
1

1

Code Generation

Bart Kienhuis

Computer Systems Group

University Leiden (LIACS)

2

Position of a Code Generator in

the Compiler Model

Front-End
Code

Optimizer

Source

program

Symbol Table

Lexical error

Syntax error

Semantic error

Intermediate

code Code

Generator

Intermediate

code

Target

program

2

3

Code Generation

Code produced by compiler must be
correct
Source to target program transformation is

semantics preserving

Code produced by compiler should be of
high quality
Effective use of target machine resources

Heuristic techniques can generate good but
suboptimal code, because generating optimal
code is undecidable

4

Target Program Code

The back-end code generator of a
compiler may generate different forms of
code, depending on the requirements:

Absolute machine code (executable code)

Relocatable machine code (object files for
linker)

Assembly language (facilitates debugging)

Byte code forms for interpreters (e.g. JVM)

3

5

The Target Machine

Implementing code generation requires
thorough understanding of the target machine
architecture and its instruction set

Our (hypothetical) machine:

Byte-addressable (word = 4 bytes)

Has n general purpose registers R0, R1, …, Rn-1

Two-address instructions of the form

op source, destination

6

The Target Machine: Op-codes

and Address Modes

 Op-codes (op), for example
MOV (move content of source to destination)
ADD (add content of source to destination)
SUB (subtract content of source from dest.)

 Address modes

Mode Form Address Added Cost

Absolute M M 1

Register R R 0

Indexed c(R) c+contents(R) 1

Indirect register *R contents(R) 0

Indirect indexed *c(R) contents(c+contents(R)) 1

Literal #c N/A 1

4

7

Instruction Costs

Machine is a simple, non-super-scalar processor
with fixed instruction costs

Realistic machines have deep pipelines, I-cache,
D-cache, etc.

Define the cost of instruction
= 1 + cost(source-mode) + cost(destination-
mode)

8

Instruction Operation Cost

MOV R0,R1 Store content(R0) into register R1

MOV R0,M Store content(R0) into memory location M

MOV M,R0 Store content(M) into register R0 2

MOV 4(R0),M Store contents(4+contents(R0)) into M 3

MOV *4(R0),M Store contents(contents(4+contents(R0))) into M 3

MOV #1,R0 Store 1 into R0 2

ADD 4(R0),*12(R1) Add contents(4+contents(R0))

to contents(12+contents(R1)) 3

Examples

5

9

Instruction Selection

Instruction selection is important to obtain
efficient code

Suppose we translate three-address code
x:=y+z

to: MOV y,R0
ADD z,R0
MOV R0,x

a:=a+1 MOV a,R0

ADD #1,R0

MOV R0,a

ADD #1,a INC a

Cost = 6

Cost = 3 Cost = 2

Better Better

10

Instruction Selection: Utilizing

Addressing Modes

Suppose we translate a:=b+c into
MOV b,R0

ADD c,R0

MOV R0,a

Assuming addresses of a, b, and c are stored in
R0, R1, and R2

MOV *R1,*R0

ADD *R2,*R0

Assuming R1 and R2 contain values of b and c
ADD R2,R1

MOV R1,a

6

11

Need for Global Machine-

Specific Code Optimizations

Suppose we translate three-address code
x:=y+z

to: MOV y,R0
ADD z,R0
MOV R0,x

Then, we translate
a:=b+c

d:=a+e

to: MOV a,R0

ADD b,R0

MOV R0,a

MOV a,R0

ADD e,R0

MOV R0,d

Redundant

12

Register Allocation and

Assignment

Efficient utilization of the limited set of registers
is important to generate good code

Registers are assigned by

Register allocation to select the set of variables that
will reside in registers at a point in the code

Register assignment to pick the specific register that
a variable will reside in

Finding an optimal register assignment in
general is NP-complete

7

13

Example

t:=a+b

t:=t*c

t:=t/d

MOV a,R1

ADD b,R1

MUL c,R1

DIV d,R1

MOV R1,t

t:=a*b

t:=t+a

t:=t/d

MOV a,R0

MOV R0,R1

MUL b,R1

ADD R0,R1

DIV d,R1

MOV R1,t

{ R1=t } { R0=a, R1=t }

14

Choice of Evaluation Order

When instructions are independent, their
evaluation order can be changed

t1:=a+b

t2:=c+d

t3:=e*t2

t4:=t1-t3

a+b-(c+d)*e

MOV a,R0

ADD b,R0

MOV R0,t1

MOV c,R1

ADD d,R1

MOV e,R0

MUL R1,R0

MOV t1,R1

SUB R0,R1

MOV R1,t4

t2:=c+d

t3:=e*t2

t1:=a+b

t4:=t1-t3

MOV c,R0

ADD d,R0

MOV e,R1

MUL R0,R1

MOV a,R0

ADD b,R0

SUB R1,R0

MOV R0,t4

reorder

8

15

Generating Code for Stack

Allocation of Activation Records

t1 := a + b

param t1

param c

t2 := call foo,2

…

func foo

…

return t1

100: ADD #16,SP

108: MOV a,R0

116: ADD b,R0

124: MOV R0,4(SP)

132: MOV c,8(SP)

140: MOV #156,*SP

148: GOTO 500

156: MOV 12(SP),R0

164: SUB #16,SP

172: …

500: …

564: MOV R0,12(SP)

572: GOTO *SP Return to caller

Store return value

Push frame

Store a+b

Store c

Store return address

Jump to foo

Get return value

Remove frame

Note: Language and machine dependent

Here we assume C-like implementation with SP and no FP

16

Code Generation Part 2

Bart Kienhuis

Computer Systems Group

University Leiden (LIACS)

9

17

Flow Graphs

A flow graph is a graphical depiction of a
sequence of instructions with control flow
edges

A flow graph can be defined at the
intermediate code level or target code
level

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

MOV 0,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

18

Basic Blocks

A basic block is a sequence of consecutive
instructions with exactly one entry point
and one exit point (with natural flow or a
branch instruction)

MOV 1,R0

MOV n,R1

JMP L2MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

10

19

Basic Blocks and Control Flow

Graphs

A control flow graph (CFG) is a directed
graph with basic blocks Bi as vertices and
with edges BiBj iff Bj can be executed
immediately after Bi

MOV 1,R0

MOV n,R1

JMP L2MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

20

Successor and Predecessor

Blocks

Suppose the CFG has an edge B1B2

Basic block B1 is a predecessor of B2

Basic block B2 is a successor of B1

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

11

21

Partition Algorithm for Basic

Blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement

in exactly one block

1. Determine the set of leaders, the first statements if basic blocks

a) The first statement is the leader

b) Any statement that is the target of a goto is a leader

c) Any statement that immediately follows a goto is a leader

2. For each leader, its basic block consist of the leader and all

statements up to but not including the next leader or the end

of the program

22

Loops

A loop is a collection of basic blocks, such
that

All blocks in the collection are strongly
connected

The collection has a unique entry, and the
only way to reach a block in the loop is
through the entry

12

23

Loops (Example)

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

B1:

B2:

B3:

L3: ADD 2,R2

SUB 1,R0

JMPNZ R0,L3

B4:

Strongly connected

components:

SCC={ {B2,B3},

{B4} }

Entries:

B3, B4

24

Equivalence of Basic Blocks

Two basic blocks are (semantically)
equivalent if they compute the same set
of expressions

b := 0

t1 := a + b

t2 := c * t1

a := t2
a := c * a

b := 0

a := c*a

b := 0

a := c*a

b := 0

Blocks are equivalent, assuming t1 and t2 are dead: no longer used (no longer live)

13

25

Transformations on Basic

Blocks

A code-improving transformation is a code
optimization to improve speed or reduce code
size

Global transformations are performed across
basic blocks

Local transformations are only performed on
single basic blocks

Transformations must be safe and preserve the
meaning of the code
A local transformation is safe if the transformed basic

block is guaranteed to be equivalent to its original
form

26

Common-Subexpression

Elimination

a := b + c

b := a - d

c := b + c

d := a - d

a := b + c

b := a - d

c := b + c

d := b

t1 := b * c

t2 := a - t1

t3 := b * c

t4 := t2 + t3

t1 := b * c

t2 := a - t1

t4 := t2 + t1

Remove redundant computations

14

27

Dead Code Elimination

Remove unused statements

b := a + 1

a := b + c

…

b := a + 1

…

Assuming a is dead (not used)

b := x + y

…

if true goto L2

Remove unreachable code

28

Renaming Temporary

Variables

Temporary variables that are dead at the
end of a block can be safely renamed

t1 := b + c

t2 := a - t1

t1 := t1 * d

d := t2 + t1

t1 := b + c

t2 := a - t1

t3 := t1 * d

d := t2 + t3

Normal-form block

15

29

Interchange of Statements

Independent statements can be reordered

t1 := b + c

t2 := a - t1

t3 := t1 * d

d := t2 + t3

t1 := b + c

t3 := t1 * d

t2 := a - t1

d := t2 + t3

Note that normal-form blocks permit all

statement interchanges that are possible

30

Algebraic Transformations

Change arithmetic operations to transform
blocks to algebraic equivalent forms

t1 := a - a

t2 := b + t1

t3 := 2 * t2

t1 := 0

t2 := b

t3 := t2 << 1

16

31

Next-Use

Next-use information is needed for dead-code
elimination and register assignment

Next-use is computed by a backward scan of a
basic block and performing the following actions
on statement

i: x := y op z
Add liveness/next-use info on x, y, and z to

statement i

Set x to “not live” and “no next use”

Set y and z to “live” and the next uses of y and z to i

32

Next-Use (Step 1)

i: a := b + c

j: t := a + b [live(a) = true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

Attach current live/next-use information

Because info is empty, assume variables are live

(Data flow analysis Ch.10 can provide accurate information)

17

33

Next-Use (Step 2)

i: a := b + c

j: t := a + b [live(a) = true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

live(a) = true nextuse(a) = j

live(b) = true nextuse(b) = j

live(t) = false nextuse(t) = none

Compute live/next-use information at j

34

Next-Use (Step 3)

i: a := b + c

j: t := a + b [live(a) = true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

Attach current live/next-use information to i

[live(a) = true, live(b) = true, live(c) = false,

nextuse(a) = j, nextuse(b) = j, nextuse(c) = none]

18

35

Next-Use (Step 4)

i: a := b + c

j: t := a + b

live(a) = false nextuse(a) = none

live(b) = true nextuse(b) = i

live(c) = true nextuse(c) = i

live(t) = false nextuse(t) = none

[live(a) = false, live(b) = false, live(t) = false,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

[live(a) = true, live(b) = true, live(c) = false,

nextuse(a) = j, nextuse(b) = j, nextuse(c) = none]

Compute live/next-use information i

36

A Code Generator

Generates target code for a sequence of three-
address statements using next-use information

Uses new function getreg to assign registers to
variables

Computed results are kept in registers as long
as possible, which means:
Result is needed in another computation

Register is kept up to a procedure call or end of
block

Checks if operands to three-address code are
available in registers

19

37

The Code Generation

Algorithm

 For each statement x := y op z
1. Set location L = getreg(y, z)

2. If y L then generate
MOV y’,L

where y’ denotes one of the locations where the
value of y is available (choose register if possible)

3. Generate
OP z’,L

where z’ is one of the locations of z;
Update register/address descriptor of x to include L

4. If y and/or z has no next use and is stored in
register, update register descriptors to remove y
and/or z

38

Register and Address

Descriptors

A register descriptor keeps track of what is
currently stored in a register at a particular
point in the code, e.g. a local variable,
argument, global variable, etc.

MOV a,R0 “R0 contains a”

An address descriptor keeps track of the
location where the current value of the name
can be found at run time, e.g. a register, stack
location, memory address, etc.

MOV a,R0

MOV R0,R1 “a in R0 and R1”

20

39

The getreg Algorithm

 To compute getreg(y,z)
1. If y is stored in a register R and R only holds the

value y, and y has no next use, then return R;
Update address descriptor: value y no longer in R

2. Else, return a new empty register if available

3. Else, find an occupied register R;
Store contents (register spill) by generating

MOV R,M
for every M in address descriptor of y;
Return register R

4. Return a memory location

40

Code Generation Example

Statements Code Generated
Register

Descriptor
Address

Descriptor

t := a - b

u := a - c

v := t + u

d := v + u

MOV a,R0

SUB b,R0

MOV a,R1

SUB c,R1

ADD R1,R0

ADD R1,R0

MOV R0,d

Registers empty
R0 contains t

R0 contains t

R1 contains u

R0 contains v

R1 contains u

R0 contains d

t in R0

t in R0

u in R1

u in R1

v in R0

d in R0

d in R0 and
memory

21

41

Register Allocation and

Assignment

The getreg algorithm is simple but sub-optimal

All live variables in registers are stored (flushed) at
the end of a block

Global register allocation assigns variables to
limited number of available registers and
attempts to keep these registers consistent
across basic block boundaries

Keeping variables in registers in looping code can
result in big savings

42

Allocating Registers in Loops

Suppose loading a variable x has a cost of
2

Suppose storing a variable x has a cost of
2

Benefit of allocating a register to a
variable x within a loop L is

BL (use(x, B) + 2 live(x, B))
where use(x, B) is the number of times x
is used in B and live(x, B) = true if x is
live on exit from B

22

43

Global Register Allocation

Using Graph Coloring

When a register is needed but all available
registers are in use, the content of one of the
used registers must be stored (spilled) to free a
register

Graph coloring allocates registers and attempts
to minimize the cost of spills

Build a conflict graph (interference graph)

Find a k-coloring for the graph, with k the
number of registers

44

Graph Coloring Example

23

45

Peephole Optimization

Examines a short sequence of target
instructions in a window (peephole) and
replaces the instructions by a faster and/or
shorter sequence when possible

Applied to intermediate code or target code

Typical optimizations:
Redundant instruction elimination

Flow-of-control optimizations

Algebraic simplifications

Use of machine idioms

46

Peephole Opt: Eliminating

Redundant Loads and Stores

Consider
MOV R0,a

MOV a,R0

The second instruction can be deleted, but only
if it is not labeled with a target label

Peephole represents sequence of instructions with at
most one entry point

The first instruction can also be deleted if
live(a)=false

24

47

Peephole Optimization:

Deleting Unreachable Code

Unlabeled blocks can be removed

b := x + y

…

goto L2

b := x + y

…

if 0==0 goto L2

48

Peephole Optimization:

Branch Chaining

Shorten chain of branches by modifying
target labels

b := x + y

…

if a==0 goto L2

L2: goto L3

b := x + y

…

if a==0 goto L3

L2: goto L3

25

49

Peephole Optimization: Other

Flow-of-Control Optimizations

Remove redundant jumps

L1:

…

…

goto L1

…

50

Other Peephole Optimizations

Reduction in strength: replace expensive
arithmetic operations with cheaper ones

Utilize machine idioms

Algebraic simplifications

…

a := x ^ 2

b := y / 8

…

a := x * x

b := y >> 3

…

a := a + 1

…

inc a

…

a := a + 0

b := b * 1

…

