
Handout III - ICTiB/Process modelling

Pieter Kwantes

January 9, 2010

Contents

1 Exercises 1
1.1 Getting acquainted with CPN Tools 1
1.2 Performance analysis of an assembly line 8
1.3 Advanced features for performance analysis with CPN Tools . . 11
1.4 The Lista order process . 14

2 Timed Coloured Petri Nets. 18
2.1 Introduction . 18
2.2 Formal definition of Timed Coloured Petri Nets 19

1

1 Exercises

1.1 Getting acquainted with CPN Tools

To get acquainted with CPN-tools we will start by creating the Petri net model
of the Driving school, described in the book ”Workflow Management. Mod-
els, Methods and Systems” chapter 2, exercise 2.5. a), in CPN/tools. We
already did that exercise using Woped in the second exercise class (see Handout
II/Exercise 1.1.). We will now translate that same model into a Coloured Petri
net using CPN-tools. You may recall that the model we created in Woped was
a PT-system, which has only ”black” tokens. However, we could consider a
PT-system to be a Coloured Petri net with just one ”colour”, i.e. black.

The next assignment, exercise 1.1.1. will help you to build your first CPN-
model. You can use the ”getting started” web page of CPN Tools for reference.
The address of the web page is:

http://wiki.daimi.au.dk/cpntools-help/getting_started_with_cpn_.wiki

On the ”getting started” web page of CPN Tools you will find a link to the
main help which contains a lot of detailed information on working with CPN
tools. You can use this for reference when you make the next assignment,
exercise 1.1.1., translating the ”Driving school” model you made in Woped into
an equivalent model in CPN-tools.

1.1.1. Creating a model in CPN tools To create the ”Driving school”
model in CPN tools you should execute the following steps:

Step 1: Start CPN Tools After you start up CPN Tools you should see the
user interface as shown in figure 1.

1

Figure 1: the user interface of CPN tools

If you click on the Tool box menu item, you should see the Toolbox sub
menu as shown in figure 2.

Figure 2: the Tool box sub menu

2

Step 2: Create a new Net Use the Net option under the Toolbox menu to
create a new net. Just drag and drop the menu item to the right into the
workspace. A small window (binder) with a number of menu sub options
will appear in the workspace as shown in figure 3. Choose the create new
net option (i.e. the option in the upper left corner). A new (net) binder

Figure 3: the ”Net” option in the ”Toolbox” menu in CPN tools

will then appear, as shown in figure 4, which allows you to define a new
net .

Figure 4: An empty page in CPN tools for defining a new net

3

Step 3: Define coloursets For this exercise we will only use one of the built-
in coloursets of CPN-tools: UNIT. You must now extend the definition
of the colourset UNIT which you can find under the menu Declarations,
shown in figure 4, with the clasuse with e. The declaration will then look
as follows: colset UNIT = unit with e;. This now means that you
have defined a colourset with one constant value e. This constant value e
we will use to represent our black tokens.

Step 4: Create the places in the net Open the Create submenu under the
Toolbox menu (again drag and drop), shown in figure 5. To create places
in the net you must select the oval shape in the Create submenu and drop
it in the new net binder you created earlier (shown before in figure 4).

Figure 5: The Create submenu

Do that as often as you need places (as many as you had in the Woped
version of the ”Driving school” model), and deselect the oval shape when
you are done. Next you must define the correct colourset for each place.
You can do that by selecting a place and then push the Tab key once.
The text ”PLACE TYPE” will appear. Then push the arrow down key
as often as you need to select the correct type : UNIT. By doing this
CPN-tools now knows that this place only contains tokens of type UNIT,
i.e. ”black” tokens.

Step 5: Add transitions Add the transitions you need (as many as in the
Woped solution) using the same Create submenu you used to create the
places in step 4, but now selecting the rectangular shapes.

Step 6: Complete the net Connect the places and the transitions using the
arrow option in the Create binder. In CPN-tools you must specify an
expression for each arrow. This expression specifies the number and type
of tokens that can be bound to (”transported across” so to speak) that
arrow. For this exercise each arrow simply has the expression e. This
means that each arrow will ” transport” one black token.

Step 7: Put the initial marking in the net The net must have an initial
marking before it can do anything.Now for each place you must define its
initial marking. You do that by selecting a place and then push the Tab
key twice. The text ”INIT MARK” will appear. Here you specify the

4

number of tokens in the place as initial marking. One token is specified
as 1‘e. Two tokens is specified as 2‘e, etcetera.

Step 8: Save the model

1.1.2. Executing the model One of the advantages of modeling processes
with Petri nets, like you just did, is that Petri net models in principle are
executable. This allows you a visual inspection of the behaviour of the model
to determine whether that is according to your expectations. You can use the
Simulation submenu, shown in figure 6 under Toolbox menu for executing the
model. You can start with the single step option, the one exactly in the middle.

Figure 6: The simulation menu

1.1.3. Extension of the driving school model with colour Create the
Petri net model (a Coloured Petri net) described in the book ”Workflow Man-
agement. Models, Methods and Systems” chapter 2, exercise 2.5. b) .

To extend the model, you must execute the following steps:

Step 1: Define appropriate colourset In this assignment the driving school
students must take 10 lessons before taking the exam and will drop out if
they fail 3 times. To account for this extra information in your model you
must keep track of the number of lessons each student has taken and how
many exams he has failed. Therefore you must define a new colourset, eg.
STUDENT, to represent this information. This colourset represents the
set of driving school students, each which has three relevant attributes:
(student id, number of lessons taken, number of exams failed). You can
define such a colourset in CPN tools using the menu option Declarations
which you encountered earlier, as follows:

colset STUDENT = product INT * INT * INT;

Step 2: Define variables You need to define variables to ”transport” the
tokes defined in your colorset. You could for instance declare two variable
s and t of type STUDENT, below the declaration of the colourset STU-
DENT, as follows

var s,t: STUDENT;

5

Step 3: Assign colourset Next, you assign each relevant place in your model
this new colourset STUDENT (the same way that you assigned the colourset
UNIT in the exercise 1.1.1. step 4).

Step 4: Assign expressions You have to assign an expression to each arc
in the model (arc inscriptions), the same way that you did in exercise
1.1.1. (step 6) when you assigned the constant e to each arc, to bind the
tokens to (”transport across”) the arcs. In this case each token of type
STUDENT can be bound to the variable s you defined. To adjust the
model from exercise 1.1.1. you just have to replace each occurrence of the
constant e that you have assigned to an arc, by the variable s.

Step 5: Counting of lessons and exams There are a number of ways you
can keep track of the number of lessons and exams taken by each student.
One way, that is explained here, is to create transition inscriptions. You
can do that by selecting a transition and then push the Tab key until you
see the inscription template as the one shown in figure 7.

Figure 7: Transition inscription

Then you should fill in the template, eg. to count the lessons, as follows:

input(s);
output(t);
action((#1 s,(#2 s)+1,#3 s);

You can understand the meaning of this by first recalling that the vari-
able s in the input clause consists of three numbers (student id, number
of lessons taken, number of exams failed), because that is the way you
defined the colourset that you assigned to this variable. When the tran-
sition, with this inscription attached to it, fires, the first number in the
variable s : #1 s is copied to the first number in variable t in the output
clause. The same happens to the third number in the variable s. The
second number, the number of lessons, is increased by one. So if the input
token was (1,0,0), representing student with id 1 with zero lessons and
zero exams, the output token will be (1,1,0) representing the same stu-
dent with one lesson. You should of course take care that you assign the

6

inscription to the correct transition, eg. the transition that models the
end of a lesson. In a similar fashion you can count the exams (remember
to reset the lessons count after each exam!).

Step 6: Routing of tokens when a student has taken 9 lessons, he cannot
take an exam yet, but first has to take another lesson. If he has taken
10 lessons, then he must not take another lesson, but take the exam. So
the route taken by the token, representing the student, through the net
depends on the values in the token. To model that you need to add another
type of transition inscription, which are called guards. You can do that
by selecting a transition and then push the Tab key until you see the
inscription template consisting of two square brackets on the left upper
corner of the transition. An example of a guard you could define on the
transition that represents the taking of the exam is : [(#2 s) = 10]. This
means that if the second number in the input variable s, i.e. the number
of lessons, is equal to 10, only then can the transition fire.

1.1.4. Extension of the driving school model with time Create the
Petri net model (a Coloured Petri net) described in the book ”Workflow Man-
agement. Models, Methods and Systems” chapter 2, exercise 2.5. c). You can
do that by extending the model you created in exercise 1.1.3. You will have to
extend the model in two ways:

• Change the colourset STUDENT into a timed colourset by adding the
word ”timed” at the end of the declaration of the colourset as shown be-
low :

colset STUDENT = product INT * INT * INT timed;

This will ensure that CPN tools will automatically maintain timestamps
on each token fo type STUDENT.

• Add time clauses to expressions. For example, if you want to model the
fact that a lesson at the driving school has a duration of one hour, you
can attach a time clause to the outgoing arc of the transition ”start les-
son”, that looks lie this s@+60 (where s is the variable of colourset
STUDENT). This will ensure that each token produced by the transition
”start lesson” will get a time stamp that is equal to the firing time of the
transition + the value in the time clause, i.e. 60 minutes. This produced
token will then be available for the next transition, eg. ”end lesson”, as
indicated by the timestamp, i.e. 60 minutes after the lesson started.

Execute the model again and see what happens. Try to explain the value of
the time stamps you see.

7

1.2 Performance analysis of an assembly line

Consider (part of) a business process of producing a car on an assembly line:
assume that three of the steps in the assembly line are to install the engine, in-
stall the hood, and install the wheels (in that order). A car on the assembly line
can have only one of the three steps done at once. After the first car moves on
to wheel installation, the second car moves to the hood installation, and a third
car begins to have its engine installed. There are three different installation
stations, an engine station, a hood station and a wheels station, each operated
by one worker. Each station can handle one car at a time.

We want to analyze the performance of the assembly line with a timed Petri net
model. It is given that engine installation takes 18 minutes, hood installation
takes 4 minutes, and wheel installation takes 8 minutes. You can assume that
all cars are handled the same in the assembly line. Assume further that in the
initial state of this part of the assembly line there are 4 unfinished cars waiting
at the first station. Figure 8 shows a timed PT system (created with CPN
Tools) of the engine installation station of the assembly line.

8

Figure 8: A timed PT-system of the engine installation station

1.2.1. how much time does it take to produce one single car?

1.2.2. make a sketch on paper of a timed PT system of the part of the assembly
line with the three stations described above.

1.2.3. assume that the first task (engine installation) on the first car starts on
a working day at time 09.00 (model time t = 0). The initial marking (at t = 0)
of the Petri net in figure 8 is given next1:

{(init, 4‘e@0), (station busy, empty), (station free, 1‘e@0),(engine installed, empty)}

Describe the state, i.e. the marking (don’t forget the time stamps on the to-
kens!) that the Petri net model can have reached respectively at 9.00, at 9.30,
at 9.50 and at 10.10 (i.e. model time t = 0, t = 30, t = 50 and t = 70). We
assume that the transitions are eager, which means they fire as soon as they
can (i.e. when they are enabled)

1.2.4. How can you calculate average completion time of the four cars from
the information in the Petri net when all cars are finished? Explain and do the
calculation. Calculate also the average waiting time.

1.2.5. How many cars can be produced in one working day (assuming 8 work-
ing hours in one working day) ? Explain.

1.2.6. Now suppose you can add one extra station (either an engine station,
a hood station or a wheels station) and a worker to operate it, which station
would you add, if you wanted to maximize the amount of cars produced per day?
How would you change the Petri net model to count for this extra station? How

1Using the CPN-tools notation see e.g. sheets 8 and 9, 6th lecture.

9

many cars a day can you produce after adding the extra station? Explain your
answer.

1.2.7. Create the Petri net you have drawn as a solution to exercise 1.2.2. in
CPN tools.

1.2.8. Verify your solution to exercise 1.2.3. by executing the Petri net you
created in exercise 1.2.7. (You might need to add a ”clock” to your model to
answer the questions. You can do that by simply linking two transitions, where
one transition increases the time by one when it fires.)

1.2.9. In this exercise you will prepare the Petri net model of the assembly
line for automated performance analysis with CPN-tools. First of all you need
to extend the model with a so called ”data collector” that will gather the mea-
surements of the model simulations. Because you want to calculate the average
completion time for the cars running of the assembly line, you will have to gather
the completion time for each car. You can do this by gathering the time stamp
of each token when it reaches the end of the assembly line. You can do that in
CPN tools by using the ”data collector” option in the ”monitoring” menu (see
figure 9) and apply that to the transition that marks the end of the assembly
line. This will result in a template for a monitor declaration. We will have to

Figure 9: the ”data collector” option in the ”monitoring” menu in CPN tools

modify the definition of the observer function so that it will look like this:

10

fun obs (bindelem) =
let
fun obsBindElem (DSp1’end_exam (1, {})) = intTime()

| obsBindElem _ = ~1
in
obsBindElem bindelem

end

The observer function as defined above will lookup the model time, using the
function intTime(), when the transition to which you attached the data collec-
tor fires and and save the token and the model time for analysis.

We also have to define the function intTime() as a separate declaration follows:

fun intTime() = IntInf.toInt(time())

1.2.10. Performance analysis with CPN-tools In this exercise you will
use the features of CPN tools for performance analysis to verify the correctness
of performance statistics you derived by hand in exercise 1.2.4. Extension of
the model with a data collector as we did in the previous exercise enables us
to measure the completion time of the process. We are now ready to sun a
simulation of the model. You can do that by using the simulation submenu,
and activate the fast forward option. After you have run the model you can find
a performance report in a subdirectory (called ”output”) of the directory where
the model is saved. View this performance report and interpret the information
in it. It will give you the average completion time.

1.3 Advanced features for performance analysis with CPN
Tools

1.3.1. Measuring performance of the driving school model In this
exercise we will run the model of the driving school to assess its performance.
We will be analyzing the ”completion time” of the process, which we will define
here as the time between the start of a series of lessons for one student and the
end of the associated exam (which need not be successful).

1.3.1.a. Extend the model with a data-collector We will have to change
the model slightly and extend it with a data-collector to gather the data that
is produced by execution of the model. We will need that data to calculate the
completion time as defined above.

First of all we have to extend the colourset we have used to represent students (
in exercise 2.5. b) in the book ”Workflow Management. Models, Methods and
Systems” chapter 2), with an extra colour ”start time” (INT), to represent the
start of a series of lessons.

11

Secondly we have to attach a so called ”data collector” to the transition that
we have used to model the end of the exam. We can do that in CPN tools by
using the ”data collector” option in the ”monitoring” menu (see figure 9) and
apply that to the ”end exam” transition.

This will result in a predefined monitor declaration. We will have to change
the definition of the observer function so that it will look like this:

fun obs (bindelem) =
let
fun obsBindElem (DSp1’end_exam (1, {s,t})) = (intTime() - #4 s)

| obsBindElem _ = ~1
in
obsBindElem bindelem

end

The variable s is the variable attached to the input arc of the transition ”end
exam”and the variable ”t” is attached to the output arc of transition ”end
exam”. The observer function as defined above will calculate the difference be-
tween the model time when the transition ”end exam” fires and the start time
we saved in the token that is being process and that is bound to the variable s
(i.e. #4 s gives the start time).

We also have to define the function intTime() as a separate declaration follows:

fun intTime() = IntInf.toInt(time())

Thirdly we will have to set the start time for each student when he begins a
new series of lessons to the current model time given by the function inT ime().

1.3.1.b. Gather data by running the model Extension of the model with
a data collector as we did in the previous exercise 2.2.a. enables us to measure
the completion time of the process. But before we are going to run the model we
will simplify it a bit, to make analysis a bit easier. We eliminate the option to
”drop out” and we start by assuming that there are 10 students, that there is one
examiner and one instructor. Next we run the model by using the ”simulation
menu” (50 steps option, double speed) until all students passed the exam (for
the third time). After we have run the model we can find a performance report
in a subdirectory (called ”output”) of the directory where the model is saved.
View this performance report and interpret the information in it. It will give
you the average completion time.

1.3.1.c. Analyze the influence of increase in capacity Rerun the model
1.3.1.b. with respectively 2, 3, 5 and 10 instructors, write down the average
completion time for each of these cases and explain the results.

12

1.3.1.d. Analyze the influence of resource flexibility The model in
1.3.1.b. assumed that an instructor, only can give instruction, and an examiner,
is only allowed to take exams. Now change the model so that the instructor can
also take exams and the examiner can also give lessons. Then rerun the model
and write down the results and compare them with the results you found in
1.3.1.b. and 1.3.1.c. Explain the results.

1.3.2. : Increase reliability of measurements by using multiple sub-
runs Do the performance analysis described in the Queue system example.
You can find the example net in the subdirectory ”CPN Tools/samples/Queuesystem”

1.3.2.a. Manual simulation First execute the Queue system by using the
fast forward option on the simulation menu. Then investigate the Performance
report (PerfReport) in the sub directory named ”output” in the directory where
the Queue system model is saved.

1.3.2.b. Multiple subruns Execute the statement shown in the figure be-
low. You will notice that after you executed this statement, a subdirectory in the

Figure 10: Statement to execute a simulation with multiple subruns

output directory is created named ”reps n”, whereby n is increased by one each
time you run the statement. The subdirectory ”reps n” contains the output pro-
duced by CPN tools during the nth execution of the statement above. Within
the subdirectory ”reps n” you will find a performance report PerfReportIID
and another 5 subdirectories ”sim m”, where m is 1 to 5, containing the output
of 5 simulations of the Queue-system. Each subdirectory ”sim m” contains a
performance report PerfReport with the performance statistics based on data
gathered during one simulation. The PerfReportIID is based on the data from
all 5 simulations.

Now write down the average queue delays calculated for each of the 5 simu-
lations you just executed and the associated standard deviations. Also write

13

down the average queue delay and standard deviation based on all 5 simula-
tions. Explain the difference between the first 5 sets of numbers and the last
one.

1.3.3. : Multiple subruns per model variant Do the performance anal-
ysis described in the Queue system configuration example.

1.3.3.a. Manual variation In this exercise you will analyze the influence of
changing the number of servers (NOS) and the distribution of processing time
of the servers in the Queue system configuration example. Run the model 4
times by executing the statement CPN ‘replications.nreplications 5 4 times,
each time with a different configuration as described below:

1. NOS = 4, Average processing time = 360, distribution of processing time
= DISCRETE

2. NOS = 5, Average processing time = 360, distribution of processing time
= DISCRETE

3. NOS = 4, Average processing time = 180, distribution of processing time
= DISCRETE

4. NOS = 5, Average processing time = 180, distribution of processing time
= DISCRETE

Write down the average queue delay you find by running the simulations for
each different configuration.

1.3.3.b. Automated variation Run the model 4 times by executing the
statement simulateConfigs(5) one time and write down the results like you
did in the previous exercise.

1.4 The Lista order process

In this exercise you will start with the creation of a Petri net model in CPN
tools of the Lista order process based on the sketches you made in the previous
exercise classes.

3.4.1. Create appropriate colourset The Lista order process is, of course,
all about processing of orders. The orders that are handled by the order process
can be considered as the cases in the workflow. The first thing then to do is to
define an ORDER colourset. We can start simple and define this colourset to
contain only ”black” tokens, the similar to way we did it in exercise 3.1.1. step
3. To do that we include the following declarations:

colset UNIT = unit with e;
colset ORDER = UNIT;

14

. You should also add a declaration of a variable of type ORDER, eg.
var o1: ORDER;
We can extend the colourset ORDER at a later stage.

3.4.2. Create top level Petri net model Create transitions, like you did
for exercise 3.1.1. step 4, but only for entities/processes on the highest level of
your dataflow diagram (eg. entities like ”Lista” and ”Customer”). Next create
the places to connect these transitions, like you did for exercise 3.1.1. step 3,
to represent the communication between the entities (based on the dataflow
diagram and the first sketch of the Petri net model you made in the previous
exercise classes). Finally, you connect the places and transitions with arcs,like
you did in exercise 3.1.1. step 5. However, in this case, you should add the
expression o1 to each arc, in stead of e like you did in exercise 3.1.1. step 5.

3.4.2. Create lower level Petri net models Now you need to create the
lower levels of you Petri net model. For instance you want to zoom in on the
”Lista” entity you modeled and model the ”insides” of it. For instance you can
model the departments, of which Lista is composed. To do this you can use the
Hierarchy submenu in the Toolbox menu, which is show in figure 11. To create

Figure 11: Hierarchy submenu

a subnet for a transition, ”zoom in” on a transition, you should select the move
to subpage option in the upper left corner of the submenu shown in figure 11.
After you selected the option, you apply it to the transition you want to zoom
in to. CPN tools then creates a new page which contains the transition you
selected and all the places attached to it. You can now delete the transition on
this new page, and create a subnet that represents a lower level detail of the
transition with which this page is associated.

3.4.3. Complete the model For each transition on the toplevel you can
create a subnet as described in exercise 3.4.2., if that is appropriate. You can
repeat the procedure for the transitions on the subnets you created. You will
then end up with a tree-like structure of subnets, where the top-level Petri net
model is the root of that tree. It is certainly possible that, while working on a
subnet, somewhere in the lower levels of the tree, you discover that you have
forgotten a place, a transition or some connection on a higher level. In that case

15

you need to switch to the ”bottum-up” level development feature of CPN-tools,
which is explained in the help menu of CPN tools and will also be discussed in
one of the upcoming exercise classes and lectures.

3.4.4. Validate the model Use the simulation menu of CPN Tools to ex-
ecute the model in a ”step by step” fashion. By executing the model in ”slow
motion” you can detect undesired behaviour and correct any errors you made
in the model.

3.4.5. Add time information to the model To use the Petri net model
for performance analysis you must add time information. First of all you must
change the definition of the colourset ORDER to make it a timed colourset.
Secondly, to measure the completion time of an order, you must know its start
time. Therefore you could change the definition of the colourset so it will then
look like this:

colset ORDER = INT timed;

Next you must add time clauses to the Petri net model to represent the
duration of the activities in the model. If, for example, there is an activity
”Send sales documents to customer”, that takes 1 day to complete, you can
amend the expression on the outgoing arc from o1 into o1@+(24*60) (so the
duration is measured as 24 times 60 minutes).

3.4.6. Add routing information to the model An order can follow dif-
ferent routes within the Lista order process. For instance, in activity ”Check of
offer documents” (task 84 on the process chart), in 10 % of the cases, the next
step is ”Deliver by mail” (task 86 in the process chart) and in the remaining
90 % of the cases the next task is ”Consultation of customer” (task 96 on the
process chart). The are different ways you can model this. One simple solution
is suggested below.

Add colourset ROUTE defined as colset ROUTE = int with 1..100;

Add a routing attribute to the ORDER colourset change the colourset
ORDER into colset ORDER = product INT * ROUTE timed;

Add guards to the transitions to represent to the routing decisions within
the order process.

3.4.7. Add data collector to the appropriate transition, eg. the transition
that marks the completion of the order, like you did in exercise 3.2.9.. This will
result in a data collector template. You should change the observer function in
the template as follows :

16

fun obs (bindelem) =
let
fun obsBindElem (DSp1’end_exam (1, {o1,o2})) = (intTime() - #1 o1)

| obsBindElem _ = ~1
in
obsBindElem bindelem

end

(NB: the symbols o1 and o2 are two variables on the input and output arc of
the transition with which the data collator is associated. If you defined other
names for the variables, they will change accordingly in the definition of the
function.)

3.4.6. Create a ”generator” of orders to represent the order flow that will
arrive at the LISTA order process. This generator will create orders. Make sure
that it fills the ”start time” and the ’routing information” correctly. The start
time is simply the current time you can derive from the function intTime() you
already used earlier. For the routing information you can use a random number
function like discrete(1,100), which will generate a random number between 1
and 100.

3.4.7. Calculate average completion time of an order Let CPN tools
calculate the average completion time of an order in the LISTA order process
by running a simulation of the model you created, like you did in exercise 1.2.10
on page 1.2.

17

2 Timed Coloured Petri Nets.

2.1 Introduction

In the models considered until now there is no explicit notion of time. However
timing is often a critical aspect of systems. This is for instance the case for
real-time computer systems, communication protocols, logistics ([1]) and also,
for the order process at LISTA, which is the subject of the running case.
Several methods for introducing time in the Petri net model have been proposed.
The approach taken by Jensen in [4] will be described in this section.

Time is introduced by Jensen by attaching a timestamp to each token. Fur-
thermore a global clock is available telling the model time. A token becomes
available if the model time is equal to or greater than the timestamp assocciated
with the token. A transition is enabled when all its input tokens have become
available. The global clock will move to a next point in time after all transitions
enabled at the current model time have fired.
The values and timestamps of the tokens produced may depend upon the con-
sumed tokens. This relation between tokens consumed and tokens produced
is described by arc-expressions. The timestamp of a token is calculated by
adding a delay, defined in the arc-expressions, to the model time. The delay
can be defined by an arbitrarily complex function, which for instance might
include statistical distributions. By introducing this randomness a category of
Stochastic Petri Nets is created. This is often appropriate because in reality it
is not always possible to determine the exact timing of an event. The type of
delay used does however influence the size of the occurrence graph and thus the
complexity of the analysis of the Petri net. Stochastic delays increase the size
of the occurrence graph and the complexity of analysis and are not considered
in this document. The subject of stochastic Petri nets is however not covered
here. The formal definition of a Timed Coloured Petri net given in the next
paragraph is taken from [4].

18

2.2 Formal definition of Timed Coloured Petri Nets

First of all the state of the CP-net, as described in the handout for the second
exercise class, must be extended with time information. This is accomplished by
introducing the concept of a timed multiset. The definition of timed multisets
is given below :

1. A timed multiset tm over a non-empty set V is defined as a function
tm : V ×R→ N such that

tm(v) =
∑
r∈R

tm(v, r)

is finite for all v ∈ V . Analogous to the term m(v) for ordinary multisets,
defined in the second handout, tm(v) is a non-negative integer representing
the number of appearences of the element v in the timed multiset tm.

2. The list tm[v] = [r1, r2, . . . , rtmv
] consists of all the time values r ∈ R for

which tm(v, r) 6= 0 with ri ≤ ri+1, ∀i ∈ {1, . . . , tmv − 1} .

3. The timed multiset tm over V can now be represented as∑
v∈V

tm(v)‘@tm[v].

where tm(v) is called the coefficient of v.

4. The set of all timed multisets is denoted by VTMS and the non-negative
integers {tm(v)|v ∈ V } are called the coefficients of the multiset tm .

With the notation just introduced we can describe the following example of a
timed multiset :

3′1@[10, 11, 13] + 1′2[9]

for which we have tm[1] = [10, 11, 13] and tm[2] = [9]. This could for instance
describe a marking of a place with 4 tokens, three with a value of 1 and one
with a value of 2, each with its own time stamp.

The operations allowed on timed multisets are defined the same way as the
corresponding operations on ordinary multisets except for the operations com-
parison and subtraction.
An ordinary multiset V1 over a set V is smaller than another multiset V2 over V
if each element v ∈ V that belongs to V1 also belongs to V2 and the multiplicity
of the element in V1 is never more than the multiplicity of the element in V2.
If V1 and V2 were timed multisets then V1 ≤ V2 would require each element in
V1 to appear in V2 with exactly the same time value. This requirement is too
strong since we want tokens with a time stamp smaller than a specified time

19

value to become available. Comparing time stamps is defined as follows. For
two ascending lists of time stamps a = [a1, a2, . . . , am] and b = [b1, b2, . . . , bn]
over R, a ≤ b iff m ≤ n and ai ≤ bi for all i ∈ {1, . . . ,m}. If a ≤ b then
b − a is defined as the list with length n −m, which is obtained from b in the
following way. From b we remove the largest time value which is smaller than
a1. From the remaining list we remove the largest time value smaller than a2.
And so on, until finally, from the remaining list, we remove the largest time
value which is smaller than am. This definition of subtraction is necessary to
prevent a possible violation of a basic Petri net rule, the so called “diamond
rule”. This rule states that concurrently enabled steps can occur in any order
with the same global effect.
The operations comparison and subtraction can now be defined for timed mul-
tisets as follows :

1. Let tm1, tm2 ∈ STMS , then:
tm1 ≤ tm2 ⇔ ∀s ∈ S : tm1[s] ≤ tm2[s].

2. If tm1 ≤ tm2 then:
tm2 − tm1 =

∑
s∈S(tm2(s)− tm1(s))‘s@(tm2[s]− tm1[s]).

The consequence of these new definitions for comparison and subtraction is that
tokens are not necessarily consumed in FIFO order and might cause a token to
become “stuck” at a place, because the place may always have other tokens with
the same colour and a usable timestamp which is higher(see pp. 151 and 152 in
[4]).

The evaluation of initialization and arc expressions in a TCPN might result
in timed multisets. The timestamps attached to the tokens in these multisets
represent a time delay after which the tokens will become available. So the time
stamps of these tokens are calculated by adding the current model time to the
time-delay. This is reflected in the following notation. For a timed multiset
tm ∈ STMS and a time-value r ∈ R the multi-set tmr ∈ STMS is defined as
follows: tmr =

∑
s∈S tm(s)@tm[s]r where tm[s]r is the list obtained from tm[s]

by adding r to each time-value.

Structure of a TCP-net A timed coloured Petri net can now be defined as
a tuple TCPN = (CPN, R, r0) such that:

1. CPN = (Σ, P, T, A, N, C,G, E, I), satisfies the requirements of a non-
hierarchical CP-net when in the arc expression E(a) and the initialization
function I(p), as described in the handout for the second exercise class,
the Type is allowed to be a timed or untimed multiset over C(p(a)) and
C(p) respectively.

2. R is a set of time values or time stamps.It is also a subset of the set of
real numbers R closed under addition and containing zero.

20

3. r0 ∈ R is the start time.

The set of bindings B(t), token elements TE, binding elements BE and steps Y
are defined in the same way as for untimed CP-nets in the handout for the sec-
ond exercise class. The concept of a marking for TCPNs needs to be adapted
to account for the additional timing information:

1. A marking is a timed multiset over TE.

2. The initial marking M0 of TCPN is the marking obtained by evaluating
the initialization expressions :
∀p ∈ P : M0(p) = I(p)r0 .

3. A state is a pair (M, r) where M is a marking and r a time value. The
initial state is the pair (M0, r0).

Dynamics of a TCP-nets The concepts of binding, token elements and steps
for TCP-nets are defined in the same way as for CP-nets (see second handout).
The concept of enabling in a CP-net has been introduced in the handout for
the second exercise class to describe which tokens must be available before a
transition is ready to fire and which tokens will be consumed if the transition
fires. The definition of this concept for a TCP-net must be adapted to account
for the fact that tokens must be consumed in the order of their timestamps in
the following way :
A step Y is enabled in a state (M1, r1) at time r2 iff the following properties
are satisfied:

1.
∀p ∈ P

∑
(t,b)∈Y

E(p, t)〈b〉r2 ≤M1p

2. r1 ≤ r2

3. r2 is the smallest element of R for which there exists a step satisfying the
previous two properties.

When a step Y is enabled is a state (M1, r1) at time r2 the step may occur,
changing the state (M1, r1) to another state (M2, r2), where M2 is defined by:

∀p ∈ P : M2(p) = (M1(p)−
∑

(t,b)∈Y

E(p, t)〈b〉r2) +
∑

(t,b)∈Y

E(t, p)〈b〉r2 .

The first sum is called the removed tokens and the second is called the added
tokens. Moreover : (M2, r2) is said to be directly reachable from (M1, r1) by
the occurrence of step Y at time r2, which is also denoted by :
(M1, r1)[Y, r2〉, [M2, r2〉.

21

Now we can define the concepts of occurrence sequence and reachability for
a TCPN = (CPN, R, r0) :

1. a finite occurrence sequence is a sequence of states, steps and time values:
S1[Y1, r2〉S2[Y2, r3〉S3 . . . Sn[Yn, rn+1〉Sn+1 such that n ≥ 0 and Si[Yi, ri+1〉Si+1

for all i ∈ {1 . . . n}. The state S1 is called the start state, and the state
Sn+1 is called the end state, where n is the number of steps in or length
of the occurrence sequence .

2. an infinite occurrence sequence is a sequence of marking, steps and time
values:
S1[Y1, r2〉S2[Y2, r3〉S3 The state S1 is called the start state of the
infinite occurrence sequence.

3. The set of all finite occurrence sequences OSF of TCPN can be defined
as OSF (TCPN) =
{S1[Y1, r2〉S2[Y2, r3〉M3 . . . Sn[Yn, rn+1〉Sn+1 : n ≥ 0 ∧ S1 = (M0, r0) ∧
∀p ∈ P M0 = I(p)r0}

4. The set of all infinite occurrence sequences OSI of TCPN is defined as
OSI(TCPN) =
{S1[Y1, r2〉S2[Y2, r3〉M3 . . . : S1 = (M0, r0) ∧ ∀p ∈ P M0 = I(p)r0}

5. The set of all occurrence sequences OS of TCPN is defined as OS(TCPN) =
OSF (TCPN) ∪OSI(TCPN)

6. A state S′′ is reachable from a state S′ iff there exists a finite occurrence
sequence having S′ as a start state and S′′ as and end state. As a short-
hand, we say that S is reachable iff it is reachable from S0. The set of
states which are reachable from state S is denoted by [S〉.

The example of a CP-net shown in the second handout is adapted to give an
example of a TCP-net in figure 12 below. The formal specification is given by
TCPN = (CPN, R, r0). The definition CPN = (Σ, P, T, A, N, C,G, E, I) is
equal to the specification of the CPN given in the second handout except that
one of the arc-expressions now includes a time-clause and one of the coloursets
is defined as a timed multiset.

22

The new arc-expression function is:
E = {(a1, p), (a2, p), (a3, d), (a4, c), (a5, c), (a6, p@+1), (a7, p+1@+5), (a8, d), (a9, c),
(a10, c@ + 1)} and the definitions of the coloursets are extended with the clause
“timed”, denoting the fact that they are now timed multisets.

Figure 12: A TCP-net of a producer consumer process

The time clause @+1 in the expression associated with the arc between produce
and p2 means that if the transition produce occurs it will produce tokens with
a timestamp equal to the model time + 1. This token will become available for
the transition send only after the model time has increased by one. An inter-
pretation of this is that the activity produce has a duration of one time unit.
Similarly, the activity consume takes also one time unit and the activity send
takes five time units, which might represent for instance some kind of transmis-
sion delay. An important difference with CP-nets is that the enabling rule in a
TCP-net is no longer local. To determine whether a transition has an enabled
binding element at time r2, we need to consider all transitions that have colour
enabled binding elements. Otherwise we cannot know whether r2 is minimal. In
the example in figure 12 this means for instance that after the production and
sending of 5 tokens by each producer,there are 15 tokens in the place buffer and
the transition receive is colour enabled. But the transition produce is colour
and time-enabled by a token with a lower time-stamp (which, after producing
and sending five tokens will have a value of 5) than the tokens in buffer (the
lowest time stamp will have a value of 1+5=6). Therefore the transition receive
is not yet time-enabled. This will only happen after the production and sending
of the sixth token in the place buffer.

23

Occurrence graph of TCP-nets The construction of an occurrence graph
for a TCP-net is defined in the same way as for untimed nets, except that the
nodes now represent states instead of markings. This means that each node
contains a time value and a timed marking. Adding time however can have con-
sequences for the size of the occurrence graph. The nature of this consequences
is dependent on the type of delay chosen.
If a fixed delay is used, the occurrence graph of a non-cyclic TCP-net will
in general be smaller, or at most as big as the occurrence graph of the un-
timed version of the same Petri net. The untimed version of a TCP-net M =
(CPN, R, r0), can be obtained by taking the CP-net CPN and deleting the
timing information from the arc- and initialisation-expressions.(p. 157, [4]) The
occurrence graph of a non-cyclic TCP-net is smaller than its untimed version
because the timing information imposes a constraint on the dynamics of the
CP-net. For a cyclic TCP-net, the occurrence graph usually becomes infinite.
(p. 164, [4]).

References

[1] W. van der Aalst; Timed coloured Petri nets and their application to logis-
tics, Phd thesis Tue, 1992

[2] C. Girault, R. Valk; Petri Nets for Systems Engineering, Springer,2003

[3] K. Jensen; Coloured Petri Nets; Basic Concepts, Analysis Methods and
Practical Use; Vol. 1, Springer-Verlag, 1992

[4] K. Jensen; Coloured Petri Nets; Basic Concepts, Analysis Methods and
Practical Use; Vol. 2, Springer-Verlag, 1995

[5] A.V. Ratzer, L. Wells, H.M. Lassen; CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets, Department of Computer Science, Uni-
versity of Aarhus

[6] W. Reisig, G. Rozenberg, (Eds.); Lectures on Petri nets: Basic Models,
Lecture Notes in Computer Science, 1491, Springer-Verlag, 1998

[7] G. Rozenberg, J. Engelfriet; Elementary net systems, in [6], pp. 12-121

24

