Classification Algorithms – Continued

Outline

- Rules
- Linear Models (Regression)
- Instance-based (Nearest-neighbor)

2

Generating Rules

- Decision tree can be converted into a rule set
- Straightforward conversion:
 - each path to the leaf becomes a rule makes an overly complex rule set
- More effective conversions are not trivial

3

 (e.g. C4.8 tests each node in root-leaf path to see if it can be eliminated without loss in accuracy)

Covering algorithms

- Strategy for generating a rule set directly: for each class in turn find rule set that covers all instances in it (excluding instances not in the class)
- This approach is called a *covering* approach because at each stage a rule is identified that covers some of the instances

Example: generating a rule

5

If true then class = a

Example: generating a rule, II

6

4

If true then class = a

If x > 1.2 then class = a

Example: generating a rule, III

If true then class = a

If x > 1.2 and y > 2.6 then class = a

If x > 1.2 then class = a

Example: generating a rule, IV

More rules could be added for "perfect" rule set

Rules vs. trees

- Corresponding decision tree: (produces exactly the same
- predictions) But: rule sets *can* be more
- But: rule sets *can* be more clear when decision trees suffer from replicated subtrees
- Also: in multi-class situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

A simple covering algorithm

8

- Generates a rule by adding tests that maximize rule's accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - But: decision tree inducer maximizes overall purity
- Each new test reduces rule's coverage:

witten&eibe

Selecting a test

Goal: maximize accuracy

witten&eibe

- *t* total number of instances covered by rule
- p positive examples of the class covered by rule
- t p number of errors made by rule
- \Rightarrow Select test that maximizes the ratio p/t

11

• We are finished when p/t = 1 or the set of instances can't be split any further

Example: contact lens data

Rule we seek:

then recommendation = hard

Possible tests:

witten&eibe

Age = Young	2/8
Age = Pre-presbyopic	1/8
Age = Presbyopic	1/8
Spectacle prescription = Myope	3/12
Spectacle prescription = Hypermetrope	1/12
Astigmatism = no	0/12
Astigmatism = yes	4/12
Tear production rate = Reduced	0/12
Tear production rate = Normal	4/12

12

Modified rule and resulting data

• Rule with best test added:

If astigmatism = yes then recommendation = hard

Instances covered by modified rule:

13

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

witten&eibe

Further refinement

Current state:	If astigmatism = yes and ? then recommendation	= hard
 Possible tests: Age = Young Age = Pre-presbyop 	Possible tests: Age = Young Age = Pre-presbyopic	
Age = Presbyopic	Age = Presbyopic	
Spectacle prescrip	Spectacle prescription = Myope	
Spectacle prescrip	tion = Hypermetrope	1/6
Tear production ra	te = Reduced	0/6
Tear production ra	te = Normal	4/6
witten&eibe 14		

Modified rule and resulting data

Rule with best test added:

If astigmatism = yes
 and tear production rate = normal then recommendation = hard

Instances covered by modified rule:

15

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

witten&eibe

Further refinement Current state:

	<pre>If astigmatism = yes and tear production rate = r and ?</pre>	ormal
	then recommendation = hard	
	Possible tests:	
	Age = Young	2/2
	Age = Pre-presbyopic	1/2
	Age = Presbyopic	1/2
	Spectacle prescription = Myope	3/3
	Spectacle prescription = Hypermetrope	1/3
•	Tie between the first and the fourth test	

 We choose the one with greater coverage witten&eibe 16

The result

Pseudo-code for PRISM

For each class C		
Initialize E to the instance set		
While E contains instances in class C		
Create a rule R with an empty left-hand side that predicts class C		
Until R is perfect (or there are no more attributes to use) do		
For each attribute A not mentioned in R, and each value v,		
Consider adding the condition $A = v$ to the left-hand side of R		
Select A and v to maximize the accuracy p/t		
(break ties by choosing the condition with the largest p)		
Add A = v to R		
Remove the instances covered by R from E		

18 witten&eibe

Rules vs. decision lists

- PRISM with outer loop removed generates a decision list for one class
 - Subsequent rules are designed for rules that are not covered by previous rules
 - But: order doesn't matter because all rules predict the same class
- Outer loop considers all classes separately

19

- No order dependence implied
- Problems: overlapping rules, default rule required

Separate and conquer

- Methods like PRISM (for dealing with one class) are *separate-and-conquer* algorithms:
 - First, a rule is identified
 - Then, all instances covered by the rule are separated out
 - Finally, the remaining instances are "conquered"
- Difference to divide-and-conguer methods:
 - Subset covered by rule doesn't need to be explored any further

20 witten&eibe

Outline

- Rules
- Linear Models (Regression)
- Instance-based (Nearest-neighbor)

- Work most naturally with numeric attributes
- Standard technique for numeric prediction: linear regression
 - Outcome is linear combination of attributes $x = w_0 + w_1 a_1 + w_2 a_2 + \dots + w_k a_k$
- Weights are calculated from the training data
- Predicted value for first training instance **a**⁽¹⁾

22

$w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \dots + w_k a_k^{(1)} = \sum_{j=0}^k w_j a_j^{(1)}$

witten&eibe

Minimizing the squared error

21

- Choose k +1 coefficients to minimize the squared error on the training data $\sum_{i=1}^{n} \left(x^{(i)} - \sum_{j=0}^{k} w_j a_j^{(i)} \right)^2$
- Squared error:
- Derive coefficients using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimizing the absolute error is more difficult

Regression for Classification

- Any regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don't
 - Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this is known as multi-response linear regression

witten&eibe

witten&eibe

24

*Theoretical justification

 $\begin{array}{c} \textbf{Observed target value (either 0 or 1)} \\ \textbf{Model} \\ E_y \{(f(X) - Y)^2 \mid X = x\} \\ = E_y \{(f(X) - P(Y = 1 \mid X = x) + P(Y = 1 \mid X = x) - Y)^2 \mid X = x\} \\ = (f(X) - P(Y = 1 \mid X = x))^2 + 2 \times (f(X) - P(Y = 1 \mid X = x)) \times \\ E_y \{P(Y = 1 \mid X = x) - Y \mid X = x\} + E_y \{(P(Y = 1 \mid X = x) - Y)^2 \mid X = x\} \\ = (f(X) - P(Y = 1 \mid X = x))^2 + 2 \times (f(X) - P(Y = 1 \mid X = x) - Y)^2 \mid X = x\} \\ = (f(X) - P(Y = 1 \mid X = x))^2 + 2 \times (f(X) - P(Y = 1 \mid X = x)) \times \\ (P(Y = 1 \mid X = x) - E_y \{Y \mid X = x\}) + E_y \{(P(Y = 1 \mid X = x) - Y)^2 \mid X = x\} \\ = (f(X) - P(Y = 1 \mid X = x))^2 + E_y \{(P(Y = 1 \mid X = x) - Y)^2 \mid X = x\} \\ = (f(X) - P(Y = 1 \mid X = x))^2 + E_y \{(P(Y = 1 \mid X = x) - Y)^2 \mid X = x\} \\ \textbf{We want to minimize this} \\ \textbf{2s} \quad \textbf{Constant} \end{array}$

*Pairwise regression

- Another way of using regression for classification:
 - A regression function for every *pair* of classes, using only instances from these two classes
 - Assign output of +1 to one member of the pair, -1 to the other
- Prediction is done by voting

witten&eibe

Class that receives most votes is predicted

26

- Alternative: "don't know" if there is no agreement
- More likely to be accurate but more expensive

Logistic regression

- Problem: some assumptions violated when linear regression is applied to classification problems
- Logistic regression: alternative to linear regression
 - Designed for classification problems
 - Tries to estimate class probabilities directly
 - Does this using the maximum likelihood method
 - Uses this linear model:

$$\log\left(\frac{P}{1-P}\right) = w_0 a_0 + w_1 a_1 + w_2 a_2 + \dots + w_k a_k$$

P= Class probability

witten&eibe

witten&eibe

Discussion of linear models

- Not appropriate if data exhibits non-linear dependencies
- But: can serve as building blocks for more complex schemes (i.e. model trees)
- Example: multi-response linear regression defines a *hyperplane* for any two given classes:

 $(w_0^{(1)} - w_0^{(2)})a_0 + (w_1^{(1)} - w_1^{(2)})a_1 + (w_2^{(1)} - w_2^{(2)})a_2 + \dots + (w_k^{(1)} - w_k^{(2)})a_k > 0$

Comments on basic methods

29

27

- Minsky and Papert (1969) showed that linear classifiers have limitations, e.g. can't learn XOR
 - But: combinations of them can (→ Neural Nets)

Outline

Rules

witten&eibe

- Linear Models (Regression)
- Instance-based (Nearest-neighbor)

30

Instance-based representation

- Simplest form of learning: rote learning
 - Training instances are searched for instance that most closely resembles new instance
 - The instances themselves represent the knowledge
 - Also called *instance-based* learning
- Similarity function defines what's "learned"
- Instance-based learning is lazy learning

31

Methods:

- nearest-neighbor
- k-nearest-neighbor
- witten&eibe

The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?

32

witten&eibe

Weighting the attributes might be necessary

Instance-based learning

- Distance function defines what's learned
- Most instance-based schemes use Euclidean distance:

 $\sqrt{(a_1^{(1)}-a_1^{(2)})^2+(a_2^{(1)}-a_2^{(2)})^2+...+(a_k^{(1)}-a_k^{(2)})^2}$

 $\mathbf{a}^{(1)}$ and $\mathbf{a}^{(2)}$: two instances with k attributes

- Taking the square root is not required when comparing distances
- Other popular metric: *city-block (Manhattan) metric* Adds differences without squaring them

33

Normalization and other issues

 Different attributes are measured on different scales ⇒ need to be *normalized*:

$$a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i} \quad \text{or} \quad a_i = \frac{v_i - Avg(v_i)}{StDev(v_i)}$$

 v_i : the actual value of attribute *i*

- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

34

Discussion of 1-NN

- Often very accurate
- ... but slow:

witten&eibe

witten&eibe

- simple version scans entire training data to derive a prediction
- Assumes all attributes are equally important
 - Remedy: attribute selection or weights

35

- Possible remedies against noisy instances:
 - Take a majority vote over the *k* nearest neighbors
 - Removing noisy instances from dataset (difficult!)
- Statisticians have used k-NN since early 1950s
 - If $n \rightarrow \infty$ and $k/n \rightarrow 0$, error approaches minimum

Summary

witten&eibe

- Simple methods frequently work well
 - robust against noise, errors
- Advanced methods, if properly used, can improve on simple methods
- No method is universally best