
Program correctness

Program verification and

operational semantics

Marcello Bonsangue

Spring 2008

6/9/2008

Slide 2

System verification
 Model checking verification is

model based M,s

 fully automatic

 intended for hardware or software systems with

finitely many states

 control is the main issue

 no complex data

 mainly reactive

 reaction-> computation -> reaction -> …

 not intended to terminated

6/9/2008

Slide 3

System verification

 Program verification:

Proof based
 It is impossible to check infinite states !

Semi-automatic

 intended for software systems with possibly

infinite states

 mainly sequential

 transformational

 input -> computation -> output

 like methods of an object

6/9/2008

Slide 4

Program verification
The verification framework:

1. Convert an informal specification S in an

‘equivalent’ formula of some logic

2. Write a program P realizing (or S)

3. Prove that P satisfies the formula

6/9/2008

Slide 5

A simple language

 Syntactic sets associated to the language:

 positive and negative integers n,...

 truth values true,false

Var program variables x,…

Aexp arithmetic expressions a,...

Bexp boolean expressions b,...

Com commands c, ...

6/9/2008

Slide 6

Arithmetic expressions

 A ::= n | x | (A+A) | (A-A) | (A*A)

where n N and x Var

 Here * binds more tightly than - and +

 Examples:
2 + 3 * 4 - 5 is (2 + 3) * (4 - 5)

- 3 is (0 - 3)

- -5 is (0 - -5)

2 + x + 5 is (2 + x) + 5

6/9/2008

Slide 7

Boolean expressions

 B ::= true | false | B | B B | B B | A A

 Examples:
A1 = A2 is (A1 A2) (A2 A1)

A1 A2 is (A1 = A2)

 Boolean expression are built on top of arithmetic
expressions

 3+5 9

 4 = 5 is a correct boolean expression !!!

 true 10 is not a boolean expression

6/9/2008

Slide 8

Commands

 C ::= skip |

x := A |

C;C |

if B then C else C fi |

while B do C od

 Example (Fact1)
y := 1;
z := 0;
while z 0 do

z := z + 1;
y := y*z
od

6/9/2008

Slide 9

The behaviour

 We need a formal model to understand

correctly the behavior of a program

 State : Var N

 An arithmetic expression a in a state

evaluates to an integer n

<a, > n

configuration

6/9/2008

Slide 10

Evaluating arithmetic expressions

 <n, > n

 <x, > (x)

 If n is the sum of n1 and n2

<a1, > n1 <a2, > n2
--

<a1+ a2, > n

 If n is the subtraction of n2 from n1

<a1, > n1 <a2, > n2

<a1-a2, > n

 If n is the product of n1 and n2

<a1, > n1 <a2, > n2

<a1*a2, > n

6/9/2008

11

PenC - Spring 2006

Slide 11

An Example Derivation

 What is the n such that

<(3+4)-(x*2), > n ?

6/9/2008

Slide 12

Semantics of arithmetic expressions

 Two arithmetic expressions are equivalent if they

evaluate to the same value in all states

a1 a2

iff

(n N. . <a1, > n <a2, > n)

 Examples:

 <2+3, > 5 and <3+2, > 5 thus (2+3) (3+2)

 2+x is not equivalent to 2+3 because there are states in

which x evaluates to an integer different from 3

6/9/2008

Slide 13

Evaluating Boolean expressions

 <true, > T

 <false, > F

<b, > T <b, > F
 ---------------------- ----------------------

< b, > F < b, > T

<b1, > t1 <b2, > t2
 --

<b1 b2, > t

where t = T if both t1 = T and t2 =T, otherwise t = F

6/9/2008

Slide 14

Evaluating boolean expressions

<b1, > t1 <b2, > t2

<b1 b2, > t

where t = T if t1 = T or t2 =T, and t = F otherwise

 If n1 is less than n2 then

<a1, > n1 <a2, > n2
--

<a1 a2, > T

 If n1 is greater than or equal to n2 then

<a1, > n1 <a2, > n2
--

<a1 a2, > F

6/9/2008

Slide 15

Semantics of Boolean expressions

 Two Boolean expressions are equivalent if they

evaluate to the same truth value in all states

b1 b2

iff

(. <b1, > T <b2, > T)

 We could improve the evaluation of Boolean

expressions using

 a left-first sequential strategy

 a parallel strategy

6/9/2008

Slide 16

The command behaviour

 A program may

 terminate in a final state or

 diverge and never yield a final state

 We denote by

<c, > ’

the execution of a command c in an initial state

and terminating in a final state ’

 Recall: [n/x] (y) = {
n if x = y

(y) if x y

6/9/2008

Slide 17

Executing commands I

 <skip, >

<a, > n

<x := a, > [n/x]

<c1, > ’’ <c2, ’’> ’

<c1; c2, > ’

<b, > T <c1, > ’

<if b then c1 else c2 fi, > ’

<b, > F <c2, > ’

<if b then c1 else c2 fi, > ’

6/9/2008

18

PenC - Spring 2006

Slide 18

Example: MAX

 What is the final state ’ of

<if x < y then z:=y else z:= x fi, > ’

for (x) = 2, (y) = 1 and (z) = 0 ?

6/9/2008

Slide 19

Executing commands II

<b, > F

<while b do c od, >

<b, > T <c, > ’’ <while b do c od, ’’> ’

<while b do c od, > ’

6/9/2008

Slide 20

Semantics of commands

 Two commands are equivalent if when executed from
the same initial state they terminate in the same final
state

c1 c2

iff

(, ’. <c1, > ’ <c2, > ’)

 Examples
 x := x skip

 while b do c of if b then c; while b do c od

else skip

fi

6/9/2008

21

PenC - Spring 2006

Slide 21

Execution of Commands

 The order of evaluation is important and explicit.

 c1 is evaluated before c2 in c1; c2

 c2 is not evaluated in if true then c1 else c2 fi

 b is evaluated first in if b then c1 else c2 fi

 c is not evaluated in “while false do c od

 The execution rules suggest an interpreter but abstract
from a concrete one

 Execution is deterministic: only one rule can be applied
at time.

