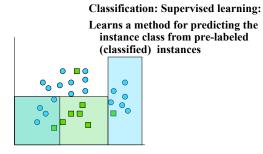
Clustering

Outline

- Introduction
- K-means clustering
- Hierarchical clustering: COBWEB

2

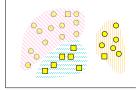
Classification vs. Clustering



3

Clustering

Unsupervised learning: Finds "natural" grouping of instances given un-labeled data



Clustering Methods

Many different method and algorithms:

5

- For numeric and/or symbolic data
- Deterministic vs. probabilistic
- Exclusive vs. overlapping
- Hierarchical vs. flat
- Top-down vs. bottom-up

Clusters: exclusive vs. overlapping

6

Simple 2-D representation

Non-overlapping

Venn diagram

Overlapping

Clustering Evaluation

- Manual inspection
- Benchmarking on existing labels
- Cluster quality measures
 - distance measures
 - high similarity within a cluster, low across clusters

The distance function

- Simplest case: one numeric attribute A
 - Distance(X,Y) = A(X) A(Y)
- Several numeric attributes:
 - Distance(X,Y) = Euclidean distance between X,Y
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?

8

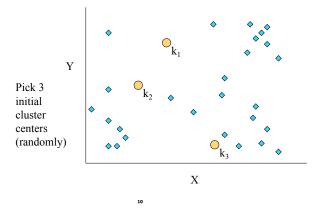
Weighting the attributes might be necessary

Simple Clustering: K-means

Works with numeric data only

- 1) Pick a number (K) of cluster centers (at random)
- 2) Assign every item to its nearest cluster center (e.g. using Euclidean distance)
- 3) Move each cluster center to the mean of its assigned items
- 4) Repeat steps 2,3 until convergence (change in cluster assignments less than a threshold)

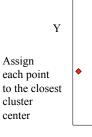
K-means example, step 1

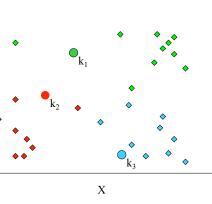


K-means example, step 2

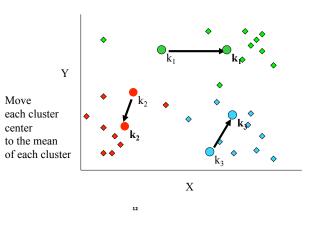
11

9





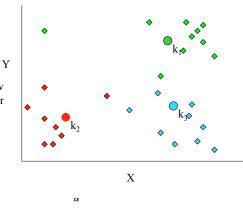
K-means example, step 3



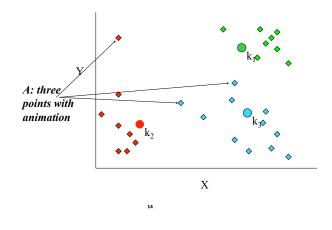
K-means example, step 4

Reassign points closest to a different new cluster center

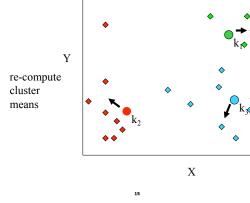
Q: Which points are reassigned?



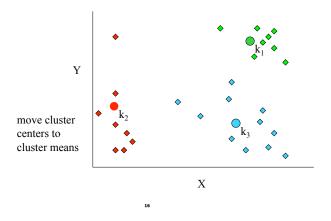
K-means example, step 4 ...



K-means example, step 4b



K-means example, step 5

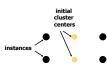


Discussion

.

Example:

- Result can vary significantly depending on initial choice of seeds
- Can get trapped in local minimum



• To increase chance of finding global optimum: restart with different random seeds

17

K-means clustering summary

18

Advantages

- Simple, understandable
- items automatically assigned to clusters

Disadvantages

- Must pick number of clusters before hand
- All items forced into a cluster
- Too sensitive to outliers

K-means variations

- K-medoids instead of mean, use medians of each cluster
 - Mean of 1, 3, 5, 7, 9 is 5
 - Mean of 1, 3, 5, 7, 1009 is 205
 - Median of 1, 3, 5, 7, 1009 is 5
 - Median advantage: not affected by extreme values
- For large databases, use sampling

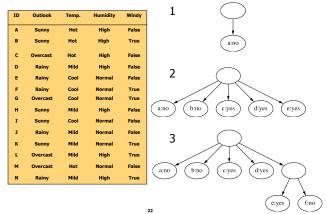
*Hierarchical clustering

- Bottom up
 - Start with single-instance clusters
 - At each step, join the two closest clusters
 - Design decision: distance between clusters
 E.g. two closest instances in clusters vs. distance between means
- Top down
 - Start with one universal cluster
 - Find two clusters
 - Proceed recursively on each subset
 - Can be very fast
- Both methods produce a dendrogram 20

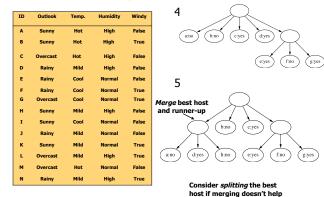
*Incremental clustering

- Heuristic approach (COBWEB/CLASSIT)
- Form a hierarchy of clusters incrementally
- Start:
 - tree consists of empty root node
- Then:
 - add instances one by one
 - update tree appropriately at each stage
 - to update, find the right leaf for an instance
 - May involve restructuring the tree
- Base update decisions on category utility

*Clustering weather data

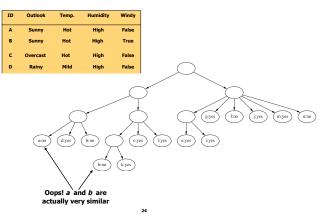


*Clustering weather data

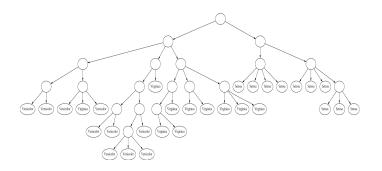


23

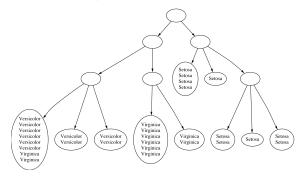
*Final hierarchy



*Example: the iris data (subset)



*Clustering with cutoff

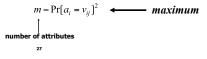


*Category utility

 Category utility: quadratic loss function defined on conditional probabilities:

 $CU(C_1, C_2, ..., C_k) = \frac{\sum_{i} \Pr[C_i] \sum_{i} \sum_{j} (\Pr[a_i = v_{ij} \mid C_i]^2 - \Pr[a_i = v_{ij}]^2)}{1 \qquad k}$

 Every instance in different category ⇒ numerator becomes



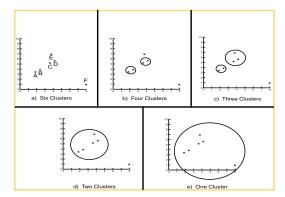
*Overfitting-avoidance heuristic

• If every instance gets put into a different category the numerator becomes (maximal):

Where *n* is number of all possible attribute values.

 So without k in the denominator of the CUformula, every cluster would consist of one instance!

Levels of Clustering



29

Hierarchical Clustering

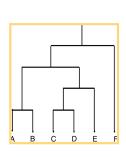
- Clusters are created in levels actually creating sets of clusters at each level.
- Agglomerative
 - Initially each item in its own cluster
 - Iteratively clusters are merged together
 - Bottom Up
- Divisive
 - Initially all items in one cluster
 - Large clusters are successively divided

30

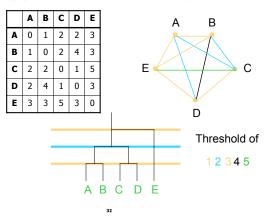
Top Down

Dendrogram

- Dendrogram: a tree data structure which illustrates hierarchical clustering techniques.
- Each level shows clusters for that level.
 - Leaf individual clusters
 - Root one cluster
- A cluster at level i is the union of its children clusters at level i+1.



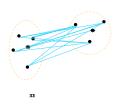
Agglomerative Example



Distance Between Clusters

31

- *Single Link*: smallest distance between points
- Complete Link: largest distance between points
- Average Link: average distance between points
- Centroid: distance between centroids



Other Clustering Approaches

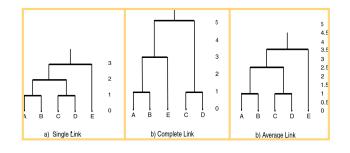
EM – probability based clustering

35

- Bayesian clustering
- SOM self-organizing maps

• ...

Single Link Clustering



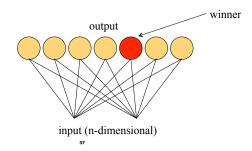
Self-Organizing Map

34

36

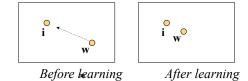
Self Organizing Map

- Unsupervised learning
- Competitive learning



Self Organizing Map

- Determine the winner (the neuron of which the weight vector has the smallest distance to the input vector)
- Move the weight vector w of the winning neuron towards the input i

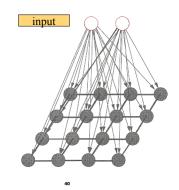


Self Organizing Map

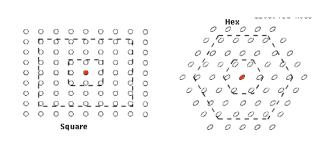
- Impose a topological order onto the competitive neurons (e.g., rectangular map)
- Let neighbors of the winner share the "prize" (The "postcode lottery" principle)
- After learning, neurons with similar weights tend to cluster on the map

39

Self Organizing Map



Self Organizing Map



41

Self Organizing Map

- Input: uniformly randomly distributed points
- Output: Map of 20² neurons
- Training
 - Starting with a large learning rate and neighborhood size, both are gradually decreased to facilitate convergence

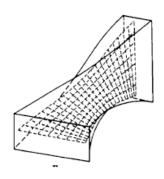
Self Organizing Map

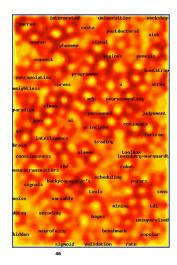
Self Organizing Map

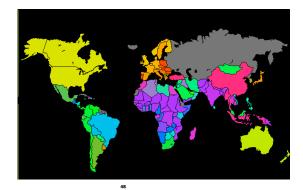
Self Organizing Map

BEL	SWE	ПА	YUG	rom			bur IDN	MDG		BGD NPL	btn	afg gin MLI ner SLE
AUT che DEU FRA NL	.D JPN		bg cs					gai Ibr	, kh	m P/		z mrt i yem
	Ľ	ESP	GRC			тна	MAR		IND	caf	SEN	MWI TZA uga
DNK GBR FIN IRL NOR			UR	Y ARC	ARG ECU mex		EGY hti			lao png ZAR		cd
			KOR		zaf		TUN	dza irq	GHA	NGA		ETH
	ISR			COL		Ib	y zv	VE om	n	aç	jo h	vo
	AUS		MUS tto			IRN PRY syr	hnd	BWA	KEN	BEN CIV	cog som	bdi RWA
NZL	NZL CH		HL PAN alb		mng sau		vn	m jor nic			tga	
	HKG SGP		CRI VEN		JAM MYS		DOM LKA PHL		BOL BRA SLV		GТМ	CMR Iso nam ZMB

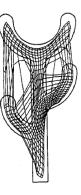
Self Organizing Map







Self Organizing Map



Discussion

- Can interpret clusters by using supervised learning
 - learn a classifier based on clusters
- Decrease dependence between attributes?
 - pre-processing step
 - E.g. use principal component analysis
- Can be used to fill in missing values

49

- Key advantage of probabilistic clustering:
 - Can estimate likelihood of data
 - Use it to compare different models objectively

Examples of Clustering Applications

- **Marketing:** discover customer groups and use them for targeted marketing and re-organization
- Astronomy: find groups of similar stars and galaxies
- **Earth-quake studies:** Observed earth quake epicenters should be clustered along continent faults
- **Genomics:** finding groups of gene with similar expressions

50

• ... •

Clustering Summary

- unsupervised
- many approaches
 - K-means simple, sometimes useful
 - K-medoids is less sensitive to outliers

51

- Hierarchical clustering works for symbolic attributes
- Evaluation is a problem