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Lecture 2 – Performance & 
Pipelining

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Review from last lecture
• Tracking and extrapolating technology part of 

architect’s responsibility

• Expect Bandwidth in disks, DRAM, network, and 
processors to improve by at least as much as the 
square of the improvement in Latency

• Quantify Cost (vs. Price)
– IC ≈ f(Area2) + Learning curve, volume, commodity, margins

• Quantify dynamic and static power
– Capacitance x Voltage2 x frequency, Energy vs. power

• Quantify dependability
– Reliability (MTTF vs. FIT), Availability (MTTF/(MTTF+MTTR)

Outline
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation
– Fallacies & Pitfalls: Benchmarks age, disks fail, 1 point fail danger

• Pipelining
– MIPS: an ISA for Pipelining
– 5 stage pipelining
– Structural and Data Hazards
– Forwarding
– Branch Schemes
– Exceptions and Interrupts

• Conclusion   

Definition: Performance
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• Performance is in units of things per sec
– bigger is better

• If we are primarily concerned with response time

" X is n times faster than Y"  means
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Performance: What to measure?
• Usually rely on benchmarks vs. real workloads

• To increase predictability, collections of benchmark 
applications, called benchmark suites, are popular

• SPECCPU: popular desktop benchmark suite
– CPU only, split between integer and floating point programs
– SPECCPU2006:

» Motto: “An ounce of honest data is worth a pound of marketing hype”
» 12 integer and 17 floating point programs

– SPECSFS (NFS file server) and SPECWeb (WebServer) added as server 
benchmarks

• Transaction Processing Council measures server performance 
and cost-performance for databases

– TPC-C Complex query for Online Transaction Processing
– TPC-H models ad hoc decision support
– TPC-W  a transactional web benchmark
– TPC-App application server and web services benchmark

How Summarize Suite Performance (1/5)

• Arithmetic average of execution time of all programs?
– But they vary by 4X in speed, so some would be more important  than others 

in arithmetic average

• Could add a weight per program, but how pick a weight? 
– Different companies want different weights for their products

• SPECRatio: Normalize execution times to reference computer, 
yielding a ratio proportional to

ratedcomputer on  time
computer referenceon time  ePerformanc =
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How Summarize Suite Performance (2/5)

• If program SPECRatio on Computer A is 1.25 times 
bigger than Computer B, then

• Note that when comparing 2 computers as a ratio, 
execution times on the reference computer drop 
out, so choice of reference computer is irrelevant 
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How Summarize Suite Performance (3/5)

• Since ratios, proper mean is geometric mean 
(SPECRatio unitless, so arithmetic mean 
meaningless)

1. Geometric mean of the ratios is the same as the ratio of the 
geometric means

2. Ratio of geometric means 
= Geometric mean of performance ratios 
⇒ choice of reference computer is irrelevant!

These two points make geometric mean of ratios 
attractive to summarize performance
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How Summarize Suite Performance (4/5)

• Does a single mean well summarize performance of 
programs in benchmark suite?

• Can decide if mean a good predictor by characterizing 
variability of distribution using standard deviation

• Like geometric mean, geometric standard deviation is 
multiplicative rather than arithmetic

• Can simply take the logarithm of SPECRatios, compute 
the standard mean and standard deviation, and then 
take the exponent to convert back:
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How Summarize Suite Performance (5/5)

• Standard deviation is more informative if know 
distribution has a standard form

– bell-shaped normal distribution, whose data are symmetric 
around mean 

– lognormal distribution, where logarithms of data – not data 
itself – are normally distributed (symmetric) on a logarithmic 
scale

• For a lognormal distribution, we expect that 
68% of samples fall in range 

95% of samples fall in range 
[ ]gstdevmeangstdevmean ×,/

[ ]22 ,/ gstdevmeangstdevmean ×
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Example Standard Deviation (1/3)
• GM and multiplicative StDev of SPECfp2000 for Itanium 2

Outside 1 StDev

Itanium 2 = 
2712/100 x Sun Ultra 5 (GM)
range within 1 StDev is 
[13.72, 53.62] 

Example Standard Deviation (2/3)
• GM and multiplicative StDev of SPECfp2000 for AMD Athlon
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Example Standard Deviation (3/3)
• GM and StDev Itanium 2 v Athlon

Ratio execution times (At/It) = 
Ratio of SPECratios (It/At)

Itanium 2 = 1.30X Athlon (GM), 
1 St.Dev. range [0.75,2.27]

Outside 1 StDev

ExTimeratioSPECratio
0.92         0.92       
1.77         1.77       
1.49         1.49       
1.85         1.85       
0.60         0.60       
2.16         2.16       
4.40         4.40       
2.00         2.00       
0.85         0.85       
1.03         1.03       
0.83         0.83       
0.92         0.92       
1.79         1.79       
0.65         0.65       

Comments on Itanium 2 and Athlon
• Standard deviation for SPECRatio of 1.98 for Itanium 2 is 

much higher –vs. 1.40– so results will differ more widely from 
the mean, and therefore are likely less predictable

• SPECRatios falling within one standard deviation: 
– 10 of 14 benchmarks (71%) for Itanium 2
– 11 of 14 benchmarks (78%) for Athlon

• Thus, results are quite compatible with a lognormal 
distribution (expect 68% for 1 StDev)

• Itanium 2 vs. Athlon St.Dev is 1.74, which is high, so less 
confidence in claim that Itanium 1.30 times as fast as Athlon 

– Indeed, Athlon faster on 6 of 14 programs

• Range is [0.75,2.27] with 11/14 inside 1 StDev (78%)

Fallacies and Pitfalls (1/2)
• Fallacies - commonly held misconceptions

– When discussing a fallacy, we try to give a counterexample. 
• Pitfalls - easily made mistakes. 

– Often generalizations of principles true in limited context
Show Fallacies and Pitfalls to help you avoid these errors

• Fallacy: Benchmarks remain valid indefinitely
– Once a benchmark becomes popular, tremendous pressure to 

improve performance by targeted optimizations or by aggressive 
interpretation of the rules for running the benchmark: 
“benchmarksmanship.”

– 70 benchmarks from the 5 SPEC releases. 70% were dropped 
from the next release since no longer useful

• Pitfall: A single point of failure
– Rule of thumb for fault tolerant systems: make sure that every 

component was redundant so that no single component failure 
could bring down the whole system (e.g, power supply)

Fallacies and Pitfalls (2/2)
• Fallacy - Rated MTTF of disks is 1,200,000 hours or

≈ 140 years, so disks practically never fail
• But disk lifetime is 5 years ⇒ replace a disk every 5 years; on 

average, 28 replacements wouldn't fail
• A better unit: % that fail (1.2M MTTF = 833 FIT)
• Fail over lifetime: if had 1000 disks for 5 years

= 1000*(5*365*24)*833 /109 = 36,485,000 / 106 = 37 
= 3.7% (37/1000) fail over 5 yr lifetime (1.2M hr MTTF)

• But this is under pristine conditions
– little vibration, narrow temperature range ⇒ no power failures

• Real world: 
– 3% to 6% of SCSI drives fail per year

» 3400 - 6800 FIT or 150,000 - 300,000 hour MTTF [Gray & van Ingen 05]

– 3% to 7% of ATA drives fail per year
» 3400 - 8000 FIT or 125,000 - 300,000 hour MTTF [Gray & van Ingen 05]

Outline
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation
– Fallacies & Pitfalls: Benchmarks age, disks fail, 1 point fail danger

• Pipelining
– MIPS: an ISA for Pipelining
– 5 stage pipelining
– Structural and Data Hazards
– Forwarding
– Branch Schemes
– Exceptions and Interrupts

• Conclusion

A "Typical" RISC ISA

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store: 

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the desired 
functions

– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data path
– Based on desired function and signals

Datapath Controller

Control Points

signals

Approaching an ISA
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware supported 
data types, named storage, addressing modes, sequencing

• Meaning of each instruction is described by the register 
transfer language (RTL) on architected registers and 
memory

• Given technology constraints assemble adequate datapath
– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MBR, …)
– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs
• Collate sequences into symbolic controller state transition 

diagram (STD)
• Lower symbolic STD to control points
• Implement controller

5 Steps of MIPS Datapath
Figure A.2, Page A-8
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Next PC

WB Data

Inst

RD
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ImmIR <= mem[PC];

PC <= PC + 4

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]

5 Steps of MIPS Datapath
Figure A.3, Page A-9
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IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

Inst. Set Processor Controller

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR
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5 Steps of MIPS Datapath
Figure A.3, Page A-9
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Visualizing Pipelining
Figure A.3, Page A-9
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Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction 
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of 
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior instruction still 
in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow (branches 
and jumps).

One Memory Port/Structural Hazards
Figure A.4, Page A-14
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Instruction fetch
IR ← Mem[PC];

NPC ← PC + 4

Memory access
LMD ← Mem[ALUOutput];

or

Mem[ALUOutput] ← B

One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)
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Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?

Speed Up Equation for Pipelining

pipelined

dunpipeline

pipelined

dunpipeline

Time Cycle
Time Cycle

 
CPI
CPI

  
pipelined time ninstructio Average

dunpipeline time ninstructio Average  Speedup ×==

pipelined

dunpipeline

Time Cycle
Time Cycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+

×
=

pipelined

dunpipeline

Time Cycle
Time Cycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

ninstructio per cycles stall Pipeline CPI IdealCPIpipelined +=

For simple RISC pipeline, Ideal CPI = 1:

depth Pipeline
dunpipelinecycleClock  CPIpipelined =
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Example: Dual-port vs. Single-port
• Machine A: Dual ported memory (“Harvard Architecture”)
•
• Machine B: Single ported memory, but its pipelined implementation 

has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed
SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth
SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
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Reg A
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LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and 
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

Three Generic Data Hazards
• Write After Write (WAW)

InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19
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sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
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Reg A
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Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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HW Change for Forwarding
Figure A.23, Page A-37
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What circuit detects and resolves this hazard?

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20
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Time (clock cycles)
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-20
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Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)
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Reg A
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How is this detected?

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

• If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0

• MIPS Solution:
– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

IF/ID

Pipelined MIPS Datapath
Figure A.24, page A-38
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Next PC
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Imm
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Next 
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n

Scheduling Branch Delay Slots (Fig A.14)

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful 

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to 
deeper pipelines and multiple issue, the branch 
delay grows and need more than one delay slot

– Delayed branching has lost popularity compared to more 
expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches 
relatively cheaper
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Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

Problems with Pipelining
• Exception:  An unusual event happens to an instruction 

during its execution  
– Examples: divide by zero, undefined opcode

• Interrupt:  Hardware signal to switch the processor to a 
new instruction stream  

– Example: a sound card interrupts when it needs more audio output
samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt 
must appear between 2 instructions (Ii and Ii+1)

– The effect of all instructions up to and including Ii is totalling
complete

– No effect of any instruction after Ii can take place 

• The interrupt (exception) handler either aborts program or 
restarts at instruction Ii+1

Precise Exceptions in Static Pipelines

Key observation: architected state only 
change in memory and register write stages.

And In Conclusion:
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation

• F&P: Benchmarks age, disks fail,1 point fail danger

• Control via State Machines and Microprogramming

• Just overlap tasks; easy if tasks are independent

• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Reading

• This lecture: appendix A Pipelining

• Next lecture: appendix C Memory Hierarchy


