate = normal 

  and ? 

then recommendation = hard 
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The result 

!! Final rule: 

!! Second rule for recommending “hard lenses”: 
(built from instances not covered by first rule) 

!! These two rules cover all “hard lenses”: 

!! Process is repeated with other two classes 

If astigmatism = yes 

and tear production rate = normal 

and spectacle prescription = myope 

then recommendation = hard 

If age = young and astigmatism = yes 

and tear production rate = normal 

then recommendation = hard 
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Pseudo-code for PRISM 

For each class C 

  Initialize E to the instance set 

  While E contains instances in class C 

    Create a rule R with an empty left-hand side that predicts class C 

    Until R is perfect (or there are no more attributes to use) do 

      For each attribute A not mentioned in R, and each value v, 

        Consider adding the condition A = v to the left-hand side of R 

        Select A and v to maximize the accuracy p/t 

          (break ties by choosing the condition with the largest p) 

      Add A = v to R 

    Remove the instances covered by R from E  
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Rules vs. decision lists 

!! PRISM with outer loop removed generates a 

decision list for one class 

!! Subsequent rules are designed for rules that are not 
covered by previous rules 

!! But: order doesn’t matter because all rules predict the 
same class 

!! Outer loop considers all classes separately 

!! No order dependence implied 

!! Problems: overlapping rules, default rule required 

Separate and conquer 

!! Methods like PRISM (for dealing with one class) 

are separate-and-conquer algorithms: 

!! First, a rule is identified 

!! Then, all instances covered by the rule are separated 

out 

!! Finally, the remaining instances are “conquered” 

!! Difference to divide-and-conquer methods: 

!! Subset covered by rule doesn’t need to be explored 
any further 
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Outline 

!!Rules 

!!Linear Models (Regression) 

!!Instance-based (Nearest-neighbor) 

Linear models 

!! Work most naturally with numeric attributes 

!! Standard technique for numeric prediction: linear 
regression 

!! Outcome is linear combination of attributes 

!! Weights are calculated from the training data 

!! Predicted value for first training instance a(1) 
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Minimizing the squared error 

!! Choose k +1 coefficients to minimize the squared error 
on the training data 

!! Squared error: 

!! Derive coefficients using standard matrix operations 

!! Can be done if there are more instances than attributes 
(roughly speaking) 

!! Minimizing the absolute error is more difficult 
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Regression for Classification 

!! Any regression technique can be used for classification 

!! Training: perform a regression for each class, setting the 
output to 1 for training instances that belong to class, and 0 
for those that don’t 

!! Prediction: predict class corresponding to model with largest 
output value (membership value) 

!! For linear regression this is known as multi-response 
linear regression 
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*Theoretical justification 

Model Instance 

Observed target value (either 0 or 1) 

True class probability 

Constant We want to minimize this 

The scheme minimizes this 
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*Pairwise regression 

!! Another way of using regression for classification:  

!! A regression function for every pair of classes, using 
only instances from these two classes 

!! Assign output of +1 to one member of the pair, –1 to 
the other 

!! Prediction is done by voting 

!! Class that receives most votes is predicted 

!! Alternative: “don’t know” if there is no agreement 

!! More likely to be accurate but more expensive  
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Logistic regression 

!! Problem: some assumptions violated when linear 
regression is applied to classification problems 

!! Logistic regression: alternative to linear regression 

!! Designed for classification problems 

!! Tries to estimate class probabilities directly 

!! Does this using the maximum likelihood method 

!! Uses this linear model: 

P= Class probability 
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Discussion of linear models 

!! Not appropriate if data exhibits non-linear dependencies 

!! But: can serve as building blocks for more complex 
schemes (i.e. model trees) 

!! Example: multi-response linear regression defines a 
hyperplane for any two given classes: 
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Comments on basic methods 

!! Minsky and Papert (1969) showed that linear 

classifiers have limitations, e.g. can’t learn 
XOR 

!! But: combinations of them can (! Neural Nets) 
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Outline 

!!Rules 

!!Linear Models (Regression) 

!!Instance-based (Nearest-neighbor) 



Instance-based representation 

!! Simplest form of learning: rote learning 

!! Training instances are searched for instance that most 
closely resembles new instance 

!! The instances themselves represent the knowledge 

!! Also called instance-based learning 

!! Similarity function defines what’s “learned” 

!! Instance-based learning is lazy learning 

!! Methods: 

!! nearest-neighbor 

!! k-nearest-neighbor 

!! … 
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The distance function 
!! Simplest case: one numeric attribute 

!! Distance is the difference between the two attribute 
values involved (or a function thereof) 

!! Several numeric attributes: normally, Euclidean 
distance is used and attributes are normalized 

!! Nominal attributes: distance is set to 1 if values 
are different, 0 if they are equal 

!! Are all attributes equally important? 

!! Weighting the attributes might be necessary 
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Instance-based learning 

!! Distance function defines what’s learned 

!! Most instance-based schemes use Euclidean distance: 

 a(1) and a(2): two instances with k attributes 

!! Taking the square root is not required when comparing 

distances 

!! Other popular metric: city-block (Manhattan) metric 

!! Adds differences without squaring them  
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Normalization and other issues 

!! Different attributes are measured on different scales ! 
need to be normalized: 

 vi : the actual value of attribute i 

!! Nominal attributes: distance either 0 or 1 

!! Common policy for missing values: assumed to be 

maximally distant (given normalized attributes) 

or 
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Discussion of 1-NN 

!! Often very accurate 

!! … but slow: 

!! simple version scans entire training data to derive a 
prediction 

!! Assumes all attributes are equally important 

!! Remedy: attribute selection or weights 

!! Possible remedies against noisy instances: 

!! Take a majority vote over the k nearest neighbors 

!! Removing noisy instances from dataset (difficult!) 

!! Statisticians have used k-NN since early 1950s 

!! If n " # and k/n " 0, error approaches minimum 
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Summary 

!!Simple methods frequently work well  

!! robust against noise, errors 

!!Advanced methods, if properly used, can improve 
on simple methods 

!!No method is universally best 



Evaluation and 
Credibility 

How much should we 
believe in what was 

learned? 

Outline 

!!Introduction 

!!Classification with Train, Test, and Validation sets 

!!Handling Unbalanced Data; Parameter Tuning 

!!Cross-validation 

!!Comparing Data Mining Schemes 

Introduction 

!!How predictive is the model we learned? 

!!Error on the training data is not a good indicator 
of performance on future data 

!!Q: Why?   

!!A: Because new data will probably not be exactly the 
same as the training data! 

!!Overfitting – fitting the training data too precisely 
- usually leads to poor results on new data 

Evaluation issues 

!!Possible evaluation measures: 

!!Classification Accuracy  

!!Total cost/benefit – when different errors involve 
different costs 

!!Lift and ROC curves 

!!Error in numeric predictions 

!!How reliable are the predicted results ? 

Classifier error rate 

!!Natural performance measure for classification 

problems: error rate 

!!Success: instance’s class is predicted correctly 

!!Error: instance’s class is predicted incorrectly 

!!Error rate: proportion of errors made over the whole 
set of instances 

!!Training set error rate: is way too optimistic!   

!!you can find patterns even in random data 

Evaluation on “LARGE” data 

!!If many (thousands) of examples are available, 

including several hundred examples from each 
class, then a simple evaluation is sufficient 

!!Randomly split data into training and test sets (usually 
2/3 for train, 1/3 for test) 

!!Build a classifier using the train set and evaluate 
it using the test set.  



Classification Step 1:  
Split data into train and test sets 

Results Known 

+ 
+ 

- 
- 
+ 

THE PAST 

Data 

Training set 

Testing set 

Classification Step 2:  
Build a model on a training set 

Training set 

Results Known 

+ 
+ 

- 
- 
+ 

THE PAST 

Data 

Model Builder 

Testing set 

Classification Step 3: 
 Evaluate on test set (Re-train?) 

Data 

Predictions 

Y N 

Results Known 

Training set 

Testing set 

+ 
+ 

- 
- 
+ 

Model Builder 

Evaluate 

+ 

- 

+ 

- 

Handling unbalanced data 

!!Sometimes, classes have very unequal frequency 

!!Attrition prediction: 97% stay, 3% attrite (in a month) 

!!medical diagnosis: 90% healthy, 10% disease 

!!eCommerce: 99% don’t buy, 1% buy 

!!Security: >99.99% of Americans are not terrorists 

!!Similar situation with multiple classes 

!!Majority class classifier can be 97% correct, but 
useless 

Balancing unbalanced data 

!!With two classes, a good approach is to build 

BALANCED train and test sets, and train model 
on a balanced set 

!! randomly select desired number of minority class 
instances 

!!add equal number of randomly selected majority class 

!!Generalize “balancing” to multiple classes 

!!Ensure that each class is represented with 

approximately equal proportions in train and test 

A note on parameter tuning 

!! It is important that the test data is not used in any way to 
create the classifier 

!!Some learning schemes operate in two stages: 

!! Stage 1: builds the basic structure 

!! Stage 2: optimizes parameter settings 

!!The test data can’t be used for parameter tuning! 

!!Proper procedure uses three sets: training data, 
validation data, and test data 

!! Validation data is used to optimize parameters 
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Making the most of the data 

!!Once evaluation is complete, all the data can be 

used to build the final classifier 

!!Generally, the larger the training data the better 

the classifier (but returns diminish) 

!!The larger the test data the more accurate the 

error estimate 
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Classification:  
Train, Validation, Test split 

Data 

Predictions 

Y N 

Results Known 

Training set 

Validation set 

+ 
+ 

- 
- 
+ 

Model Builder 

Evaluate 

+ 

- 

+ 

- 

Final Model Final Test Set 

+ 

- 

+ 

- 

Final Evaluation 

Model 

Builder 

*Predicting performance 

!!Assume the estimated error rate is 25%. How 
close is this to the true error rate? 

!!Depends on the amount of test data 

!!Prediction is just like tossing a biased (!) coin 

!! “Head” is a “success”, “tail” is an “error” 

!!In statistics, a succession of independent events 
like this is called a Bernoulli process 

!!Statistical theory provides us with confidence 
intervals for the true underlying proportion! 
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*Confidence intervals 

!! We can say: p lies within a certain specified interval with 
a certain specified confidence 

!! Example: S=750 successes in N=1000 trials 

!! Estimated success rate: 75% 

!! How close is this to true success rate p? 

!! Answer: with 80% confidence p![73.2,76.7] 

!! Another example: S=75 and N=100 

!! Estimated success rate: 75% 

!! With 80% confidence p![69.1,80.1] 
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*Mean and variance (also Mod 7) 
!! Mean and variance for a Bernoulli trial: 

p, p (1–p) 

!! Expected success rate f=S/N 

!! Mean and variance for f : p, p (1–p)/N 

!! For large enough N, f  follows a Normal 
distribution 

!! c% confidence interval [–z " X " z] for random 
variable with 0 mean is given by: 

!! With a symmetric distribution: 
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*Confidence limits 
!! Confidence limits for the normal distribution with 0 mean and 

a variance of 1: 

!! Thus: 

!! To use this we have to reduce our random variable f  to have 
0 mean and unit variance 

Pr[X # z] z 

0.1% 3.09 

0.5% 2.58 

1% 2.33 

5% 1.65 

10% 1.28 

20% 0.84 

40% 0.25 

–1     0     1   1.65 

witten & eibe 



*Transforming f 

!! Transformed value for f : 

(i.e. subtract the mean and divide by the standard deviation) 

!! Resulting equation: 

!! Solving for p : 
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*Examples 

!! f = 75%, N = 1000, c = 80% (so that z = 1.28): 

!! f = 75%, N = 100, c = 80% (so that z = 1.28): 

!! Note that normal distribution assumption is only valid for large N (i.e. 
N > 100) 

!! f = 75%, N = 10, c = 80% (so that z = 1.28): 

 (should be taken with a grain of salt) 
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Evaluation on “small” data 

!!The holdout method reserves a certain amount 
for testing and uses the remainder for training 

!!Usually: one third for testing, the rest for training 

!!For small or “unbalanced” datasets, samples 
might not be representative 

!!Few or none instances of some classes 

!!Stratified sample: advanced version of balancing  
the data 

!!Make sure that each class is represented with 
approximately equal proportions in both subsets 

Repeated holdout method 

!!Holdout estimate can be made more reliable by 

repeating the process with different subsamples 

!! In each iteration, a certain proportion is randomly 
selected for training (possibly with stratification) 

!!The error rates on the different iterations are averaged 
to yield an overall error rate 

!!This is called the repeated holdout method 

!!Still not optimum: the different test sets overlap 

!!Can we prevent overlapping? 
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Cross-validation 

!!Cross-validation avoids overlapping test sets 

!!First step: data is split into k subsets of equal size 

!!Second step: each subset in turn is used for testing and 
the remainder for training 

!!This is called k-fold cross-validation 

!!Often the subsets are stratified before the cross-

validation is performed 

!!The error estimates are averaged to yield an 

overall error estimate 
witten & eibe !"  

Cross-validation example: 

—! Break up data into groups of the same size  

—!   

—!   

—! Hold aside one group for testing and use the rest to build model 

—!   

—! Repeat 

Test 



More on cross-validation 

!!Standard method for evaluation: stratified ten-

fold cross-validation 

!!Why ten? Extensive experiments have shown that 

this is the best choice to get an accurate estimate 

!!Stratification reduces the estimate’s variance 

!!Even better: repeated stratified cross-validation 

!!E.g. ten-fold cross-validation is repeated ten times and 
results are averaged (reduces the variance) 
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Leave-One-Out cross-validation 

!! Leave-One-Out: 
a particular form of cross-validation: 

!! Set number of folds to number of training instances 

!! I.e., for n training instances, build classifier n times 

!! Makes best use of the data 

!! Involves no random subsampling  

!! Very computationally expensive 

!! (exception: NN) 

Leave-One-Out-CV and stratification 

!! Disadvantage of Leave-One-Out-CV: stratification is not 
possible 

!! It guarantees a non-stratified sample because there is only 
one instance in the test set! 

!! Extreme example: random dataset split equally into  two 
classes 

!! Best inducer predicts majority class 

!! 50% accuracy on fresh data  

!! Leave-One-Out-CV estimate is 100% error! 

*The bootstrap 
!! CV uses sampling without replacement 

!! The same instance, once selected, can not be selected 
again for a particular training/test set 

!! The bootstrap uses sampling with replacement to 
form the training set 

!! Sample a dataset of n instances n times with replacement 
to form a new dataset 
of n instances 

!! Use this data as the training set 

!! Use the instances from the original 
dataset that don’t occur in the new 
training set for testing 

*The 0.632 bootstrap 

!! Also called the 0.632 bootstrap 

!! A particular instance has a probability of 1–1/n of not being 
picked 

!! Thus its probability of ending up in the test data is: 

!! This means the training data will contain approximately 63.2% 
of the instances 

*Estimating error 
with the bootstrap 

!! The error estimate on the test data will be very 
pessimistic  

!! Trained on just ~63% of the instances 

!! Therefore, combine it with the resubstitution error: 

!! The resubstitution error gets less weight than the error 
on the test data 

!! Repeat process several times with different replacement 
samples; average the results 



*More on the bootstrap 

!! Probably the best way of estimating performance for 
very small datasets 

!! However, it has some problems 

!! Consider the random dataset from above 

!! A perfect memorizer will achieve 
   0% resubstitution error and 
   ~50% error on test data 

!! Bootstrap estimate for this classifier: 

!! True expected error: 50% 

Comparing data mining schemes 

!!Frequent situation: we want to know which one 

of two learning schemes performs better 

!!Note: this is domain dependent! 

!!Obvious way: compare 10-fold CV estimates 

!!Problem: variance in estimate 

!!Variance can be reduced using repeated CV 

!!However, we still don’t know whether the results 
are reliable 
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Significance tests 

!!Significance tests tell us how confident we can be 
that there really is a difference 

!!Null hypothesis: there is no “real” difference 

!!Alternative hypothesis: there is a difference 

!!A significance test measures how much evidence 
there is in favor of rejecting the null hypothesis 

!!Let’s say we are using 10 times 10-fold CV 

!!Then we want to know whether the two means of 
the 10 CV estimates are significantly different 

!!Student’s paired t-test tells us whether the means of two 
samples are significantly different 
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*Paired t-test 
!! Student’s t-test tells whether the means of two 

samples are significantly different 

!! Take individual samples from the set of all possible 
cross-validation estimates 

!! Use a paired t-test because the individual samples 
are paired 

!! The same CV is applied twice 

William Gosset 

Born:  1876 in Canterbury; Died:  1937 in Beaconsfield, England 

Obtained a post as a chemist in the Guinness brewery in Dublin in 1899. 

Invented the t-test to handle small samples for quality control in brewing. 

Wrote under the name "Student".  

*Distribution of the means 
!! x1 x2 … xk and y1 y2 … yk are the 2k samples for a k-fold CV 

!! mx and my are the means 

!! With enough samples, the mean of a set of independent 
samples is normally distributed 

!! Estimated variances of the means are !x
2/k and !y

2/k  

!! If µx and µy are the true means then 

are approximately normally distributed with 
mean 0, variance 1 

*Student’s distribution 
!! With small samples (k < 100) the mean follows 

Student’s distribution with k–1 degrees of freedom 

!! Confidence limits: 

Pr[X " z] z 

0.1% 4.30 

0.5% 3.25 

1% 2.82 

5% 1.83 

10% 1.38 

20% 0.88 

Pr[X " z] z 

0.1% 3.09 

0.5% 2.58 

1% 2.33 

5% 1.65 

10% 1.28 

20% 0.84 

9 degrees of freedom                 normal distribution 



*Distribution of the differences 

!! Let md = mx – my 

!! The difference of the means (md) also has a Student’s 
distribution with k–1 degrees of freedom 

!! Let !d
2 be the variance of the difference 

!! The standardized version of md is called the t-statistic: 

!! We use t  to perform the t-test 

*Performing the test 
1.! Fix a significance level "  

!! If a difference is significant at the "% level, 
there is a (100-")% chance that there really is a 
difference 

3.! Divide the significance level by two because the 
test is two-tailed 

!! I.e. the true difference can be +ve or – ve 

5.! Look up the value for z  that corresponds to "/2 

7.! If t ! –z or t # z then the difference is significant 

!! I.e. the null hypothesis can be rejected 

Unpaired observations 

!! If the CV estimates are from different 
randomizations, they are no longer paired 

!! (or maybe we used k -fold CV for one scheme, and 
j -fold CV for the other one) 

!! Then we have to use an un paired t-test with 
min(k , j) – 1 degrees of freedom 

!! The t-statistic becomes: 

*Interpreting the result 

!! All our cross-validation estimates are based on the same 
dataset 

!! Hence the test only tells us whether a complete k-fold 
CV for this dataset would show a difference 

!! Complete k-fold CV generates all possible partitions of the data 
into k folds and averages the results 

!! Ideally, should use a different dataset sample for each 
of the k-fold CV estimates used in the test to judge 
performance across different training sets  

*Predicting probabilities 
!! Performance measure so far: success rate 

!! Also called 0-1 loss function: 

!! Most classifiers produces class probabilities 

!! Depending on the application, we might want to 
check the accuracy of the probability estimates 

!! 0-1 loss is not the right thing to use in those cases 

*Quadratic loss function 

!! p1 … pk are probability estimates for an instance 

!! c is the index of the instance’s actual class 

!! a1 … ak = 0, except for ac which is 1 

!! Quadratic loss is: 

!! Want to minimize 

!! Can show that this is minimized when pj = pj
*, the true probabilities 



*Informational loss function 

!! The informational loss function is –log(pc), 
where c is the index of the instance’s actual class 

!! Number of bits required to communicate the actual class 

!! Let p1
* … pk

* 
 be the true class probabilities 

!! Then the expected value for the loss function is: 

!! Justification: minimized when pj = pj
* 

!! Difficulty: zero-frequency problem  

*Discussion 
!! Which loss function to choose? 

!! Both encourage honesty 

!! Quadratic loss function takes into account all class 
probability estimates for an instance 

!! Informational loss focuses only on the probability 
estimate for the actual class 

!! Quadratic loss is bounded: 
      it can never exceed 2 

!! Informational loss can be infinite 

!! Informational loss is related to MDL principle [later] 

Evaluation Summary: 

!!Use Train, Test, Validation sets for “LARGE” data 

!!Balance “un-balanced” data 

!!Use Cross-validation for small data 

!!Don’t use test data for parameter tuning - use 

separate validation data 

!!Most Important: Avoid Overfitting 



Evaluation – next 
steps 

Lift and Costs 

Outline 

!!Lift and Gains charts 

!!*ROC  

!!Cost-sensitive learning 

!!Evaluation for numeric predictions 

!!MDL principle and Occam’s razor 

Direct Marketing Paradigm 

!! Find most likely prospects to contact 

!! Not everybody needs to be contacted 

!! Number of targets is usually much smaller than number 
of prospects 

!! Typical Applications 

!! retailers, catalogues, direct mail (and e-mail)  

!! customer acquisition, cross-sell, attrition prediction 

!! ... 

Direct Marketing Evaluation 

!!Accuracy on the entire dataset is not the 

right measure 

!!Approach 

!!develop a target model 

!! score all prospects and rank them by decreasing score 

!! select top P% of prospects for action 

!!How to decide what is the best selection? 

Model-Sorted List 

No Score Target CustID Age 

1 0.97 Y 1746 … 

2 0.95 N 1024 … 

3 0.94 Y 2478 … 

4 0.93 Y 3820 … 

5 0.92 N 4897 … 

… … … … 

99 0.11 N 2734 … 

100 0.06 N 2422 

Use a model to assign score to each customer 

Sort customers by decreasing score 

Expect more targets (hits) near the top of the list 

3 hits in top 5% of 

the list 

If there 15 targets 

overall, then top 5 

has 3/15=20% of 

targets 

CPH (Cumulative Pct Hits) 

5% of random list have 5% of targets 
Pct list 

C
u

m
u
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Definition: 

CPH(P,M) 

= % of all targets 

in the first P%  

of the list scored 

by model M 

CPH frequently  

called Gains 

Q: What is expected value for CPH(P,Random) ? 

A: Expected value for CPH(P,Random) = P 



CPH: Random List vs Model-
ranked list 

5% of random list have 5% of targets,   

but 5% of model ranked list have 21% of targets 
CPH(5%,model)=21%.    

Pct list 

C
u
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its

 

Lift  
Lift(P,M) = CPH(P,M)  /  P  

P -- percent of the list 

Lift (at 5%)   

= 21% / 5%  

= 4.2 

better 
than random 

Note: Some 

(including Witten & 

Eibe) use “Lift” for 

what we call CPH.  

Lift Properties 

!!Q: Lift(P,Random) = 

!!A: 1 (expected value, can vary) 

!!Q: Lift(100%, M) = 

!!A: 1 (for any model M)  

!!Q: Can lift be less than 1? 

!!A: yes, if the model is inverted (all the non-targets 
precede targets in the list) 

!!Generally, a better model has higher lift 

*ROC curves 

!! ROC curves are similar to gains charts 

!! Stands for “receiver operating characteristic” 

!! Used in signal detection to show tradeoff between hit rate and 
false alarm rate over noisy channel 

!! Differences from gains chart: 

!! y axis shows percentage of true positives in sample  rather than 
absolute number 

!! x axis shows percentage of false positives in sample   rather 

than sample size  
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*A sample ROC curve 

!! Jagged curve—one set of test data 

!! Smooth curve—use cross-validation 
witten & eibe 

*Cross-validation and ROC curves 

!! Simple method of getting a ROC curve using cross-
validation: 

!! Collect probabilities for instances in test folds 

!! Sort instances according to probabilities 

!! This method is implemented in WEKA 

!! However, this is just one possibility 

!! The method described in the book generates an ROC curve for 
each fold and averages them  

witten & eibe 



*ROC curves for two schemes 

!! For a small, focused sample, use method A 

!! For a larger one, use method B 

!! In between, choose between A and B with appropriate probabilities 
witten & eibe 

*The convex hull 

!! Given two learning schemes we can achieve any point 
on the convex hull! 

!! TP and FP rates for scheme 1: t1 and f1 

!! TP and FP rates for scheme 2: t2 and f2 

!! If scheme 1 is used to predict 100!q % of the cases and 
scheme 2 for the rest, then 

!! TP rate for combined scheme: 
q ! t1+(1-q) ! t2 

!! FP rate for combined scheme: 
q ! f2+(1-q) ! f2 
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Cost Sensitive Learning 

!!There are two types of errors 

!!Machine Learning methods usually minimize FP+FN  

!!Direct marketing maximizes TP 

Predicted class 

Yes No 

Actual 
class 

Yes TP: True 
positive  

FN: False 
negative  

No FP: False 
positive  

TN: True 
negative  

Different Costs 

!!In practice, true positive and false negative errors 

often incur different costs 

!!Examples: 

!!Medical diagnostic tests: does X have leukemia? 

!!Loan decisions: approve mortgage for X?  

!!Web mining: will X click on this link? 

!!Promotional mailing: will X buy the product? 

!!… 

Cost-sensitive learning 

!! Most learning schemes do not perform cost-sensitive 
learning 

!! They generate the same classifier no matter what costs are 
assigned to the different classes 

!! Example: standard decision tree learner 

!! Simple methods for cost-sensitive learning: 

!! Re-sampling of instances according to costs 

!! Weighting of instances according to costs 

!! Some schemes are inherently cost-sensitive, e.g. naïve 
Bayes 

*Measures in information retrieval 

!! Percentage of retrieved documents that are relevant: 
precision=TP/(TP+FP) 

!! Percentage of relevant documents that are returned: recall 
=TP/(TP+FN) 

!! Precision/recall curves have hyperbolic shape 

!! Summary measures: average precision at 20%, 50% and 
80% recall (three-point average recall) 

!! F-measure=(2!recall!precision)/(recall+precision) 
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*Summary of measures 

Domain Plot Explanation 

Lift chart Marketing TP  

Subset 
size 

TP 

(TP+FP)/(TP+FP+TN+FN) 

ROC curve Communications TP rate 

FP rate 

TP/(TP+FN) 

FP/(FP+TN) 

Recall-

precision 
curve 

Information 
retrieval 

Recall 

Precision 

TP/(TP+FN) 

TP/(TP+FP) 
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Evaluating numeric prediction 

!! Same strategies: independent test set, cross-validation, 
significance tests, etc. 

!! Difference: error measures 

!! Actual target values: a1 a2 …an 

!! Predicted target values: p1 p2 … pn 

!! Most popular measure: mean-squared error 

!! Easy to manipulate mathematically 
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Other measures 
!! The root mean-squared error : 

!! The mean absolute error is less sensitive to outliers 
than the mean-squared error: 

!! Sometimes relative error values are more 
appropriate (e.g. 10% for an error of 50 when 
predicting 500) 
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Improvement on the mean 

!! How much does the scheme improve on simply 
predicting the average? 

!! The relative squared error is (     is the average): 

!! The relative absolute error is: 
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Correlation coefficient 

!! Measures the statistical correlation between the predicted 
values and the actual values 

!! Scale independent, between –1 and +1 

!! Good performance leads to large values! 
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Which measure? 

!! Best to look at all of them 

!! Often it doesn’t matter 

!! Example: 

A B C D 

Root mean-squared error 67.8 91.7 63.3 57.4 

Mean absolute error 41.3 38.5 33.4 29.2 

Root rel squared error 42.2% 57.2% 39.4% 35.8% 

Relative absolute error 43.1% 40.1% 34.8% 30.4% 

Correlation coefficient 0.88 0.88 0.89 0.91 

!! D best 
!! C second-best 
!! A, B arguable witten & eibe 



*The MDL principle 

!! MDL stands for minimum description length 

!! The description length is defined as: 

space required to describe a theory 

+ 

space required to describe the theory’s mistakes 

!! In our case the theory is the classifier and the mistakes 
are the errors on the training data 

!! Aim: we seek a classifier with minimal DL 

!! MDL principle is a model selection criterion 
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Model selection criteria 
!! Model selection criteria attempt to find a good 

compromise between: 

A.! The complexity of a model 

B.! Its prediction accuracy on the training data 

!! Reasoning: a good model is a simple model that 
achieves high accuracy on the given data 

!! Also known as Occam’s Razor : 
the best theory is the smallest one 
that describes all the facts  

William of Ockham, born in the village of Ockham in Surrey 

(England) about 1285, was the most influential philosopher of the 

14th century and a controversial theologian.  
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Elegance vs. errors 

!! Theory 1: very simple, elegant theory that explains the 
data almost perfectly 

!! Theory 2: significantly more complex theory that 
reproduces the data without mistakes 

!! Theory 1 is probably preferable 

!! Classical example: Kepler’s three laws on planetary 
motion 

!! Less accurate than Copernicus’s latest refinement of the 
Ptolemaic theory of epicycles 
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*MDL and compression 

!! MDL principle relates to data compression: 

!! The best theory is the one that compresses the data the most 

!! I.e. to compress a dataset we generate a model and then store 
the model and its mistakes 

!! We need to compute 
(a) size of the model, and 
(b) space needed to encode the errors 

!! (b) easy: use the informational loss function 

!! (a) need a method to encode the model 
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*MDL and Bayes’s theorem 

!! L[T]=“length” of the theory 

!! L[E|T]=training set encoded wrt the theory 

!! Description length= L[T] + L[E|T] 

!! Bayes’ theorem gives a posteriori probability of a theory 
given the data: 

!! Equivalent to: 

constant witten & eibe 

*MDL and MAP 

!! MAP stands for maximum a posteriori probability 

!! Finding the MAP theory corresponds to finding the MDL theory 

!! Difficult bit in applying the MAP principle: determining the prior 
probability Pr[T] of the theory 

!! Corresponds to difficult part in applying the MDL principle: coding 
scheme for the theory 

!! I.e. if we know a priori that a particular theory is more likely we 
need less bits to encode it 

witten & eibe 



*Discussion of MDL principle 

!! Advantage: makes full use of the training data when 
selecting a model 

!! Disadvantage 1: appropriate coding scheme/prior 
probabilities for theories are crucial 

!! Disadvantage 2: no guarantee that the MDL theory is the one 
which minimizes the expected error  

!! Note: Occam’s Razor is an axiom! 

!! Epicurus’ principle of multiple explanations: keep all theories 
that are consistent with the data 

witten & eibe 

*Bayesian model averaging 

!! Reflects Epicurus’ principle: all theories are used for prediction 
weighted according to P[T|E] 

!! Let I  be a new instance whose class we must predict 

!! Let C  be the random variable denoting the class 

!! Then BMA gives the probability of C given 

!! I 

!! training data E 

!! possible theories Tj 

witten & eibe 

*MDL and clustering 
!! Description length of theory: 

bits needed to encode the clusters 

!! e.g. cluster centers 

!! Description length of data given theory: 
encode cluster membership and position relative to 
cluster 

!! e.g. distance to cluster center 

!! Works if coding scheme uses less code space for 

small numbers than for large ones 

!! With nominal attributes, must communicate 

probability distributions for each cluster 

witten & eibe 

Evaluation Summary: 

!!Avoid Overfitting 

!!Use Cross-validation for small data 

!!Don’t use test data for parameter tuning - use 
separate validation data 

!!Consider costs when appropriate 



Data 

Preparation  

for  

Knowledge 

Discovery 

Outline: Data Preparation 

!! Data Understanding 

!! Data Cleaning 

!! Metadata 

!! Missing Values 

!! Unified Date Format 

!! Nominal to Numeric 

!! Discretization 

!! Field Selection and “False Predictors”  

!! Unbalanced Target Distribution 

Knowledge Discovery Process 
flow, according to CRISP-DM  

Monitoring  

see  

www.crisp-dm.org 

for more  

information 

Knowledge Discovery Process,  
in practice  

Data Preparation 

estimated to take 

70-80% of the 

time and effort 

Monitoring  

Data  

Preparation 

Data Understanding:  
Relevance 

!!What data is available for the task? 

!!Is this data relevant?  

!!Is additional relevant data available? 

!!How much historical data is available? 

!!Who is the data expert ? 

Data Understanding:  
Quantity 

!!Number of instances (records) 

!! Rule of thumb: 5,000 or more desired 

!! if less, results are less reliable; use special methods (boosting, …) 

!!Number of attributes (fields) 

!! Rule of thumb: for each field, 10 or more instances 

!! If more fields, use feature reduction and selection 

!!Number of targets  

!! Rule of thumb: >100 for each class 

!! if very unbalanced, use stratified sampling 



Data Cleaning Steps 

!! Data acquisition and metadata 

!! Missing values 

!! Unified date format 

!! Converting nominal to numeric 

!! Discretization of numeric data 

!! Data validation and statistics 

Data Cleaning: Acquisition 

!!Data can be in DBMS 

!!ODBC, JDBC protocols 

!!Data in a flat file 

!!Fixed-column format 

!!Delimited format: tab, comma “,” , other 

!!E.g. C4.5 and Weka “arff” use comma-delimited data 

!!Attention: Convert field delimiters inside strings 

!!Verify the number of fields before and after 

Data Cleaning: Example 

!!  Original data (fixed column format) 

!!  Clean data  

0000000001,199706,1979.833,8014,5722   ,   ,#000310  …. ,
111,03,000101,0,04,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0300,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0300,0300.00 

Data Cleaning: Metadata 

!!Field types:  

!! binary, nominal (categorical), ordinal, numeric, … 

!! For nominal fields: tables translating codes to full descriptions 

!!Field role: 

!! input : inputs for modeling 

!! target : output 

!! id/auxiliary : keep, but not use for modeling 

!! ignore : don’t use for modeling  

!! weight : instance weight  

!! …  

!!Field descriptions 

Data Cleaning: Reformatting 

Convert data to a standard format (e.g. arff or csv) 

!! Missing values 

!! Unified date format 

!! Binning of numeric data  

!! Fix errors and outliers 

!! Convert nominal fields whose values have order 
to numeric.   

!! Q: Why? A: to be able to use “>” and “<“ 
comparisons on these fields) 

Data Cleaning: Missing Values 

!! Missing data can appear in several forms:  

!! <empty field>  “0”   “.”  “999”  “NA”  …    

!! Standardize missing value code(s) 

!! Dealing with missing values:  

!! ignore records with missing values  

!! treat missing value as a separate value 

!! Imputation: fill in with mean or median values 



Data Cleaning:  
Unified Date Format 

!! We want to transform all dates to the same format internally 

!! Some systems accept dates in many formats  

!! e.g. “Sep 24, 2003” , 9/24/03, 24.09.03, etc 

!! dates are transformed internally to a standard value 

!! Frequently, just the year (YYYY) is sufficient 

!! For more details, we may need the month, the day, the hour, etc 

!! Representing date as YYYYMM or YYYYMMDD can be OK, but has 
problems  

!! Q: What are the problems with YYYYMMDD dates? 

!! A: Ignoring for now the Looming Y10K (year 10,000 crisis …) 

!! YYYYMMDD does not preserve intervals: 

!!  20040201 - 20040131 /= 20040131 – 20040130 

!! This can introduce bias into models 

Unified Date Format Options 

!!To preserve intervals, we can use 

!!Unix system date: Number of seconds since 1970 

!!Number of days since Jan 1, 1960 (SAS) 

!!Problem:  

!!values are non-obvious 

!!don’t help intuition and knowledge discovery 

!!harder to verify, easier to make an error 

KSP Date Format 

      days_starting_Jan_1 - 0.5 

KSP Date = YYYY +     ---------------------------------- 

                          365 + 1_if_leap_year 

!!Preserves intervals (almost) 

!!The year and quarter are obvious  

!! Sep 24, 2003 is 2003 + (267-0.5)/365= 2003.7301 (round to 4 
digits)  

!!Consistent with date starting at noon 

!!Can be extended to include time 

Y2K issues: 2 digit Year 

!!2-digit year in old data – legacy of Y2K  

!!E.g. Q: Year 02 – is it 1902 or 2002 ?  

!!A: Depends on context (e.g. child birthday or year of 
house construction) 

!!Typical approach: CUTOFF year, e.g. 30 

!! if YY < CUTOFF , then 20YY, else 19YY 

Conversion: Nominal to Numeric 

!!Some tools can deal with nominal values 
internally 

!!Other methods (neural nets, regression, nearest 
neighbor) require only numeric inputs 

!!To use nominal fields in such methods need to 
convert them to a numeric value 

!!Q: Why not ignore nominal fields altogether? 

!!A: They may contain valuable information 

!!Different strategies for binary, ordered, multi-
valued nominal fields 

Conversion: Binary to Numeric 

!!Binary fields 

!!E.g. Gender=M, F  

!!Convert to Field_0_1 with 0, 1 values 

!!e.g. Gender = M  "  Gender_0_1 = 0 

!!       Gender = F  "  Gender_0_1 = 1 



Conversion: Ordered to Numeric 

!!Ordered attributes (e.g. Grade) can be converted 
to numbers preserving natural order, e.g.  

!!A   " 4.0 

!!A-  " 3.7 

!!B+ " 3.3 

!!B   " 3.0 

!!Q: Why is it important to preserve natural order? 

!!A: To allow meaningful comparisons, e.g. Grade 
> 3.5  

Conversion: Nominal, Few Values 

!!Multi-valued, unordered attributes with small  (rule 
of thumb < 20) no. of values 

!! e.g. Color=Red, Orange, Yellow, …, Violet 

!! for each value v create a binary “flag” variable C_v , 
which is 1 if Color=v, 0 otherwise 

ID Color … 

371 red 

433 yellow 

ID C_red C_orange C_yellow … 

371 1 0 0 

433 0 0 1 

Conversion: Nominal, Many Values 

!!Examples:  

!! US State Code (50 values) 

!! Profession Code (7,000 values, but only few frequent)  

!!Q: How to deal with such fields ?  

!!A: Ignore ID-like fields whose values are unique for each 
record 

!!For other fields, group values “naturally”: 

!! e.g. 50 US States " 3 or 5 regions 

!! Profession – select most frequent ones, group the rest 

!!Create binary flag-fields for selected values 

Data Cleaning: Discretization 

!!Some methods require discrete values, e.g. most 

versions of Naïve Bayes, CHAID 

!!Discretization is very useful for generating a 

summary of data 

!!Also called “binning” 

Discretization: Equal-Width 

Equal Width, bins Low <= value < High 

[64,67)  [67,70)  [70,73)  [73,76)  [76,79)  [79,82)  [82,85] 

Temperature values:   

64 65 68 69 70 71 72 72 75 75 80 81 83 85 

2 2 

Count 

4 
2 2 2 0 

Discretization: Equal-Width  
may produce clumping 

[0 – 200,000)  … ….    

1 

Count 

Salary in a corporation 

[1,800,000 –  

2,000,000] 



Discretization: Equal-Height 

Equal Height = 4, except for the last bin 

[64 .. .. .. .. 69]  [70 .. 72]  [73 .. .. .. .. .. .. .. .. 81] [83 .. 85] 

Temperature values:   

64 65 68 69 70 71 72 72 75 75 80 81 83 85 

4 

Count 

4 4 
2 

Discretization: Equal-height 
advantages 

!!Generally preferred because avoids clumping 

!!In practice, “almost-equal” height binning is used 
which avoids clumping and gives more intuitive 

breakpoints 

!!Additional considerations: 

!!don’t split frequent values across bins 

!! create separate bins for special values (e.g. 0) 

!! readable breakpoints (e.g. round breakpoints) 

Discretization: Class Dependent 

64 85 

Eibe – min of 3 values per bucket 

64 65 68 69 70 71 72 72 75 75 80 81 83 85 

Yes No Yes Yes Yes  No  No  Yes Yes Yes No Yes  Yes No 

Discretization considerations 

!!Equal Width is simplest, good for many classes 

!! can fail miserably for unequal distributions 

!!Equal Height gives better results 

!!Class-dependent can be better for classification 

!!Note: decision trees build discretization on the fly 

!!Naïve Bayes requires initial discretization 

!!Many other methods exist … 

Outliers and Errors 

!!Outliers are values thought to be out of range. 

!!Approaches:   

!!do nothing 

!!enforce upper and lower bounds 

!! let binning handle the problem 

Examine Data Statistics 



Data Cleaning: Field Selection 

First: Remove fields with no or little variability 

!!Examine the number of distinct field values 

!!Rule of thumb: remove a field where almost all values 
are the same (e.g. null), except  possibly in minp % or 
less of all records. 

!!minp could be 0.5% or more generally less than 5% of 
the number of targets of the smallest class  

False Predictors or Information 
“Leakers” 

!! False predictors are fields correlated to target behavior, 
which describe events that happen at the same time or 
after  the target behavior 

!! If databases don’t have the event dates, a false predictor 

will appear as a good predictor  

!! Example: Service cancellation date is a leaker when 

predicting attriters.  

!! Q: Give another example of a false predictor 

!! A: e.g. student final grade, for the task of predicting 
whether the student passed the course 

False Predictors:  
Find “suspects” 

!! Build an initial decision-tree model 

!! Consider very strongly predictive fields as 
“suspects” 

!! strongly predictive – if a field by itself provides close 
to 100% accuracy, at the top or a branch below 

!! Verify “suspects” using domain knowledge or 
with a domain expert  

!! Remove false predictors and build an initial 
model  

(Almost) Automated False Predictor 
Detection 

!!For each field 

!!Build 1-field decision trees for each field 

!! (or compute correlation with the target field) 

!!Rank all suspects by 1-field prediction accuracy 
(or correlation) 

!!Remove suspects whose accuracy is close to 
100% (Note: the threshold is domain dependent) 

!!Verify top “suspects” with domain expert 

Selecting Most Relevant Fields 

!!If there are too many fields, select a subset that 

is most relevant. 

!!Can select top N fields using 1-field predictive 

accuracy as computed earlier. 

!!What is good N?   

!!Rule of thumb -- keep top 50 fields 

Field Reduction Improves 
Classification 

!!most learning algorithms look for non-linear 

combinations of fields -- can easily find many 
spurious combinations given small # of records 

and large # of fields 

!!Classification accuracy improves if we first reduce 

number of fields  

!!Multi-class heuristic: select equal # of fields from 

each class 



Derived Variables 

!! Better to have a fair modeling method and good 

variables, than to have the best modeling 
method and poor variables. 

!! Insurance Example:  People are eligible for  
pension withdrawal at age 59 !.  Create it as a 

separate Boolean variable! 

!! *Advanced methods exists for automatically 

examining variable combinations, but it is very 
computationally expensive! 

Unbalanced Target Distribution 

!!Sometimes, classes have very unequal frequency 

!!Attrition prediction: 97% stay, 3% attrite (in a month) 

!!medical diagnosis: 90% healthy, 10% disease 

!!eCommerce: 99% don’t buy, 1% buy 

!!Security: >99.99% of Americans are not terrorists 

!!Similar situation with multiple classes 

!!Majority class classifier can be 97% correct, but 
useless 

Handling Unbalanced Data 

!! With two classes: let positive targets be a minority 

!! Separate raw held-aside set (e.g. 30% of data) and raw 
train 

!! put aside raw held-aside and don’t use it till the final model 

!! Select remaining positive targets  (e.g. 70% of all 
targets) from raw train 

!! Join with equal number of negative targets from raw 
train, and randomly sort it.   

!! Separate randomized balanced set into balanced train 
and balanced test  

Building Balanced Train Sets 

Y 

.. 

.. 

N 

N 

N 

.. 

.. 

.. 

.. 

.. 
Raw Held 

Targets 

Non-Targets 
Balanced set 

Balanced Train 

Balanced Test 

Learning with Unbalanced Data 

!!Build models on balanced train/test sets 

!!Estimate the final results (lift curve) on the raw 
held set 

!!Can generalize “balancing” to multiple classes 

!! stratified sampling 

!!Ensure that each class is represented with 
approximately equal proportions in train and test 

Data Preparation Key Ideas 

!! Use meta-data 

!! Inspect data for anomalies and errors 

!! Eliminate “false positives” 

!! Develop small, reusable software components 

!! Plan for verification - verify the results after 
each step 



Summary 

Good data preparation is 
key to producing valid 
and reliable models 



Clustering 

Outline 

!! Introduction 

!! K-means clustering 

!! Hierarchical clustering: COBWEB  

Classification vs. Clustering 

Classification: Supervised learning:  

Learns a method for predicting the 
instance class from pre-labeled 
(classified)  instances 

Clustering 

Unsupervised learning: 

Finds “natural” grouping of 
instances given un-labeled data 

Clustering Methods 

!! Many different method and algorithms: 

!! For numeric and/or symbolic data 

!! Deterministic vs. probabilistic 

!! Exclusive vs. overlapping 

!! Hierarchical vs. flat 

!! Top-down vs. bottom-up 

Clusters:  
exclusive vs. overlapping 

Simple 2-D representation 

Non-overlapping 

Venn diagram 

Overlapping 

a 

k 
j 

i 

h 

g 
f 

e d 

c 

b 



Clustering Evaluation 

!!Manual inspection 

!!Benchmarking on existing labels 

!!Cluster quality measures 

!!distance measures 

!!high similarity within a cluster, low across clusters 

The distance function 

!! Simplest case: one numeric attribute A 

!! Distance(X,Y) = A(X) – A(Y) 

!! Several numeric attributes:  

!! Distance(X,Y) = Euclidean distance between X,Y 

!! Nominal attributes: distance is set to 1 if values 

are different, 0 if they are equal 

!! Are all attributes equally important? 

!! Weighting the attributes might be necessary 

Simple Clustering: K-means 

Works with numeric data only 

1)! Pick a number (K) of cluster centers (at 
random) 

2)! Assign every item to its nearest cluster center 
(e.g. using Euclidean distance) 

3)! Move each cluster center to the mean of its 
assigned items 

4)! Repeat steps 2,3 until convergence (change in 
cluster assignments less than a threshold) 

K-means example, step 1 

k1 

k2 

k3 

X 

Y 

Pick 3  

initial 

cluster 

centers 

(randomly) 

K-means example, step 2 

k1 

k2 

k3 

X 

Y 

Assign 

each point 

to the closest 

cluster 

center 

K-means example, step 3 

X 

Y 

Move 

each cluster 

center 

to the mean 

of each cluster 

k1 

k2 

k2 

k1 

k3 

k3 



K-means example, step 4 

X 

Y 

Reassign 

points  

closest to a 

different new 

cluster center 

Q: Which 

points are 

reassigned? 

k1 

k2 

k3 

K-means example, step 4 … 

X 

Y 

A: three 

points with 

animation 

k1 

k3 
k2 

K-means example, step 4b 

X 

Y 

re-compute 

cluster 

means 

k1 

k3 
k2 

K-means example, step 5 

X 

Y 

move cluster 

centers to 

cluster means 

k2 

k1 

k3 

Discussion 

!! Result can vary significantly depending on initial 
choice of seeds 

!! Can get trapped in local minimum 

!! Example: 

!! To increase chance of finding global optimum: restart 
with different random seeds 

instances 

initial 
cluster 

centers 

K-means clustering summary 

Advantages 

!! Simple, understandable 

!! items automatically 
assigned to clusters 

Disadvantages 

!! Must pick number of 
clusters before hand 

!! All items forced into a 
cluster 

!! Too sensitive to outliers 



K-means variations 

!!K-medoids – instead of mean, use medians of 

each cluster 

!!Mean of 1, 3, 5, 7, 9 is  

!!Mean of 1, 3, 5, 7, 1009 is 

!!Median of 1, 3, 5, 7, 1009 is  

!!Median advantage: not affected by extreme values 

!!For large databases, use sampling 

5 

205 

5 

*Hierarchical clustering 
!! Bottom up 

!! Start with single-instance clusters 

!! At each step, join the two closest clusters  

!! Design decision: distance between clusters 

!! E.g.  two closest instances in clusters 
 vs. distance between means 

!! Top down 

!! Start with one universal cluster 

!! Find two clusters 

!! Proceed recursively on each subset 

!! Can be very fast 

!! Both methods produce a 
dendrogram  

*Incremental clustering 

!! Heuristic approach (COBWEB/CLASSIT) 

!! Form a hierarchy of clusters incrementally 

!! Start:  

!! tree consists of empty root node 

!! Then:  

!! add instances one by one 

!! update tree appropriately at each stage 

!! to update, find the right leaf for an instance 

!! May involve restructuring the tree 

!! Base update decisions on category utility  

*Clustering weather data 
ID Outlook Temp. Humidity Windy 

A Sunny Hot High False 

B Sunny Hot  High  True 

C Overcast  Hot   High False 

D Rainy Mild High False 

E Rainy Cool Normal False 

F Rainy Cool Normal True 

G Overcast Cool Normal True 

H Sunny Mild High False 

I Sunny Cool Normal False 

J Rainy Mild Normal False 

K Sunny Mild Normal True 

L Overcast Mild High True 

M Overcast Hot Normal False 

N Rainy Mild High True 

1 

2 

3 

*Clustering weather data 
ID Outlook Temp. Humidity Windy 

A Sunny Hot High False 

B Sunny Hot  High  True 

C Overcast  Hot   High False 

D Rainy Mild High False 

E Rainy Cool Normal False 

F Rainy Cool Normal True 

G Overcast Cool Normal True 

H Sunny Mild High False 

I Sunny Cool Normal False 

J Rainy Mild Normal False 

K Sunny Mild Normal True 

L Overcast Mild High True 

M Overcast Hot Normal False 

N Rainy Mild High True 

4 

3 

Merge best host 

and runner-up 

5 

Consider splitting the best 

host if merging doesn’t help 

*Final hierarchy 
ID Outlook Temp. Humidity Windy 

A Sunny Hot High False 

B Sunny Hot  High  True 

C Overcast  Hot   High False 

D Rainy Mild High False 

Oops! a  and b  are 

actually very similar 



*Example: the iris data (subset) 
*Clustering with cutoff 

*Category utility 

!! Category utility: quadratic loss function 
defined on conditional probabilities: 

!! Every instance in different category !  

numerator becomes 

maximum 

number of attributes 

*Overfitting-avoidance heuristic 

!! If every instance gets put into a different category 

the numerator becomes (maximal): 

    Where n is number of all possible attribute values. 

!! So without k in the denominator of the CU-

formula, every cluster would consist of one 
instance! 

Maximum value of CU 

Levels of Clustering Hierarchical Clustering 

!! Clusters are created in levels actually creating sets of 
clusters at each level. 

!! Agglomerative 

!! Initially each item in its own cluster 

!! Iteratively clusters are merged together 

!! Bottom Up 

!! Divisive 

!! Initially all items in one cluster 

!! Large clusters are successively divided 

!! Top Down   



Dendrogram 

!! Dendrogram: a tree data structure 
which illustrates hierarchical 
clustering techniques. 

!! Each level shows clusters for that 
level. 

!! Leaf – individual clusters 

!! Root – one cluster 

!! A cluster at level i is the union of its 
children clusters at level i+1. 

Agglomerative Example 
A B C D E 

A 0 1 2 2 3 

B 1 0 2 4 3 

C 2 2 0 1 5 

D 2 4 1 0 3 

E 3 3 5 3 0 

B A 

E C 

D 

4 

Threshold of 

 2 3 5 1 

A B C D E 

Distance Between Clusters 

!! Single Link: smallest distance between points 

!! Complete Link: largest distance between points 

!! Average Link: average distance between points 

!! Centroid: distance between centroids 

Single Link Clustering 

Other Clustering Approaches 

!!EM – probability based clustering 

!!Bayesian clustering 

!!SOM – self-organizing maps 

!!… 

Self-Organizing Map 



Self Organizing Map 

!! Unsupervised learning 

!! Competitive learning 

output 

input (n-dimensional) 

winner 

Self Organizing Map 

!! Determine the winner (the neuron of which 

the weight vector has the smallest distance to 
the input vector) 

!! Move the weight vector w of the winning 
neuron towards the input i 

Before learning 

i 

w 

After learning 

i 
w 

Self Organizing Map 

!! Impose a topological order onto the 
competitive neurons (e.g., rectangular 

map) 

!! Let neighbors of the winner share the 
“prize” (The “postcode lottery” principle) 

!! After learning, neurons with similar 
weights tend to cluster on the map 

Self Organizing Map 

input 

Self Organizing Map Self Organizing Map 

!! Input: uniformly randomly distributed points 

!! Output: Map of 202 neurons 

!! Training 

!! Starting with a large learning rate and neighborhood 

size, both are gradually decreased to facilitate 
convergence 



Self Organizing Map Self Organizing Map 

Self Organizing Map 

Self Organizing Map Self Organizing Map 



Discussion 

!! Can interpret clusters by using supervised learning 

!! learn a classifier based on clusters 

!! Decrease dependence between attributes? 

!! pre-processing step 

!! E.g. use principal component analysis 

!! Can be used to fill in missing values 

!! Key advantage of probabilistic clustering: 

!! Can estimate likelihood of data 

!! Use it to compare different models objectively 

Examples of Clustering 
Applications 

!! Marketing: discover customer groups and use them for 

targeted marketing and re-organization 

!! Astronomy: find groups of similar stars and galaxies 

!! Earth-quake studies: Observed earth quake epicenters 

should be clustered along continent faults 

!! Genomics: finding groups of gene with similar 

expressions 

!! … 

Clustering Summary 

!!unsupervised 

!!many approaches 

!!K-means – simple, sometimes useful 

!! K-medoids is less sensitive to outliers 

!!Hierarchical clustering – works for symbolic attributes 

!!Evaluation is a problem 



Associations and 

Frequent Item 

Analysis  

Outline 

!! Transactions 

!! Frequent itemsets  

!! Subset Property 

!! Association rules 

!! Applications 

Transactions Example Transaction database: Example 

ITEMS: 

A = milk 

B= bread 

C= cereal 

D= sugar 

E= eggs 

Instances = Transactions 

Transaction database: Example 
Attributes converted to binary flags 

Definitions 

!! Item: attribute=value pair or simply value 

!! usually attributes are converted to binary flags for 
each value, e.g. product=“A” is written as “A” 

!! Itemset I : a subset of possible items 

!! Example: I = {A,B,E}  (order unimportant) 

!! Transaction: (TID, itemset) 

!! TID is transaction ID 



Support and Frequent Itemsets 

!! Support of an itemset  

!! sup(I ) = no. of transactions t  that support (i.e. 
contain) I 

!! In example database:   

!! sup ({A,B,E}) = 2, sup ({B,C}) = 4  

!! Frequent itemset I is one with at least the 

minimum support count  

!! sup(I ) >= minsup 

SUBSET PROPERTY 

Association Rules 

!!Association rule R :  Itemset1 => Itemset2 

!! Itemset1, 2  are disjoint and Itemset2 is non-empty 

!!meaning: if transaction includes Itemset1  then it also 
has Itemset2 

!!Examples 

!!A,B => E,C 

!!A => B,C  

From Frequent Itemsets to Association 
Rules  

!!Q: Given frequent set {A,B,E}, what are 
possible association rules?  

!! A => B, E 

!! A, B => E 

!! A, E => B 

!! B => A, E 

!! B, E => A 

!! E => A, B  

!! __ => A,B,E (empty rule), or true => A,B,E 

Classification vs Association Rules 

Classification Rules 

!!Focus on one target field 

!!Specify class in all cases 

!!Measures: Accuracy 

Association Rules 

!!Many target fields 

!!Applicable in some cases 

!!Measures: Support, 
Confidence, Lift 

Rule Support and Confidence 

!! Suppose R :  I => J  is an association rule 

!! sup (R) = sup (I ! J) is the support count  

!! support of itemset I ! J (I or J) 

!! conf (R) = sup(J) / sup(R) is the confidence of R 

!! fraction of transactions with I ! J that have J 

!! Association rules with minimum support and count are 
sometimes called “strong” rules  



Association Rules Example:  

!! Q: Given frequent set {A,B,E}, what 
association rules have minsup = 2 and 
minconf= 50% ? 

     A, B => E  : conf=2/4 = 50% 

     A, E => B  : conf=2/2 = 100% 

     B, E => A  : conf=2/2 = 100% 

     E => A, B  : conf=2/2 = 100% 

Don’t qualify 

   A =>B, E : conf=2/6 =33%< 50% 

    B => A, E : conf=2/7 = 28% < 50% 

    __ => A,B,E : conf: 2/9 = 22% < 50% 

Find Strong Association Rules  

!!A rule has the parameters minsup and minconf: 

!! sup(R) >= minsup and conf (R) >= minconf 

!!Problem: 

!!Find all association rules with given minsup and 
minconf 

!!First, find all frequent itemsets 

Finding Frequent Itemsets 

!! Start by finding one-item sets (easy) 

!! Q: How? 

!! A: Simply count the frequencies of all items 

Finding itemsets: next level 

!!Apriori algorithm (Agrawal & Srikant)  

!!Idea: use one-item sets to generate two-item 
sets, two-item sets to generate three-item sets, … 

!! If (A B) is a frequent item set, then (A) and (B) have to 
be frequent item sets as well! 

!! In general: if X is frequent k-item set, then all (k-1)-
item subsets of X are also frequent 

!!Compute k-item set by merging (k-1)-item sets 

An example 

!! Given: five three-item sets 

!(A B C), (A B D), (A C D), (A C E), (B C D)!

!! Lexicographic order improves efficiency 

!! Candidate four-item sets: 

   (A B C D) ! Q: OK? !

A: yes, because all 3-item subsets are frequent 

!(A C D E)  Q: OK? !

A: No, because (C D E) is not frequent 

Generating Association Rules 

!! Two stage process: 

!! Determine frequent itemsets e.g. with the Apriori 
algorithm. 

!! For each frequent item set  I   

!! for each subset J  of I 

!! determine all association rules of the form:  I-J => J 

!! Main idea used in both stages : subset property 



Example: Generating Rules  
from an Itemset 

!! Frequent itemset from golf data: 

!! Seven potential rules: 

Humidity = Normal, Windy = False, Play = Yes (4)!

If Humidity = Normal and Windy = False then Play = Yes!

If Humidity = Normal and Play = Yes then Windy = False!

If Windy = False and Play = Yes then Humidity = Normal!

If Humidity = Normal then Windy = False and Play = Yes!

If Windy = False then Humidity = Normal and Play = Yes!

If Play = Yes then Humidity = Normal and Windy = False!

If True then Humidity = Normal and Windy = False and Play = Yes!

4/4!

4/6!

4/6!

4/7!

4/8!

4/9!

4/12!

Rules for the weather data 

!! Rules with support > 1 and confidence = 100%: 

!! In total: 3 rules with support four, 5 with support 
three, and 50 with support two 

Association rule! Sup.! Conf.!

1! Humidity=Normal Windy=False! !Play=Yes! 4! 100%!

2! Temperature=Cool! !Humidity=Normal! 4! 100%!

3! Outlook=Overcast! !Play=Yes! 4! 100%!

4! Temperature=Cold Play=Yes! !Humidity=Normal! 3! 100%!

...! ...! ...! ...! ...!

58! Outlook=Sunny Temperature=Hot! !Humidity=High! 2! 100%!

Weka associations 
File: weather.nominal.arff 

MinSupport: 0.2 

Weka associations: output 

Filtering Association Rules 

!!Problem: any large dataset can lead to very large 

number of association rules, even with reasonable 
Min Confidence and Support 

!!Confidence by itself is not sufficient 

!!e.g. if all transactions include Z, then  

!!any rule I => Z will have confidence 100%. 

!!Other measures to filter rules 

Association Rule LIFT 

!! The lift of an association rule I => J is defined as: 

!! lift = P(J|I) / P(J)  

!! Note, P(I) = (support of I) / (no. of transactions) 

!! ratio of confidence to expected confidence 

!!  Interpretation: 

!!  if  lift > 1, then I and J are positively correlated 

         lift < 1, then I are J are negatively correlated. 

             lift = 1, then I and J are independent. 



Other issues 

!! ARFF format very inefficient for typical market 
basket data 

!! Attributes represent items in a basket and most items 
are usually missing 

!! Interestingness of associations 

!! find unusual associations: Milk usually goes with 
bread, but soy milk does not. 

Beyond Binary Data 

!!Hierarchies 

!!drink " milk " low-fat milk " Stop&Shop low-fat milk 
… 

!! find associations on any level 

!!Sequences over time 

!!… 

Sampling 

!! Large databases 

!! Sample the database and apply Apriori to the sample.   

!! Potentially Large Itemsets (PL): Large itemsets 
from sample 

!! Negative Border (BD - ): 

!! Generalization of Apriori-Gen applied to itemsets of 
varying sizes. 

!! Minimal set of itemsets which are not in PL, but 
whose subsets are all in PL. 

Negative Border Example 

PL PL !BD-(PL) 

Sampling Algorithm 

1.! Ds = sample of Database D; 

2.! PL = Large itemsets in Ds using smalls; 

3.! C = PL ! BD-(PL); 

4.! Count C in Database using s; 

5.! ML = large itemsets in BD-(PL); 

6.! If ML = " then done 

7.!  else C = repeated application of BD-; 

8.!           Count C in Database; 

Sampling Example 

!! Find AR assuming s = 20% 

!! Ds = { t1,t2} 

!! Smalls = 10% 

!! PL = {{Bread}, {Jelly}, {PeanutButter}, 
{Bread,Jelly}, {Bread,PeanutButter}, {Jelly, 
PeanutButter}, {Bread,Jelly,PeanutButter}} 

!! BD-(PL)={{Beer},{Milk}} 

!! ML = {{Beer}, {Milk}}  

!! Repeated application of BD- generates all remaining 
itemsets 



Sampling Adv/Disadv 

!! Advantages: 

!! Reduces number of database scans to one in the best 
case and two in worst. 

!! Scales better. 

!! Disadvantages: 

!! Potentially large number of candidates in second pass 

Partitioning 

!! Divide database into partitions D1,D2,…,Dp 

!! Apply Apriori to each partition 

!! Any large itemset must be large in at least one 
partition. 

Partitioning Algorithm 

1.! Divide D into partitions D1,D2,…,Dp; 

2.! For I = 1 to p do 

3.!      Li = Apriori(Di); 

4.! C = L1 ! … ! Lp; 

5.! Count C on D to generate L; 

Partitioning Example 

D1 

D2 

S=10% 

Partitioning Adv/Disadv 

!! Advantages: 

!! Adapts to available main memory 

!! Easily parallelized 

!! Maximum number of database scans is two. 

!! Disadvantages: 

!! May have many candidates during second scan. 

 Count Distribution Algorithm(CDA) 
1.! Place data partition at each site. 

2.! In Parallel at each site do 

3.!     C1 = Itemsets of size one in I; 

4.!     Count C1; 

5.!     Broadcast counts to all sites; 

6.!     Determine global large itemsets of size 1, L1; 

7.!     i = 1;     

8.!     Repeat 

9.!         i = i + 1; 

10.!         Ci = Apriori-Gen(Li-1); 

11.!         Count Ci; 

12.!             Broadcast counts to all sites; 

13.!         Determine global large itemsets of size i, Li; 

14.!     until no more large itemsets found; 



CDA  Example  Data Distribution Algorithm(DDA) 
1.! Place data partition at each site. 

2.! In Parallel at each site do 

3.!     Determine local candidates of size 1 to count; 

4.!     Broadcast local transactions to other sites; 

5.!     Count local candidates of size 1 on all data; 

6.!     Determine large itemsets of size 1 for local               
     candidates;  

7.!     Broadcast large itemsets to all sites; 

8.!     Determine L1; 

9.!     i = 1;     

10.!     Repeat 

11.!         i = i + 1; 

12.!         Ci = Apriori-Gen(Li-1); 

13.!         Determine local candidates of size i to count; 

14.!         Count, broadcast, and find  Li; 

15.!     until no more large itemsets found; 

DDA Example Applications 

!! Market basket analysis 

!! Store layout, client offers 

!! … 

Application Difficulties 

!!Wal-Mart knows that customers who buy Barbie dolls have 
a 60% likelihood of buying one of three types of candy 
bars.  

!!What does Wal-Mart do with information like that? 'I don't 

have a clue,' says Wal-Mart's chief of merchandising, Lee 
Scott  

!!See - KDnuggets 98:01 for many ideas 

www.kdnuggets.com/news/98/n01.html 

!!Diapers and beer urban legend 

Summary 

!!Frequent itemsets 

!!Association rules 

!!Subset property 

!!Apriori algorithm 

!!Application difficulties 



Controversial Issues 

!!Data mining (or simple analysis) on people may come with 
a profile that would raise controversial issues of  

!! Discrimination 

!! Privacy 

!! Security  

!!Examples: 

!! Should males between 18 and 35 from countries that produced 
terrorists be singled out for search before flight? 

!! Can people be denied mortgage based on age, sex, race? 

!! Women live longer.  Should they pay less for life insurance? 

Data Mining and Discrimination 

!!Can discrimination be based on features like sex, 

age, national origin? 

!!In some areas (e.g. mortgages, employment), 

some features cannot be used for decision 
making 

!!In other areas, these features are needed to 
assess the risk factors 

!!E.g. people of African descent are more susceptible to 
sickle cell anemia 

Data Mining and Privacy 

!!Can information collected for one purpose be 

used for mining data for another purpose 

!! In Europe, generally no, without explicit consent 

!! In US, generally yes  

!!Companies routinely collect information about 
customers and use it for marketing, etc. 

!!People may be willing to give up some of their 
privacy in exchange for some benefits 

Data Mining with Privacy 

!!Data Mining looks for patterns, not people! 

!!Technical solutions can limit privacy invasion 

!!Replacing sensitive personal data with anon. ID 

!!Give randomized outputs  

!! return salary + random() 

!! … 

Data Mining and Security   
Controversy in the News 

!!TIA: Terrorism (formerly Total) Information 

Awareness Program –  

!!DARPA program closed by Congress, Sep 2003 

!! some functions transferred to intelligence agencies 

!!CAPPS II – screen all airline passengers  

!! controversial 

!!… 

!!Invasion of Privacy or Defensive Shield? 

Criticism of analytic approach  
to Threat Detection: 

Data Mining will  

!!invade privacy 

!!generate millions of false positives 

But can it be effective? 



Is criticism sound ? 

!!Criticism: Databases have 5% errors, so analyzing 
100 million suspects will generate 5 million false 
positives 

!!Reality: Analytical models correlate many items of 
information to reduce false positives. 

!!Example: Identify one biased coin from 1,000.  

!! After one throw of each coin, we cannot 

!! After 30 throws, one biased coin will stand out with 
high probability. 

!! Can identify 19 biased coins out of 100 million with 
sufficient number of throws 

Another Approach: Link Analysis 

Can Find Unusual Patterns in the Network Structure 

Analytic technology can be effective 

!!Combining multiple models and link analysis can 

reduce false positives 

!!Today there are millions of false positives with 

manual analysis 

!!Data mining is just one additional tool to help 

analysts 

!!Analytic technology has the potential to reduce 

the current high rate of false positives 

Data Mining and Society 

!!No easy answers to controversial questions 

!!Society and policy-makers need to make an 
educated choice 

!!Benefits and efficiency of data mining programs vs. cost 
and erosion of privacy 

Data Mining Future Directions 

!!Currently, most data mining is on flat tables 

!!Richer data sources 

!! text, links, web, images, multimedia, knowledge bases 

!!Advanced methods 

!!Link mining, Stream mining, … 

!!Applications 

!!Web, Bioinformatics, Customer modeling, … 

Challenges for Data Mining 

!!Technical 

!! tera-bytes and peta-bytes 

!! complex, multi-media, structured data 

!! integration with domain knowledge 

!!Business 

!! finding good application areas 

!!Societal 

!!Privacy issues  



Data Mining Central Quest 

Find true patterns  

and avoid overfitting  

(false patterns due  

to randomness) 

Knowledge Discovery Process 

Monitoring  

Start with 

Business 

(Problem) 

Understanding  

Data Preparation 

usually takes 

the most effort 

Knowledge 

Discovery is 

an Iterative  

Process 

Data 

Preparation 

Key Ideas 
!!Avoid Overfitting! 

!!Data Preparation 

!! catch false predictors 

!!evaluation: train, validate, test subset 

!!Classification: C4.5, Bayes, … 

!!Evaluation: Lift, ROC, … 

!!Clustering, Association, Other tasks 

!!Knowledge Discovery is a Process 



Visualization  

and 

Data Mining 

Napoleon Invasion of Russia, 1812 

Napoleon 

Marley, 1885 

Snow’s Cholera 

Map, 1855 Asia at night 



South and North Korea at night 

Seoul, 

South Korea 

North Korea 

Notice how dark 

it is 

Visualization Role 

!!Support interactive exploration 

!!Help in result presentation 

!!Disadvantage: requires human eyes 

!!Can be misleading   

Bad Visualization:  
Spreadsheet with misleading Y -axis 

Year Sales 

1999 2110 

2000 2105 

2001 2120 

2002 2121 

2003 2124 

Y-Axis scale gives WRONG 

impression of big change 

Better Visualization 

Year Sales 

1999 2110 

2000 2105 

2001 2120 

2002 2121 

2003 2124 

Axis from 0 to 2000 scale gives  

correct impression of small change 

Lie Factor=14.8 

Lie Factor 

Tufte requirement:  0.95<Lie Factor<1.05 



Tufte’s Principles of  
Graphical Excellence 

!! Give the viewer  

!! the greatest number of ideas  

!! in the shortest time  

!! with the least ink in the smallest space. 

!! Tell the truth about the data!  

Visualization Methods 

!!Visualizing in 1-D, 2-D and 3-D 

!!well-known visualization methods 

!!Visualizing more dimensions 

!!Parallel Coordinates 

!!Other ideas 

1-D (Univariate) Data 

!! Representations 

7 

5 

3 

1 

0 20 

Mean 

low high Middle 50% 

Tukey box plot 

Histogram 

2-D (Bivariate) Data 

!! Scatter plot, … 

price 

mileage 

3-D Data (projection) 

price 

3-D image  
(requires 3-D blue and red glasses) 

Taken by Mars Rover Spirit, Jan 2004 



Visualizing in 4+ Dimensions 

!! Scatterplots 

!! Parallel Coordinates 

!! Chernoff faces 

!! … 

Multiple Views 

Give each variable its own display 

  A B C D E 

1 4 1 8 3 5 

2 6 3 4 2 1 

3 5 7 2 4 3 

4 2 6 3 1 5 

A B C D E 

1 

2 

3 

4 

Problem: does not show correlations 

Scatterplot Matrix 

Represent each possible 
pair of variables in their 
own 2-D scatterplot  
(car data) 

Q: Useful for what? 
    A: linear correlations  
 (e.g. horsepower & weight) 

Q: Misses what? 
    A: multivariate effects 

Parallel Coordinates  

•! Encode variables along a horizontal row 
•! Vertical line specifies values 

Dataset in a Cartesian coordinates 

Same dataset in parallel coordinates 

Invented by  

Alfred Inselberg  

while at IBM, 1985 

Example: Visualizing Iris Data 

Iris setosa 

Iris versicolor 

Iris virginica 

Flower Parts 

Petal, a non-reproductive 

part of the flower 

Sepal, a non-reproductive 

part of the flower 



Parallel Coordinates  

Sepal  

Length 

5.1 

Parallel Coordinates: 2 D 

Sepal  

Length 

5.1 

Sepal  

Width 

3.5 

Parallel Coordinates: 4 D 

Sepal  

Length 

5.1 

Sepal  

Width 

Petal  

length 

Petal  

Width 

3.5 

1.4 
0.2 

5.1 

3.5 

1.4 
0.2 

Parallel Visualization of Iris data 

Parallel Visualization Summary 

!!Each data point is a line 

!!Similar points correspond to similar lines 

!!Lines crossing over correspond to negatively 
correlated attributes 

!!Interactive exploration and clustering 

!!Problems: order of axes, limit to ~20 dimensions 

Chernoff Faces 

Encode different variables’ values in characteristics 
of human face 

http://www.cs.uchicago.edu/~wiseman/chernoff/ 

http://hesketh.com/schampeo/projects/Faces/chernoff.html 
Cute applets: 



Interactive Face Chernoff faces, example 

Visualization Summary 

!!Many methods 

!!Visualization is possible in more than 3-D 

!!Aim for graphical excellence  
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Extending linear classification

! Linear classifiers can’t model nonlinear 
class boundaries

! Simple trick:
♦ Map attributes into new space consisting of 

combinations of attribute values
♦ E.g.: all products of n factors that can be 

constructed from the attributes
! Example with two attributes and n = 3:

!""#$#
%#"&$#

&$&#"%$#$&
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Problems with this approach

! 1st problem: speed
♦ 10 attributes, and n = 5 ⇒ >2000 coefficients
♦ Use linear regression with attribute selection
♦ Run time is cubic in number of attributes

! 2nd problem: overfitting
♦ Number of coefficients is large relative to the 

number of training instances
♦ Curse of dimensionality kicks in
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Support vector machines

! Support vector machines are algorithms for 
learning linear classifiers

! Resilient to overfitting because they learn a 
particular linear decision boundary:

♦ The maximum margin hyperplane
! Fast in the nonlinear case 

♦ Use a mathematical trick to avoid creating 
“pseudo-attributes”

♦ The nonlinear space is created implicitly
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The maximum margin hyperplane

! The instances closest to the maximum margin 
hyperplane are called support vectors
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Support vectors

! This means the hyperplane
can be written as

!The support vectors define the maximum margin hyperplane
! All other instances can be deleted without changing its position and orientation

!""##"$%$#"&%&

!"'#$()(*)*+,,-)./0123 %( 4( &%'(()&%
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Finding support vectors

! Support vector: training instance for which αi > 0
! Determine αi  and b ?—

A constrained quadratic optimization problem
♦ Off-the-shelf tools for solving these problems
♦ However, special-purpose algorithms are faster
♦ Example: Platt’s sequential minimal optimization 

algorithm (implemented in WEKA)
! Note: all this assumes separable data!

!""#$#$#%$%&''($)*+,-. %# /#
&0 '#()&0
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Nonlinear SVMs

! “Pseudo attributes” represent attribute 
combinations

! Overfitting not a problem because the 
maximum margin hyperplane is stable

♦ There are usually few support vectors relative to 
the size of the training set 

! Computation time still an issue
♦ Each time the dot product is computed, all the 

“pseudo attributes” must be included
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A mathematical trick

! Avoid computing the “pseudo attributes”
! Compute the dot product before doing the 

nonlinear mapping 
! Example: 

! Corresponds to a map into the instance space 
spanned by all products of n attributes 

!""#$#$#%$%&''($)*+,-. %# /# &'0 &#()'0(
1
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Other kernel functions

! Mapping is called a “kernel function”
! Polynomial kernel

! We can use others:

! Only requirement:
! Examples: 

!""#$#$#%$%&''($)*+,-. %# /#&'0&#()'0(
1
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Applications

! Machine vision: e.g face identification
! Outperforms alternative approaches (1.5% error)

! Handwritten digit recognition: USPS data
! Comparable to best alternative (0.8% error)

! Bioinformatics: e.g. prediction of protein 
secondary structure

! Text classifiation
! Can modify SVM technique for numeric 

prediction problems
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Multilayer perceptrons

! Using kernels is only one way to build nonlinear 
classifier based on perceptrons

! Can create network of perceptrons to approximate 
arbitrary target concepts

! Multilayer perceptron is an example of an artificial 
neural network

♦ Consists of: input layer, hidden layer(s), and 
output layer 

! Structure of MLP is usually found by experimentation
! Parameters can be found using backpropagation
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Examples
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Backpropagation

! How to learn weights given network structure?
♦ Cannot simply use perceptron learning rule because 

we have hidden layer(s)
♦ Function we are trying to minimize: error
♦ Can use a general function minimization technique 

called gradient descent
! Need differentiable activation function: use sigmoid 

function instead of threshold function

! Need differentiable error function: can't use zero-one 
loss, but can use squared error 

! "" #$ #
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The two activation functions
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Gradient descent example

! Function: x2+1
! Derivative: 2x
! Learning rate: 0.1
! Start value: 4

Can only find a local minimum!
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Minimizing the error I

! Need to find partial derivative of error 
function for each parameter (i.e. weight)
!"
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Minimizing the error II

! What about the weights for the connections from 
the input to the hidden layer?
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Remarks
! Same process works for multiple hidden layers and 

multiple output units (eg. for multiple classes)
! Can update weights after all training instances have been 

processed or incrementally:
♦ batch learning vs. stochastic backpropagation
♦ Weights are initialized to small random values

! How to avoid overfitting?
♦ Early stopping: use validation set to check when to stop
♦ Weight decay: add penalty term to error function

! How to speed up learning?
♦ Momentum: re-use proportion of old weight change 
♦ Use optimization method that employs 2nd derivative 
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Radial basis function networks

! Another type of feedforward network with 
two layers (plus the input layer)

! Hidden units represent points in instance 
space and activation depends on distance

♦ To this end, distance is converted into 
similarity: Gaussian activation function

! Width may be different for each hidden unit
♦ Points of equal activation form hypersphere 

(or hyperellipsoid) as opposed to hyperplane
! Output layer same as in MLP
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Learning RBF networks
! Parameters: centers and widths of the RBFs + weights in 

output layer
! Can learn two sets of parameters independently and still 

get accurate models
♦ Eg.: clusters from k-means can be used to form basis 

functions
♦ Linear model can be used based on fixed RBFs
♦ Makes learning RBFs very efficient

! Disadvantage: no built-in attribute weighting based on 
relevance

! RBF networks are related to RBF SVMs
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From naïve Bayes to Bayesian Networks

! Naïve Bayes assumes:
attributes conditionally independent given 
the class

! Doesn’t hold in practice but classification 
accuracy often high

! However: sometimes performance much 
worse than e.g. decision tree

! Can we eliminate the assumption?
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Enter Bayesian networks

! Graphical models that can represent any 
probability distribution

! Graphical representation: directed acyclic 
graph, one node for each attribute

! Overall probability distribution factorized 
into component distributions

! Graph’s nodes hold component 
distributions (conditional distributions)
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Computing the class probabilities

! Two steps: computing a product of 
probabilities for each class and normalization

♦ For each class value
! Take all attribute values and class value
! Look up corresponding entries in conditional 

probability distribution tables
! Take the product of all probabilities

♦ Divide the product for each class by the sum of 
the products (normalization)
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Why can we do this? (Part I)

! Single assumption: values of a node’s 
parents completely determine 
probability distribution for current node

• Means that node/attribute is 
conditionally independent of other 
ancestors given parents

!" "#$%&'(#)&*+$"*#$!" "#$%&',("&#+*#
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Why can we do this? (Part II)

! Chain rule from probability theory:

• Because of our assumption from the previous slide:

!" "#$%#&%''' %#(#$%)$$
( !" "#)*#)&$% ''' %#$#
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( !" "#)*#)&$% ''' %#$#$

%)$$
( !" "#) *#) +,-#".(/,#



120Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

Learning Bayes nets
! Basic components of algorithms for learning 

Bayes nets:
♦ Method for evaluating the goodness of a given 

network
! Measure based on probability of training data 

given the network (or the logarithm thereof)
♦ Method for searching through space of possible 

networks
! Amounts to searching through sets of edges 

because nodes are fixed
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Just apply a learner? NO!

! Scheme/parameter selection
treat selection process as part of the learning 

process
! Modifying the input:

♦ Data engineering to make learning possible or 
easier

! Modifying the output
♦ Combining models to improve performance
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Data transformations
! Simple transformations can often make a large difference 

in performance
! Example transformations (not necessarily for 

performance improvement):
♦ Difference of two date attributes
♦ Ratio of two numeric (ratio-scale) attributes
♦ Concatenating the values of nominal attributes
♦ Encoding cluster membership
♦ Adding noise to data
♦ Removing data randomly or selectively
♦ Obfuscating the data
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Principal component analysis
! Method for identifying the important “directions” 

in the data
! Can rotate data into (reduced) coordinate system 

that is given by those directions
! Algorithm:

1. Find direction (axis) of greatest variance
2. Find direction of greatest variance that is perpendicular 

to previous direction and repeat
! Implementation: find eigenvectors of covariance 

matrix by diagonalization
! Eigenvectors (sorted by eigenvalues) are the directions
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Example: 10-dimensional data

! Can transform data into space given by components 
! Data is normally standardized for PCA
! Could also apply this recursively in tree learner
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Combining multiple models

! Basic idea:
build different “experts”, let them vote

! Advantage:
♦ often improves predictive performance

! Disadvantage:
♦ usually produces output that is very hard to 

analyze
♦ but: there are approaches that aim to produce 

a single comprehensible structure
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Bagging
! Combining predictions by voting/averaging

! Simplest way
! Each model receives equal weight

! “Idealized” version:
! Sample several training sets of size n

(instead of just having one training set of size n)
! Build a classifier for each training set
! Combine the classifiers’ predictions

! Learning scheme is unstable ⇒ 
almost always improves performance 

! Small change in training data can make big 
change in model (e.g. decision trees)
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Bias-variance decomposition

! Used to analyze how much selection of any 
specific training set affects performance

! Assume infinitely many classifiers,
built from different training sets of size n

! For any learning scheme,
♦ Bias = expected error of the combined

classifier on new data
♦ Variance= expected error due to the

particular training set used
! Total expected error ≈ bias + variance 
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More on bagging

! Bagging works because it reduces variance by 
voting/averaging 

♦ Note: in some pathological hypothetical situations the 
overall error might increase

♦ Usually, the more classifiers the better
! Problem: we only have one dataset!
! Solution: generate new ones of size n by sampling 

from it with replacement 
! Can help a lot if data is noisy
! Can also be applied to numeric prediction

♦ Aside: bias-variance decomposition originally only 
known for numeric prediction
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Bagging classifiers

Let n be the number of instances in the training data
For each of t iterations:

Sample n instances from training set
(with replacement)

Apply learning algorithm to the sample
Store resulting model

For each of the t models:
Predict class of instance using model

Return class that is predicted most often

Model generation

Classification
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Randomization
! Can randomize learning algorithm instead of input
! Some algorithms already have a random component: 

eg. initial weights in neural net
! Most algorithms can be randomized, eg. greedy 

algorithms:
♦ Pick from the N best options at random instead of 

always picking the best options
♦ Eg.: attribute selection in decision trees

! More generally applicable than bagging: e.g. random 
subsets in nearest-neighbor scheme

! Can be combined with bagging
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Boosting

! Also uses voting/averaging
! Weights models according to performance
! Iterative: new models are influenced by 

performance of previously built ones
♦ Encourage new model to become an “expert” 

for instances misclassified by earlier models
♦ Intuitive justification: models should be 

experts that complement each other
! Several variants
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AdaBoost.M1

Assign equal weight to each training instance
For t iterations:
  Apply learning algorithm to weighted dataset,

store resulting model
  Compute model’s error e on weighted dataset 
  If e = 0 or e ≥ 0.5:
    Terminate model generation
  For each instance in dataset:
    If classified correctly by model:
       Multiply instance’s weight by e/(1-e)
  Normalize weight of all instances

Model generation

Classification
Assign weight = 0 to all classes
For each of the t (or less) models:

For the class this model predicts
add –log e/(1-e) to this class’s weight

Return class with highest weight



37Data Mining: Practical Machine Learning Tools and Techniques (Chapter 7)

More on boosting I
! Boosting needs weights … but
! Can adapt learning algorithm ... or
! Can apply boosting without weights

! resample with probability determined by weights
! disadvantage: not all instances are used
! advantage: if error > 0.5, can resample again

! Stems from computational learning theory
! Theoretical result:

! training error decreases exponentially
! Also:

! works if base classifiers are not too complex, and
! their error doesn’t become too large too quickly
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Example

! Can be learned by modifying tree learner:
♦ Create option node if there are several equally promising 

splits (within user-specified interval)
♦ When pruning, error at option node is average error of 

options
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Stacking

! To combine predictions of base learners, don’t vote, 
use meta learner 

♦ Base learners: level-0 models
♦ Meta learner: level-1 model
♦ Predictions of base learners are input to meta learner

! Base learners are usually different schemes
! Can’t use predictions on training data to generate 

data for level-1 model!
♦ Instead use cross-validation-like scheme 

! Hard to analyze theoretically: “black magic”
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More on stacking

! If base learners can output probabilities, 
use those as input to meta learner instead

! Which algorithm to use for meta learner?
♦ In principle, any learning scheme
♦ Prefer “relatively global, smooth” model

! Base learners do most of the work
! Reduces risk of overfitting

! Stacking can be applied to numeric 
prediction too 


