
Laser Pulse Shaping problem
Practical Assignments Natural Computing, 2009

Rick van der Zwet
<hvdzwet@liacs.nl>

19 december 2009

1 Introduction

The report is focused on the so-called laser pulse shaping problem. Today’s
lasers are also used within the range of atoms or molecule research. Using
small pulses it is able to align and alter the movement of the atoms.

The problem lies in the fact the atoms cannot be controlled by any type
of laser pulse. There are many parameters which could all be set to ’shape’
the laser pulse the way it can move the atoms.

To turn and tweak all the ’knobs’ at the same time there will be Particle
Swarm Optimizer (PSO) used to explore the search space. The PSO is ba-
sically a whole bunch of individual agents which all try to find an optimum
into the search space. During this search they get input about other po-
tential bests from the whole swarm (broadcast style) and the neighborhood
(observation) and using this values they determine their new location.

2 Problem description

A laser pulse going through a crystal produces light at the octave of its
frequency spectrum. The total energy of the radiated light is proportional to
the integrated squared intensity of the primary pulse. Explicitly, the time-
dependent profile of the laser field in our simulations is given by:

E(t) =

∫
∞

−∞

A(ω)exp(iφ(ω))exp(iωt)dω, (1)

where A(ω) is a Gaussian window function describing the contribution of
different frequencies to the pulse and φ(ω), the phase function, equips these
frequencies with different complex phases.

1

To determine the best solution a fitness function is needed, which could
be found in the shape of equation 2

SHG =

∫
T

0

E4(t)dt −→ maximization (2)

Note that 0 < SHG < 1

3 Statistics

4 Approach

The Wikipedia page ’Particle swarm optimization’ 1 contained a reference
implementation used to implement the algorithm. The nice part about the
algorithm is its flexibility in tuning. As within the PSO there are many
’knobs’ which could be tweaked as well, like likeliness of heading for the
global optimum, neighborhood optimum and local optimum.

5 Implementation

The code is written in Octave2 which is the open-source ’variant’ of MAT-
LAB c©3. There are small minor differences between them, but all code is
made compatible to to run on both systems. The code is to be found in
Appendix 8.

As work is done remotely, the following commands are used:

matlab-bin -nojvm -nodesktop -nosplash -nodisplay < %%PROGRAM%%

octave -q %%PROGRAM%%

The flock is represented into a 3d block. A slice of that block contains a
local swarm, a column in slice is a individual particle.

6 Results

The program is run against a parameter set of 80. The algorithm is allowed
to run for 10 minutes with a maximum of 1000 iterations. If there are no
improvements after 5 iterations then it will bail out as well.

1http://en.wikipedia.org/wiki/Particle swarm optimization
2http://www.gnu.org/software/octave/
3http://www.mathworks.com/products/matlab/

2

The algorithm is kind of ’social’ e.g. it will favor the neighborhood and the
global optimum more than it’s own local optimum. Also its active, meaning
it changes direction fast the moment the optimum is found somewhere else.

Size of the local swarms is 50, each with 10 agents.
After running 5 times, the best fitness found was 0.0000045481. Improve-

ment is almost only shown in the first 100 iterations see figure 1a, afterwards
it quickly stalls. Trying with a smaller number more and less show the same
result as seen in figure 1b

0

1e-06

2e-06

3e-06

4e-06

5e-06

0 20 40 60 80 100

fit
ne

ss

iterations

Particle Swarm Optimalisation on Laser-Pulse shaping problem

Parameters 80

(a) 80

4.9e-06

5e-06

5.1e-06

5.2e-06

5.3e-06

5.4e-06

0 20 40 60 80 100

fit
ne

ss

iterations

Particle Swarm Optimalisation on Laser-Pulse shaping problem

Parameters 10

(b) 10

Figuur 1: Fitness throughout the iterations

Changing various flags like walkspeed wander or changing the socialness
of the agents does not prove to change much in the algoritm result.

7 Conclusions

Giving the lack of external results of other algorithms in large scale setups
(80 parameters) its hard to say whether this is a good or worse preforming
algorithm.

For furher research within the algorithm there are many knobs to tweak
as well. One could think of implementing a algorithm around this setup as
well.

3

8 Appendix 1

4

1 % Particle Swarm optimalisation

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % Modeled after http://en.wikipedia.org/wiki/Particle swarm optimization

5

6 % Dimention settings

7 parameters = 10;

8

9 % If global optimum does not change this many steps bail out

10 iteration break = 5;

11 max iterations = 1000;

12 max time = 10 * 60; % in sec

13

14 % Flock properties

15 local swarm size = 50;

16 local swarms = 10;

17

18 %% Particle properties

19 % Speed of walking around to a certain direction

20 wander = 0.4;

21

22 % ’Influence’ of the envirionment with regards to solutions

23 % Trust the group global solution to be feasible

24 c social = 0.4;

25 % Trust the neighbor solution to be feasible

26 c cognitive = 0.4;

27 % Trust the own best solution to be feasible

28 c ego = 0.2;

29

30 % Variables used for plotting

31 fitness history = [];

32 fitness iterations = [];

33

34 % Initiate all particles

35 flock p = rand(parameters,local swarm size,local swarms) .* (2

* pi);

36 flock v = zeros(size(flock p));

37

38

39 % Global best placeholder

40 g best = ones(parameters,1) .* 9;

5

41 g fitness = 0;

42 % at (:,x) lives the neighbor best of local swarm ’x’

43 n best = ones(parameters,local swarms) .* 9;

44 n fitness = zeros(parameters,local swarms);

45 % at (:,p,x) leves the local best of particle ’p’ in local swarm

’x’

46 l best = ones(parameters,local swarm size,local swarms) .* 9;

47 l fitness = zeros(local swarm size, local swarms);

48

49 idle counter = 0;

50 tic();

51

52 % Code not optimised for performance, but for readablility

53 for i = 1:max iterations

54 for s = 1:local swarms

55 fitness = SHGa(flock p(:,:,s));

56 % See if we got any better local optimum

57 for p = 1:local swarm size

58 if fitness(p) > l fitness(p,s)

59 l fitness(p,s) = fitness(p);

60 l best(:,p,s) = flock p(:,p,s);

61 end

62 end

63

64 % See if we got any better neighbor optimum

65 for p = 1:local swarm size

66 if l fitness(p,s) > n fitness(s)

67 n fitness(s) = l fitness(p,s);

68 n best(:,s) = l best(:,p,s);

69 end

70 end

71 end

72

73 idle counter = idle counter + 1;

74

75 % See wether we have a new global optimum

76 for s = 1:local swarms

77 if n fitness(s) > g fitness

78 g fitness = n fitness(s);

79 g best = n best(:,s);

80 idle counter = 0;

6

81 end

82 end

83

84 % Stop conditions

85 if idle counter == iteration break

86 fprintf(’Caught by idle counter\n’);
87 break;

88 end

89 if toc > max time

90 fprintf(’Caught by max time used \n’);
91 break;

92 end

93

94

95 fprintf(’%04i : %.15f\n’, i, g fitness);

96 fitness iterations = [fitness iterations, i];

97 fitness history = [fitness history, g fitness];

98

99

100 % Update particles to new value

101 r cognitive = rand();

102 r social = rand();

103 r ego = rand();

104 for s = 1:local swarms

105 for p = 1:local swarm size

106 flock v(:,p,s) = flock v(:,p,s) * wander + ...

107 (g best - flock p(:,p,s)) * (c cognitive * r cognitive)

+ ...

108 (n best(:,s) - flock p(:,p,s)) * (c social * r social)

+ ...

109 (l best(:,p,s) - flock p(:,p,s)) * (c ego * r ego);

110 flock p(:,p,s) = flock p(:,p,s) + flock v(:,p,s);

111 end

112 end

113 end

114

115 % Dispay hack

116 g fitness

117 g best

118

119 plot(fitness iterations,fitness history);

7

120 title(sprintf(’Particle Swarm Optimalisation on Laser-Pulse shaping

problem’))'

121 ;

122 ylabel(’fitness’);

123 xlabel(’iterations’);

124 grid on;

125 legend(sprintf(’Parameters %i’,parameters));

126 print(sprintf(’pso-fitness-%.10f.eps’, max(fitness history)),’-depsc2’);

8

1 % Particle Swarm optimalisation

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % Modeled after http://en.wikipedia.org/wiki/Particle swarm optimization

5

6 % Iterate on multiple vectors

7 function fitness = SHGa(v)

8 for i = 1:length(v(1,:))

9 fitness(i) = SHG(v(:,i));

10 end

11 end

12

9

1 %%%

2 % This function calculates the Second Harmonic Generation

3 % of a Gaussian of frequencies with a given phase function.

4 %

5 % phi - an input COLUMN vector, containing the phase function.

6 % SHG - the output of the calculation; scalar.

7 %%%

8

9 function [SHG] = SHG(phi);

10

11 %constant for consistency with the Fortran Calculation...

12 c fortran = 153.7687;

13

14 % Generate the Gaussian and the phase function consistently.

15 Np = length(phi(:,1));

16 Nv = 4000;

17 v = linspace(-300,300,Nv); %Linearly Spaced Vector

18 G = 40;

19 Ain = exp(-(v/G).^2); %The Gaussian of Frequencies

20

21 %Distribute the phase function according to the desired resolution

22 step = round((2600-1400)/Np);

23 step = step + (step==1);

24 phase = zeros(1,Nv);

25 k = 1;

26 for j = 1400:step:2600-step+1,

27 phase([j:j+step-1]) = phi(k);

28 if (k < Np)

29 k = k+1;

30 else

31 k = Np;

32 end

33 end

34 % *** The Core: SHG *** %

35

36 %Fourier Transform with phase shift (phi) on the Gaussian *Ain*

37 E t = fftshift(ifft(fftshift(exp(i*phase).*Ain)));

38

39 %plot(abs(E t));

40 %Integrate the result to yield the SHG

41 SHG = sum(abs(E t).^4)/c fortran;

10

42

43

44 %%%%%%%%%%%%%%%%%%%%%%%%%%% E O F %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11

