Spring 2007

Marcello Bonsangue

Leiden Institute of Advanced Computer Science Research & Education

LTL equivalences

De Morgan-based

$$\Box \neg F \phi \equiv G \neg \phi$$
$$\Box \neg X \phi \equiv X \neg \phi$$

X-self duality: on a path each state has a unique successor

• Until reduction $\Box F \phi \equiv T U \phi$ $\Box F \phi \equiv T U \phi$

6/9/2008

LTL: Adequate sets of connectives

■ <u>Theorem</u>: The set of operators T,¬, ∧, U,X is adequate for LTL.

$$\Box \phi U \psi \equiv \neg (E[\neg \psi U(\neg \phi \land \neg \psi)] \lor AG \neg \psi)$$

$$\Box \phi \mathsf{R} \psi \equiv \neg (\neg \phi \mathsf{U} \neg \psi)$$
$$\Box \phi \mathsf{W} \psi \equiv \psi \mathsf{R} (\phi \lor \psi)$$

Other LTL equivalences

- $G\phi \equiv \phi \wedge XG\phi$
- $F\phi \equiv \phi \lor XF\phi$
- $\phi U \psi \equiv \psi \lor (\phi \land X \phi U \psi)$

• <u>Theorem</u>: $\phi U \psi \equiv \neg (\neg \psi U (\neg \phi \land \neg \psi)) \land F \psi$

PenC - Spring 2006

Slide 4

6/9/2008

Verification goals

- Formulating properties requires some expertise
- Today we present categories of fundamental properties commonly used for system verification
 - □ reachability properties
 - □ safety properties
 - □ liveness properties
 - □ fairness properties

Reachability

- A reachability property states that some particular situation can be reached
 - Simple
 - "We can obtain n < 0"</p>
 - "We can enter a critical section"
 - Conditional
 - "We can enter a critical section without traversing n= 0"
 - □Any
 - "we can always return to the initial state"

Reachability in LTL

LTL misses the existential quantifier on paths, thus it can only express reachability negatively:

something is not reachable

Simple reachability
 □¬G(n ≥0)
 □¬G(no_critic_sec)

Safety

- A safety property states that, under certain conditions, an event never occurs
 - "Two processes will never be both in their critical section"
 - □ "A memory overflow will never occur"
- In general, safety statements express that an undesirable event will not occur.
- The negation of a reachability property is a safety property (and the other way around)

Safety in LTL

Typically expressed by the combinator G in LTL

Examples

 $\Box \ G(\neg critic_sec_1 \land \neg critic_sec_2)$

 \Box G(¬overflow)

Conditional safety

"As long the key is not in, the car won't start"

- □ –start W key
- start U key as we are not required to have the key in some day

Liveness

- A liveness property states that, under certain conditions, an event will ultimately occur
 - □ "Any request will be satisfied"
 - □ "The light will turn green"
 - □ "after the rain, the sunshine"
- Liveness is not reachability
 - "The light will turn green (some day, regardless of the system behavior)"
 - VS.
 - "It is possible for the light (some day) to turn green"

6/9/2008

In general, liveness statements express that happy event will occur in the end

Termination is a liveness property:
 "The program will terminate"

Slide 11

6/9/2008

Liveness in LTL

Typically expressed by the combinator F

- Examples \Box G(req \Rightarrow Fsat) in LTL
- In LTL $\phi_1 U \phi_2$ is a liveness property, whereas $\phi_1 W \phi_2$ is a safety property

Deadlock

A deadlock property states that, the system can never be in a situation in which no progress is possible

 Safety? Liveness?
 Deadlock freeness in LTL GX T
 whatever state may be reached (G) there exists an immediate successor state (X T)

6/9/2008

Fairness

A fairness property states that, under certain conditions, an event will occur (or will fail to occur) infinitely often

"If access to a critical section is infinitely often requested, then access will be granted infinitely often

Fairness in LTL

- Typically expressed by the combinators
 - □GF (infinitely often)
 - □FG (eventually always)

Examples GF critic_in ∨ FG¬ critic_req

Slide 15

6/9/2008