
Handout I - ICTiB/Process modelling

Pieter Kwantes

January 9, 2010

Contents

1 Exercises 1
1.1 Safe EN systems . 1
1.2 Modelling and analysis of EN-systems with Woped 2
1.3 Calculating the size of the state space of an EN system 4
1.4 Transition systems versus Petri nets 4
1.5 Representation of Petri nets . 5
1.6 Running case . 6

2 Case description : Order processing at the LISTA Company 7
2.1 Introduction . 7
2.2 The order process at LISTA . 7
2.3 The order process at the Sales Subsidiary 8

3 Elementary Net systems 9
3.1 Introduction . 9
3.2 Formal definition of EN-systems 9

1

1 Exercises

1.1 Safe EN systems

In this Exercise class we will be using Woped as the tool for building Petri net
models. Unfortunately Woped does not really acknowledge the only member of
the Petri net family that we have learned about sofar: i.e. the Elementary Net
system (EN-system). Woped does however enable us to model Place transition
systems, another member of the Petri net family we will learn about in the
next lecture. In this exercise we will learn how we can transform an EN system
into a contact-free or safe EN system which is in fact the same as a safe Place
transition system (i.e. a Place transition system where each place can have no
more then one token).

1.1.1. Understanding safe EN systems

An EN-system is contact-free if in all reachable states of the reachability
graph, for each transition in the EN system the following condition holds: if all
the inputplaces of the transition hold (contain a token), then the outputplaces
do not hold (are empty). If we look at the EN-system shown on page 10 of this
handout then we can see that this is not a contact-free EN-system.

question a) Explain why.

Now look at the formal definition of the enabling of a transition in an EN-
system on page 10. You see that there are in fact two conditions that must be
fullfilled for a transition to be enabled.

question b) Would both conditions, just mentioned, still be necessary in a
contact free or safe EN system? If not, then which conditions might be re-
dundant?

1.1.2. Making EN systems contact-free

We can make EN systems contact free by adding so called complement
places. We can accomplish this by doing the following :

1. For each original place in the net we create a complement place. That
means we add a place with a token if the original place has no token and
we add a place without a token if the original place has a token.

2. For each transition to which the original place is an inputplace, we cre-
ate an arc that will make the complement place an outputplace of that
transition.

1

3. For each transition to which the original place is an outputplace, we cre-
ate an arc that will make the complement place an inputplace of that
transition.

Then we will have a contact-free, i.e. safe, EN system and in fact also a safe
PT system.

Because Woped only checks the inputplaces to determine whether a transi-
tion is enabled, and not its outputplaces we can only model EN systems in
Woped if they are safe EN systems.

question a) explain in your own words why this would be so.

Using the concept of safe EN systems, we are now able to create EN-systems in
Woped. This will be done in the next exercise.

1.2 Modelling and analysis of EN-systems with Woped

1.2.1. Creating a Petri net model in Woped In this exercise you will
create the net as shown in figure 5 on page 10 in Woped. Woped is an easy
to use Petri net editor. You can find a lot of useful information about Woped
under the help menu. For a quick start, just follow the steps summarized below:

Step 1: Open a new net. After you started Woped, you select the file sub-
menu from the menu bar and then you select the menu option new. Woped
will then present to you an empty workspace in the editor window that
allows you to create a new Petri net.

Step 2: Adding places and transitions. In the toolbar, just below the menu
bar (see figure 1), you will see a number of icons representing net elements
that you can use to create a Petri net model.

2

Figure 1: Net elements available in Woped

From the icons shown in figure 1 you should only use the two at the top,
to create a transition and to create a place. The other ones (with the
exception of the one at the bottom) are only for ”syntactic sugaring” and
can be created by using just the two elements just mentioned. Now add
the places and transitions you need to create the Petri net shown in figure
5.

Step 3: Connect the places and transitions , that you created in step 2,
as shown in figure 5. You can create connections or arcs as follows:

Figure 2: Drawing an arc in Woped

Step 4: Add the initial marking as shown in figure 5. You can add a mark-
ing by creating tokens as follows:

Figure 3: Creating tokens in Woped

3

1.2.2. Executing a model After you created the net, in exercise 1.2.1., you
can execute it using the menu option in Woped start tokengame. Use the option
in the toolbar to fire the transitions manually one by one (see the help menu
for a detailed explanation of the tokengame option). From exercise 1.1.1. you
already know that the net is not safe. Now you can see what happens if you
execute an unsafe Petri net. Try to explain what you see and why you might
have a problem analyzing the behaviour of unsafe Petri nets (Hint: try to answer
the question how many different states the reachability graph of this Petri net
will have).

1.2.3. Making the net safe. Add a place to the net in figure 5 that is the
complement of place p3 and build the resulting contact-free EN-system, i.c. safe
PT net, in Woped.

1.2.4. Generating the reachability graph Generate the reachability graph
of the safe net you created in exercise 1.2.3.. Explain how you can use the
reachability graph to verify whether the net is safe or not.

1.3 Calculating the size of the state space of an EN system

1.3.1. Create the Petri net model of exercise 2.4. (”Binary counter”) in the
book ”Workflow Management, Models, Methods and Systems” with Woped.

1.3.2. Extend the model of the binary counter from exercise 5. so that it can
count to 15.

1.3.3. State the relationship between the number of places in the Petri net
model of the binary counter and how far the counter can count.

1.4 Transition systems versus Petri nets

In computer science so-called transition systems are often used to describe the
behavior of systems. A transition system basically is a directed graph where
the nodes represent states and the edges model state changes. The figure below
shows a transition system that models the behaviour of a dog, which is either
quiet or is barking.

4

Figure 4: Transition system modelling the behaviour of a dog

In fact we have already seen, in the first lecture, a transition system of a
traffic light: this was the reachability graph of the Petri net model of the traffic
light.

1.4.1. Create a transition system that models the behaviour of the dog stand-
ing beside the traffic light. We must thereby assume that the behaviour of the
dog is completely independent of the traffic light.

1.4.2. Create two Elementary net systems, one that models the behaviour of
the dog, and the other of the traffic light (which you already have seen in the
lecture sheets).

1.4.3. Compare the models in exercise 1.4.1 and 1.4.2. Which model do you
think is the best and most convenient representation of the real world? Explain
why.

1.4.4. Create the model in exercise 1.4.2. (containing two EN-systems) in
Woped. Generate the reachability graph of the model. Compare the resulting
reachability graph with the model you created in exercise 1.4.1. and explain
what you see.

1.5 Representation of Petri nets

Petrinets can be represented by a graphical as well as a mathematical notation.
The graphical representation of the net you created in exercise 1.2.1. is shown
in figure 5 on page 10 and the mathematical representation of that same net is

5

shown on page 9. For this exercise you are asked to write down the mathematical
representation of the Petri net you created in exercise 1.2.3.

1.6 Running case

In this exercise you will set the first steps to make a formal model of the order
process at Lista as described in the case documentation. A top-down modelling
approach seems appropriate. For this exercise you will execute the following
steps:

1. Read Case description in section 2.

2. Identify relevant internal departments and external parties This step
involves that you identify all the departments and external parties that
participate in the order process at LISTA given in the case description.

3. Identify dependencies between departments This step involves find-
ing the dependencies between the activities that are executed by the par-
ties. A dependency can for example consist of some information send by
one department to another. You can start by finding the information flows
between the departments and external parties. A dependency can also be
the order in which activities are executed.

4. Draw dataflow diagram draw a dataflow diagram representing the com-
munication between the departments and external parties involved in the
execution of the Order process at the Sales Subsidiaries of LISTA, in a top-
down fashion. So, for example, the highest level of you dataflow diagram
could show an entity ”LISTA” and an entity ”Customer”’that exchange
information.

6

2 Case description : Order processing at the
LISTA Company

2.1 Introduction

The case study about the LISTA company is selected as a running case for this
course about business process modelling. The LISTA company already featured
in the course ”ICT enabled process innovation”, given earlier this academic
year, so you should already be familiar with this case. The documentation on
the LISTA case, will be published again on blackboard. The running case ex-
ercises given during this course will focus specifically on the order process at
LISTA. In the available case documentation you can find that the order process
was identified as one of the processes eligible for re-engineering to meet the tar-
gets that were defined in the strategic reorientation that was decided upon by
the management team of LISTA.

The running case in this course will involve making a Petri net model of the
order process at LISTA. Based on that model you will then do a performance
analysis of the order process as it is currently organized. This will then serve
as a benchmark for proposing improvements to the process. This proposal can
be the basis for a Petri net model and performance analysis of the improved
process. But before you can start modelling you must try to understand what
the order process at LISTA actually entails.

2.2 The order process at LISTA

The starting point for analysis of the current order process is the process chart
that is available which describes the processing of an order at the LISTA com-
pany. It describes the individual tasks within the order process, the ordering of
the tasks with the process and the routing of an order through the order pro-
cess. Further more it describes the actors, i.e. departments or external parties,
that are involved in this order process. You should try to understand the order
process at LISTA by investigating the process chart and read the explanation
about the order process that is given below.

If you look a the process chart of the order process at LISTA, you will see
that the order process can be considered as consisting of three different ”ver-
sions” of the order process. There is an order process executed by the internal
department of LISTA called Sales Subsidiary , there is an order process ex-
ecuted by the external party Independent Dealer (ID) and there is an order
process executed by the internal department of LISTA called Key Account. We
will focus our attention on the order process at the Sales Subsidiary.

7

2.3 The order process at the Sales Subsidiary

LISTA has twelve Sales Subsidiaries (SS), distributed over different locations.
Each SS can be considered as consisting of two subsections:

• an Internal Service (SS internal), responsible for operating a showroom
for product demonstrations and reception of customers and for a number
of administrative tasks associated with the order process.

• a Field Service (SSFS), which is highly mobile, not restricted to a fixed lo-
cation and takes care of most of the communication between the customer
and the other LISTA departments involved in the order process.

The order process can be initiated by the Customer, either by calling directly
to the SS Internal or by visiting one of the showrooms maintained by the SS
Internal. Alternatively, the order process can be initiated by the SSFS, which
actively monitors public announcements for development of new office space for
potential market demand and calls potential new Customers by phone. Each of
these three options for initiating a Customer order, might result in the prepa-
ration of basic sales documents for an offering to the Customer. The potential
order can subsequently follow a number of alternative routes through order pro-
cess and the LISTA organisation, as described in the process chart, before it
ends up as an order, accepted by the Customer, and entered into the produc-
tion system of LISTA to be handled further by the manufacturing department
of LISTA.

8

3 Elementary Net systems

3.1 Introduction

Elementary Net systems (EN-systems) are the most basic of all Petri Net models
discussed in this course. Like finite automata, EN-systems can be viewed as
an abstract model of computation. A crucial difference however is that the
state of the EN-system is distributed over a set of local states and each action
in the EN-system is only influenced by, and influences, the local state in its
direct neighbourhood. This allows the modelling of concurrent systems in a
natural way. The state of each concurrent system is represented by local states.
Synchronization of subsystems can be modelled by having these systems shared
transitions that change the local states of each system simultanuously. While
the finite automaton is a model of sequential systems, EN-systems are a model
of concurrent systems. In the following section we will give a formal description
of Elementary net systems.

3.2 Formal definition of EN-systems

In the following paragraphs we will give a formal description of respectively the
structure, the dynamics and the state space of an EN-system.

Structure of EN-Systems The structure of an EN-system is defined by a
quadruple :

ENS = (P, T,A, I)

where

1. P is a finite set of places

2. T is a finite set of transitions,

3. A ⊂ (P × T) ∪ (T × P) is a set of arcs between places and transitions.

4. I : P → {true, false} is an initialization function.

A marking M of an EN-system is a function : M : P → {true, false}. Markings
describe global states consisting of places that hold. In ENS the initialization
function I defines the initial marking of the system.

A simple example of a formal definition of an elementary net system might
be :

P = {p1, p2, p3, c1, c2}
T = {t1, t2, t4, t5}
A = {(p1, t1), (p2, t2), (p3, t4), (c1, t4), (c2, t5)}∪
{(t1, p2), (t2, p1), (t2, p3), (t4, c2), (t5, c1))}

9

I = {(p1, false), (p2, true), (p3, false), (c1, true), (c2, false)))}

This EN-system can also be given a nice graphical representation, as can be
seen in figure 5 below.

Figure 5: EN-system of a producer-consumer process

The circles in figure 5 represent the places of the EN-system, the squares rep-
resent the transitions and the arrows represent the arcs. Markings are pictured
by using dots, often called “tokens”, which indicate the places that hold.

An EN-system ENS=(P,T,A,I) as given above specifies the static part of the
ENS. The underlying net (P,T,A) constitutes a bipartite directed graph, where
the places and transitions are the nodes of the graph connected by arcs. The
transitions represent activities while the input places of a transition t ∈ T , i.e.
the places p ∈ P where (p, t) ∈ A, can be seen as the preconditions for this
activity to occur. Similarly, the output places can be seen as the postconditions
for this activity. A dot or token in a place indicates that the pre- or postcon-
dition it represents is true. If a postcondition of a transition is true, then this
prevents the transition or activity from occurring. The formal description of
the dynamics is given below.

Dynamics of EN-systems The occurrence of a transition in an EN-system
only depends on and only influences the local states in its neighbourhood.

Let In(t) = {p ∈ P |(p, t) ∈ A} be the set of input places of transition t

10

and Out(t) = {p ∈ P |(t, p) ∈ A} the set of output places of t.
Then,

1. A transition t is enabled in a marking M iff the following property is
satisfied :

∀p ∈ In(t) M(p) = true ∧
∀p ∈ Out(t) M(p) = false.

2. When a transition t is enabled in a marking M it may occur, changing
the marking from M to M

′
, defined by:

∀p ∈ In(t) M
′
(p) = false ∧

∀p ∈ Out(t) M
′
(p) = true ∧

∀p ∈ P − (In(t) ∪Out(t)) M(p) = M
′
(p)

Thus the occurrence of t leads to the non-holding of its input places while its
output places begin to hold. This is illustrated by the figures 5 and 6 respec-
tively.

Figure 6: producer-consumer process after firing transition t2

The marking M
′

is said to be directly reachable from marking M .

Two transitions in an EN-system can occur concurrently if their neighbour-
hoods are disjoint. This is defined using the concept of a step:

11

1. A step is a subset of T .

2. A step Y is enabled in a marking M iff the following properties are satis-
fied:

(a) all t ∈ Y are disjoint, i.e. :

∀t1 6= t2 ∈ Y :
[In(t1) ∩ In(t2) = ∅ ∧Out(t1) ∩Out(t2) = ∅ ∧
In(t1) ∩Out(t2) = ∅ ∧ In(t2) ∩Out(t1) = ∅]

(b) all t ∈ Y are enabled

3. When a step Y is enabled in a marking M it may occur, changing the
marking from M to M

′
, defined by :

∀t ∈ Y (∀p ∈ In(t) M
′
(p) = false ∧ ∀p ∈ Out(t) M

′
(p) = true ∧

∀p ∈ P − (
⋃
t∈Y

In(t) ∪
⋃
t∈Y

Out(t)) M(p) = M
′
(p))

Reachability graph of EN-Systems The reachability graph of an EN-
system is a representation of the state space of the system by a graph and
can be considered a representation of its behaviour. Each node represents a
reachable marking and each arc a step that can occur in that marking. If a
state is directly reachable from another state there will be an edge connecting
the nodes that represent these two states. The reachability graph can be used to
analyze the behaviour of the net. A formal definition of the reachability graph
is given below.
A directed graph is a tuple DG = (V,E, N) where :

1. V is a set of nodes (or vertices).

2. E is a set of arcs (or edges), where V ∩ E = ∅

3. N is a node function. It is defined from E into V × V

DG is finite iff V and E are finite.
The reachability graph of an EN-system ENS = (P, T,A, I) is defined as a
directed graph OG = (V,E, N) where :

1. V = [M1〉 where ∀p ∈ P M1(p) = I(p).

2. E = {(M1, t,M2) ∈ (V × T × V)|M1[t〉M2}

3. ∀e = (M1, t,M2) ∈ E : N(e) = (M1, M2)

12

Since the set of places P and the set of transitions T are both required to be
finite, the set of all possible markings and steps of ENS must also be finite.
Therefore the occurrence graph is also finite. The reachability graph for an
EN-system can be constructed by the following algorithm :

1. V := {M1}; E := ∅; M1 is untagged;

2. while there are untagged nodes in V do :

(a) Select an untagged node M ∈ V and tag it

(b) for each enabled transition, t, at M , do

i. Compute M
′

such that M [t〉M ′
;

ii. V := V ∪ {M ′};
iii. E := E ∪ {(M, t, M

′
)}

13

