
Concepts of programming languages: Prolog exercise

October 18, 2007

1 Prolog implementation

For this exercise, we use the SWI-Prolog [1] implementation of the Prolog language.
The Prolog interpreter has been compiled for Linux/x86 systems, and is available as

/home/csalp/bin.linux/prolog/pl. Versions for other systems are avaible; see the web-
page.

You can run the interpreter using the following commands:

/home/csalp/bin.linux/prolog/pl run the Prolog interpreter
/home/csalp/bin.linux/prolog/pl -f myprog.pl . . . with myprog.pl being the

name of a Prolog program
NOTE:

When using the first version, be sure to type consult(’myprog.pl’). at the beginning
and every time you change the program.

Once you have started the interpreter, you can test your program or edit it.
You can check Prolog out by typing a goal:

?- voegsamen([1,2,3,4,5], [6,7], X).

Presuming voegsamen is defined, the interpreter will produce:

X = [1,2,3,4,5,6,7]

Now there are two possibilities: you can enter a ’;’ to let the interpreter explore alternative
values for X. If none are found, it will produce ’No’. By just pressing ’enter’ the interpreter
will stop searching for alternative values for X. The interpreter will produce a ’Yes’ and you
can enter a new command.

If you want to edit in vi you can enter:

?- edit.

This option will only work if you run Prolog using the ’-f’ option. Otherwise you’ll have to
enter:

?- edit(’myprog.pl’).

NOTE:

• Be sure to use capital letters when using variables: use ’Name’ instead of ’name’.

• When using functions, DO NOT put a space between the function name and the first
bracket: voegsamen(...) instead of voegsamen (...).

• Be sure to put a ’.’ at the end of every command, otherwise they won’t be executed.

• To use the implication symbol (←) in SWI-Prolog, you have to use ’:-’:

bird(X) ← lays eggs(X) ∧ has wings(X) becomes

bird(X) :- lays eggs(X), has wings(X).
1



You can exit SWI-Prolog bij entering CTRL-C followed by an e .

2 Exercises

Exercise 1: Finite Directed Graphs

We shall consider three problems on finite directed graphs. To this end, first some preliminary
notions on graphs are given. Recall that a directed graph G is a pair (N, A), where N is a set
and A is a binary relation such that A ⊆ N2. The elements of N are called the nodes of G
and the pairs which belong to A are called the arcs of G. If the set N is finite, the directed
graph is finite. A graph is called acyclic if it contains no cycles. DAG stands for “Directed
Acyclic Graph”.

Prolog does not have any built in facilities that deal with graphs. We represent here a
finite directed graph (in short: a graph) by a (ground) list of its arcs, where an arc from node
a to node b is represented by the list [a, b]. In this representation the isolated nodes of the
graph are omitted. However, we consider here only problems dealing with paths in graphs,
and consequently such a (mis)representation is adequate for our purposes.

A path in a graph g from a to b is the sequence a1, . . . , an (n > 1) such that
−(ai, ai+1) ∈ g for i ∈ {1, 2, . . . , n − 1},
−a1 = a,
−an = b.

An acyclic path is a path consisting of distinct nodes.

1. We begin with the problem of computing the transitive closure of a DAG. The transitive
closure of a DAG is obtained by adding all arcs to the graph that are combinations of
other arcs, for example if [A,B], [B,C], [C,D] are in the list then also [A,D]. Implement
the following predicate by means of a Prolog program.

trans dag(X, Y, Graph) :- the pair [X,Y] is in the transitive
closure of the DAG Graph.

2. Next, consider the general case, and implement the following predicate by means of a
Prolog program.

trans(X, Y, Graph) :- the pair [X,Y] is in the transitive
closure of Graph.

Hint: Define a predicate trans(X, Y, Graph, Avoids) that uses the argument Avoids
to collect the list of elements that should be avoided when searching a path from X to
Y.

3. Finally, consider the problem of generating, for each pair of nodes belonging to the
transitive closure, a path which connects them. In general, it cannot be claimed that
this path will always be acyclic, because pairs of the form [a, a] can belong to the graph.
However, for each pair of nodes we can always find a connecting path a1, . . . , an (n > 1),
whose tail a2, . . . , an is acyclic. (For n = 2 we stipulate here that a sequence of one
element is acyclic.) Call such a path semi-acyclic. Implement the following predicate by
means of a Prolog program.

path(X, Y, Graph, Path) :- Path is a semi-acyclic path which
connects X and Y in the graph Graph

Hint: a program that solves the above problem can be obtained by a slight modification
of the relation trans(X, Y, Graph, Z) obtained by adding an argument to it (i.e.,
trans(X, Y, Graph, Z, Path)) that is used to incrementally construct a path.

2



Exercise 2: Binary Search Trees

We shall consider binary trees whose nodes are (labelled with) natural numbers, and use the
term void to denote the empty tree, and the term tree(x, left, right). to denote the tree with
root x, left subtree left and right subtree right. For example, the term tree(1, tree(2, void,
void), tree(3, void, void)) represents the tree with root 1 and children 2 and 3.

We call a binary tree tree(x, left, right) nice if:

1. if left is not empty then x is greater than all the elements in left ;

2. if right is not empty then x is less than all the elements in right.

A binary tree is called a search tree if every subtree of it is nice. Write a program which
tests whether a ground term is a search tree.

Hint: Use the following predicate is search tree(T) in the definition of search tree:

is search tree(void).
is search tree(T) :- is search tree(T, Min, Max).

where Min and Max are the minimum and maximum element of the tree T. Then implement
the predicate is search tree(T, Min, Max).

3 How to submit

Your programs should be submitted together with a written report in which you explain your
programs, to Thijs van Ommen (mvommen@liacs.nl).

References

[1] http://www.swi-prolog.org/

3


